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Abstract: A simple and efficient method has been developed for
the stereoselective synthesis of 2,4-disubstituted thiochromans
from arylthiols and a,b-unsaturated aldehydes by using an acid- and
a base-supported reagent system, Na2CO3/SiO2–PPA/SiO2. Michael
addition of arylthiol to a,b-unsaturated aldehydes was promoted by
Na2CO3/SiO2, and then the product was cyclized in the presence of
PPA/SiO2.
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The thiochroman ring system is very attractive, because a
variety of thiochromans possess biological activity. For
instance, thiochroman-6-acetic acid has anti-inflammato-
ry, antipyretic and analgesic activities, and 4-substituted
aminothiochromans are active as antidepressants, anti-
hypertensives and agents against angina paints, etc.1 In
general, thiochromans were synthesized via Claisen
rearrangement of allyl phenyl sulfide2 and acid-catalyzed
intramolecular cyclocondensation of thiol and b-arylthio
aldehyde which are synthesized from arylthiol and a,b-
unsaturated aldehyde under basic conditions.3 Jafarzadeh
et al.4 and Ishino et al.5 synthesized these thiochromans
directly from arylthiols and a,b-unsaturated aldehydes
under acidic conditions. These methods made it possible
to shorten the two-step reactions, but the neutralization of
the reaction mixture in order to obtain pure products could
not be avoided. Recently, we developed a silica gel
supported polyphosphoric acid (PPA/SiO2) as a hetero-
geneous acid catalyst for organic synthesis.6 The reaction
using PPA/SiO2 has some advantages: PPA/SiO2 can be
separated easily from the reaction mixture; recovered
PPA/SiO2 can be reused after drying; the filtrate need not
be neutralized after removing the catalyst by filtration. In
continuation of our work using PPA/SiO2, we found out
that both PPA/SiO2 and silica gel supported sodium
carbonate (Na2CO3/SiO2) coexist in the same vessel with-
out neutralization, and benzothiophenes were synthesized
from the reaction of arylthiol and a-haloketone using
PPA/SiO2–Na2CO3/SiO2 in the same vessel.7 In this reac-
tion, Na2CO3/SiO2 promotes the reaction of arylthiol and

a-haloketone to give a-sulfenyl ketone, and PPA/SiO2

catalyzes intramoleculer cyclocondensation of a-sulfenyl
ketone. Now, a significant improvement of the stereo-
selectivity has been achieved for a variety of organic reac-
tions by the use of supported reagents or by the adsorption
of substrates onto the surface of an inorganic solid.8 Here-
in, we report the stereoselective synthesis of 2,4-disub-
stituted thiochromans using supported reagents Na2CO3/
SiO2–PPA/SiO2.

First, we investigated a catalytic system for the synthesis
of thiochromans 3aa from p-toluenethiol (1a) and croton
aldehyde (2a). For instance, when a mixture of 1a (4.2
mmol), 2a (2 mmol) and PPA (0.3 g) was stirred in 1,2-
dichloroethane at 80 °C for 4 hours, 3aa was obtained in
42% yield (Table 1). On the other hand, in the reaction
using PPA/SiO2

9 instead of PPA, the yield of 3aa (%)
increased along with a small amount of by-product 4.
The reaction did not occur without the catalyst. The struc-
ture of 4, 1,1,3-tris(4-methylphenylthio)butane, was con-
firmed by spectroscopic means using NMR, IR and by
mass spectrometry. Because of acidic reaction conditions,
compound 4 was formed. Therefore Na2CO3/SiO2

10 was
added to the reaction mixture in order to prevent the
formation of 4. In the coexistent system of Na2CO3/SiO2

and PPA/SiO2, the reaction gave 3aa in 74% yield, and
compound 4 was not detected. We tried to optimize the
reaction conditions for the reaction using Na2CO3/SiO2–
PPA/SiO2.

