Recl. Trav. Chim. Pays-Bas 111, 389-401 (1992)

Reactions of ω -phenylalkenes with sulfur trioxide; sulfonation and Friedel-Crafts type of cyclization[§]

Ruud M. Schonk, Bert H. Bakker and Hans Cerfontain*

Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands (Received March 9th, 1992)

Abstract. Reactions of ω -phenylalkenes 1a-31a with sulfur trioxide were studied in the temperature range -60 to 25° C using dichloromethane as solvent and 1.5 mol equiv. of dioxane as reactivity moderator. ω-Phenylalkenes 1a-7a react just like simple alkenes: at low temperature, they yield the (thermally unstable) β -sultones 1b-7b and 4c-7c, which at 25°C are converted into the corresponding carbyl sulfates. Reactions of ω -phenylalkenes 8a-10a, which have a $-(CH_2)_3$ -linkage between the Ph and the C=C moieties, with 1.1 equiv. of SO₃ at -60° C yield very rapidly and quantitatively the 1-(1-sulfoalkyl)-1,2,3,4-tetrahydronaphthalenes 8f and 9f (= 10f). Reaction of ω -phenylalkenes 11a and 12a, having a $-(CH_2)_2$ - linkage between Ph and C=C, with 1.1 mol equiv. of SO₃ at -60° C leads to quantitative and stereospecific formation of 1-methyl-1,2,3,4-tetrahydronaphthalene--2-sulfonic acids 11h and 12h, respectively. The 5-(chlorophenyl)-2-pentenes 13a-16a clearly demonstrate the presence of β -sultones 13b-16b and 13c-16c as the sole initial products leading to the Friedel-Crafts cyclization products 13h-16h. Reaction of 1,3-diphenyl-1-propenes 26a and 27a with 1.5 equiv. of SO₃ at -60° C quantitatively yields β -sultones 26c and 27c, which upon raising the temperature to -20° C, are slowly converted into *trans*-1-phenylindane-2-sulfonic acid (34). Attempted intermolecular Friedel-Crafts type of sulfoalkylation of arenes using B-sulfones as reagent failed. Reaction of, for example, trans-4,5-octanesultone with anisole instead led only to transfer sulfodeprotonation, to yield (E)-4-octene and 4-methoxybenzenesulfonic acid. Mechanisms for the formation of the various products are suggested.

Introduction

As part of our studies on the sulfonation of α -olefins and internal alkenes, we are studying the reaction of monofunctionalized alkenes with sulfur trioxide. Our objective is to determine the effect of the substituents on the formation of the β -sultone and carbyl sulfate and on their chemistry. In the present paper, we report on the reactions of ω -phenylalkenes **1a-31a** with sulfur trioxide. The chemistry of conjugated phenylalkenes (styrenes) with SO₃ has been reported in a previous paper¹ and the chemistry of alkenoic acids and allenes will be reported in the near future.

The initial products of sulfonation of alkenes are thermally unstable β -sultones. The formation of these β -sultones proceeds in a stereospecific *syn* cycloaddition reaction, as shown for Z and E internal alkenes². Sulfonation of alkenes with an excess of sulfur trioxide generally leads to carbyl sulfates. Carbyl sulfate formation is a two-step process; rapid formation of the β -sultone is followed by slow stereospecific conversion into carbyl sulfate. This may be explained in terms of insertion of SO₃ into the O-SO₂ bond of the β -sultone³. Treatment of phenyl-substituted alkenes and alkanols with strong Brønsted or Lewis acids may lead to cycloalkylation of the resulting carbenium ions⁴. The sulfuric acid sulfonation of ω -phenyl-1-alkanols has previously been reported⁵: reaction of 5-phenyl-1-pentanol and 6-phenyl-1-hexanol with 90% H₂SO₄ at 25°C for 40 days yielded, after neutralization, mainly potassium 1-(m)ethyl-1,2,3,4-tetrahydronaphthalene-7-sulfonate together with a small amount of the corresponding 5-sulfonate salt. We have studied the reaction of ω -phenyl-1-alkanols with sulfur trioxide. Sulfonation of 5-phenyl-1-pentanol with 2.0 equiv. of SO₃ in dioxane or nitromethane as solvent, yielded 5-phenyl-1-pentyl hydrogen sulfate and 5-(4-sulfophenyl)-1-pentyl hydrogen sulfate, respectively, but no cycloalkylation product was formed⁶.

Many examples of reactions of ω -phenylalkenes with Brønsted acids have been reported⁴. For instance, reaction of 3,3-dimethyl-4-phenyl-1-butene with concentrated H₂SO₄ gave a mixture of a trisubstituted indane and disubstituted tetraline in 60% yield⁷. In this paper, we report the scope and limitations of the reactions of ω -phenylalkenes with SO₃, which may act both as a sulfonating reagent and as a Lewis acid.