The optimum amount of PPA on silica gel for the reaction
was investigated. Using a large amount of PPA loaded
onto silica gel, the yield of 3aa decreased, whereas the
yield increased with a higher amount of PPA. PPA/SiO2

(20 wt%) was the most suitable catalyst for the intramo-
lecular cyclocondensation. In order to determine the opti-
mum conditions for the synthesis of 3aa, molar ratio of
reagents, reaction time and temperature were investigat-
ed. When the reaction was carried out using 1.25 g of
Na2CO3/SiO2, the yield was the same as in the reaction us-
ing 2.0 g of Na2CO3/SiO2. However, in the reaction using
less than 1.0 g of Na2CO3/SiO2, the yield of 3aa de-
creased, and a small amount of 4 was obtained. The use of
a large amount of PPA/SiO2 did not affect the yield. The
rate of the intramolecular cyclocondensation was signifi-
cantly affected by the reaction temperature. When the
reaction was carried out at less than 70 °C, the intra-
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molecular cyclocondensation did not proceed at all, but
Michael addition of 1a to 2a occurred. A shorter reaction
time resulted in a decreased yield, but long reaction time
and higher reaction temperature did not affect the yield.
From the results of these experiments, all reactions
were carried out using 2 mmol of 2, 4.2 mmol of 1, 1.25 g
of Na2CO3/SiO2 (1.5 mmol/g) and 3.0 g of PPA/SiO2

(20 wt%).

Scheme 1

However, when 1,2-dichloroethane was used as a sol-
vent under these conditions, a small amount of 1,2-bis(4-
methylphenylthio)ethane (5) was formed as by-product
(Scheme 1). Compound 5 was formed in the reaction of
1,2-dichloroethane with 1a in the presence of Na2CO3/
SiO2. Therefore we examined another suitable solvent in
which 5 was not formed. The results are shown in Table 2.
The yield in aromatic solvents was higher than that in ali-
phatic solvents. Compound 4 was observed in the reaction
products when hexane and chloroform were used as
solvents (entries 1 and 3). Compound 3aa was obtained in
only 4% yield when a polar solvent such as butanol was
used (entry 7). A series of thiochromans was synthesized
by using various combinations of 1 and 2.11,12 The results
are summarized in Table 3. All thiochromans were syn-
thesized in moderate to high yield except for the reaction
using 3-methyl-2-butenal. In the reaction with 3-methyl-
2-butenal, a large amount of the starting material was re-
covered (entries 5, 10 and 15). The yield did not increase
even if the reaction was carried out using a large amount
of Na2CO3/SiO2 or at high reaction temperature.

Table 1 Preparation of 3aa with Various Reagent Systemsa

Entry Reagent system Yield of 3aa (%)b

1 None 0

2 PPA 42

3 PPA/SiO2 67

4 Na2CO3/SiO2–PPA/SiO2 74

a In all reactions were used 2 mmol of 2a, 4.2 mmol of 1a, 0.3 g of 
PPA, 3.0 mmol of Na2CO3 and 15 mL of 1,2-dichloroethane.
b Yields were determined by GLC.

reagent system
S

SAr

+
H

OSH

DCE, 80 °C, 4 h

1a 2a

3aa

Na2CO3/SiO2–PPA/SiO2

+
H

OSH

DCE, 80 °C, 4 h

1a 2a
3aa

ArS
SAr

+

5

Table 2 Preparation of 3aa in Various Solventsa

Entry Solvent Yield of 3aa (%)b

1 Hexane 73c

2 Cyclohexane 76

3 Chloroform 60c

4 Benzene 80

5 Toluene 80

6 Monochlorobenzene 86

7 Butanol 4

a In all reaction were used 2 mmol of 2a, 4.2 mmol of 1a, 1.25 g of 
Na2CO3/SiO2 (1.5 mmol/g), 3 g of PPA/SiO2 (20 wt%) and 15 mL of 
solvent.
b Yield were determined by GLC.
c A small amount of 4 was observed.

Figure 1 1H NMR spectra of compounds 3ba–3bc
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Scheme 2

When m-toluenethiol was used for this reaction, intramo-
lecular cyclocondensation occurred at 2- and 4-positions
in the benzene ring, and both 5-methylthiochromans
(3da–de) and 7-methylthiochromans (3¢da–de) were
formed. Compounds 3 and 3¢ could not be isolated from
the mixture; therefore, these yields refer to a mixture of
3 and 3¢ (Scheme 2).

Ishino et al. have reported stereoselective synthesis of
thiochromans from arylthiols and a,b-unsaturated alde-
hydes in the presence of various protic and Lewis acids,

and they found that p-toluene sulfonic acid (TsOH) was
the most effective catalyst for a stereoselective synthesis
of thiochromans. In the case of the reaction using TsOH,
the formation of the cis-isomer of the thiochromans has
priority over the trans-isomer. The method using support-
ed reagents, however, gave preferentially the trans-iso-
mer. The structure of the products and the ratio of cis- and
trans-isomers were determined by 1H NMR and H–H
COSY. A proton signal at the 4-position in the trans-iso-
mer showed a triplet (J = 2.9–3.2 Hz) whereas in the cis-
isomer a doublet of doublet (J = 11.0–11.2, 5.1–5.4 Hz;
see Figure 1) was observed. These results agreed with the
Karplus rule. The protons at the 4- and 3-positions of the
trans-isomer are located equatorial–axial and equatorial–
equatorial on the thiopyran ring. The corresponding
protons of the cis-isomer are located axial–equatorial and
axial–axial. The structure of trans-3aa was also deter-
mined by X-ray crystal structure analysis and is shown in
Figure 2. Preferential formation of the trans-isomer is due
to intramolecular cyclocondensation occurring on the
surface of PPA/SiO2. There was no stereoselectivity
observed when an intramolecular cyclocondensation was

Table 3 Preparation of 3 from 1 and 2 Using Na2CO3/SiO2–PPA/SiO2
a

Entry Ar R1 R2 R3 R4 Product Selectivity (%)
(trans-isomer)

Yield (%)b

1 p-MeC6H4 Me H H Me 3aa 90.9 83

2 p-MeC6H4 Pr H H Me 3ab 96.2 76

3 p-MeC6H4 Ph H H Me 3ac >99.9 63

4 p-MeC6H4 H H H Me 3ad – 83

5 p-MeC6H4 Me Me H Me 3ae – 39

6 Ph Me H H H 3ba 80.0 64

7 Ph Pr H H H 3bb 84.7 73

8 Ph Ph H H H 3bc >99.9 88

9 Ph H H H H 3bd – 56

10 Ph Me Me H H 3be – 30

11 o-MeC6H4 Me H Me H 3ca 87.7 71

12 o-MeC6H4 Pr H Me H 3cb 91.7 59

13 o-MeC6H4 Ph H Me H 3cc >99.9 75

14 o-MeC6H4 H H Me H 3cd – 40

15 o-MeC6H4 Me Me Me H 3ce – 14

a In all reactions were used 2 mmol of 2, 4.2 mmol of 1, Na2CO3/SiO2 (1.5 mmol/g), PPA/SiO2 (20 wt%) and 15 mL of PhCl.
b Isolated yield.

Ar SH
R1 H

R2 O S

SAr

R2
R1

+
Na2CO3/SiO2–PPA/SiO2

PhCl, 80 °C, 4 h

1 2 3

R3

R4

SH

R1 H

R2 O

S

SAr

R2
R1

S

SAr

R2
R1

+

+
Na2CO3/SiO2–PPA/SiO2

PhCl, 80 °C, 4 h

Yield (%)R1 R2

Me
Pr
Ph
H
Me

H
H
H
H
Me

68
59
80
49
21

3da–de 3'da–de
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carried out using PPA (see Figure 1), i.e. the reaction of
benzenethiol (1b) and cinnamaldehyde (2c) in the pres-
ence of PPA gave a mixture of cis- and trans-3bc, in
which the ratio of cis- and trans-isomer was 1.34:1.00.
The mechanism of intramolecular cyclocondensation is
now under investigation.

Figure 2 The molecular structure of trans-3aa

In conclusion, we developed a highly stereoselective syn-
thesis of 2,4-disubstituted thiochromans from commer-
cially available arylthiols and a,b-unsaturated aldehydes
using the supported reagent system Na2CO3/SiO2–PPA/
SiO2. It is particularly noteworthy that this method makes
the neutralization of the reaction mixture and the trans-
isomer of the products preferentially formed unnecessary.
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