⁸ Aliphatic sulfonation 9. For part 8, see ref. 21.

Results

Reactions of ω -phenylalkenes **1a–31a** with (in general, 1.0, 1.5 and 2.0 mol equiv. of) SO₃ were studied. The applied standard conditions were: dichloromethane as solvent and 1.5 mol equiv. of dioxane (relative to the amount of SO₃) as reactivity moderator⁸ (method A, see Experimental). In order to obtain information on the primary sulfonation pro-

ducts, the reactions were carried out at low temperature, and the reaction mixtures were analyzed by ¹H NMR spectroscopy. The ¹H NMR and some ¹³C NMR assignments of the ω -phenylalkenes and their sulfo products are compiled in Tables I–IX or in the experimental section.

Table I ¹H NMR data of ω -phenyl-1-alkenes.

		H ^{1b} H ^{1a}			¹ H NMR (CDCl ₃ , δ, ppm)"				
Alkene	n	C ¹ H ₂	C ² H	C ³ H ₂	C ⁴ H ₂	C ⁵ H ₂	C ⁶ H ₂	Ph	
1a	1	5.16 (m)	6.10 (m)	3.49 (d) <u>3.4</u>				7.32 (m)	
2a	2	5.06 (m)	5.91 (m)	2.43 (qr) <u>6.7</u>	2.77 (t) <u>7.2</u>			7.26 (m)	
3a	4	5.02 (m)	5.85 (m)	2.14 (qr) <u>7.1</u>	1.49 (m)	1.70 (m)	2.67 (t) <u>7.3</u>	7.25 (m)	
8a	3	5.07 (m)	5.84 (m)	2.12 (qr) <u>7.4</u>	1.74 (qn) <u>7.8</u>	2.64 (t) <u>7.6</u>		7.21 (m)	

^a Underlined data represent coupling constants in Hz.

$ \begin{array}{c} R^{3} \\ R^{4} \\ R^{2} \end{array} $	SO ₃ dioxane	0- 0 ₂ S	R^1 R^3 R^4		'H	NMR (CD_2Cl_2 ,	δ, ppm) ^a	
β-Sultone	R	R ²	R ³	R ⁴	R ¹	R ²	R ³	R4
16	Ph-CH ₂	н	н	н	7.32 (m) 3.22 (m)	4.77 (q) <u>6.36</u>	4.31 (dd) <u>5.70</u> <u>12.84</u>	4.62 (dd) <u>7.49</u> <u>12.84</u>
2b	Ph-(CH ₂) ₂	н	Н	н	7.20 (m) 2.75 (m) 2.20 (m)	4.54 (m)	4.17 (dd) <u>5.09</u> <u>12.06</u>	4.61 (dd) <u>7.62</u> <u>12.06</u>
3b	Ph-(CH ₂) ₄	Н	Н	н	7.19 (m) 2.61 (t) 1.64 (q) 1.44 (m) 1.90 (m)	4.56 (m)	4.22 (dd) 5.48 12.48	4.68 (dd) <u>7.65</u> <u>12.48</u>
4b	Ph-(CH ₂) ₃	Н	н	Н	7.16 (m)	4.57 (m)	4.23 (dd) <u>5.1</u> <u>12.38</u>	4.68 (dd) <u>7.66</u> <u>12.38</u>

Table II ¹H NMR data of β -sultone products of ω -phenyl-1-alkenes.

^a Underlined data represent coupling constants in Hz. ^b This β -sultone is a minor product and so exact absorptions could not be detected.

Table III ¹H NMR data of carbyl sulfate products of ω -phenyl-1-alkenes.

$R^{3} \xrightarrow{R^{1}} R^{2} \xrightarrow{R^{2}} Q^{2} \xrightarrow{R^{2}} R^{2}$ $R^{4} \xrightarrow{R^{2}} R^{2} \xrightarrow{R^{2}} R^{4} \xrightarrow{R^{3}} \xrightarrow{R^{3}} R^{4} \xrightarrow{R^{3}} \xrightarrow{R^{3}} R^{4} $										
Carbyl sulfate	R1	R ²	R ³	R⁴	R ¹	R ²	R ³	R⁴		
1d	Ph-CH ₂	Н	Н	Н	7.39 (m) 3.26 (m)	5.30 (m)	3.55 (dd) <u>11.4</u> <u>14.5</u>	3.79 (dd) <u>1.8</u> <u>14.5</u>		
2d	Ph-(CH ₂) ₂	Н	Н	н	7.29 (m) 2.84 (m) 2.26 (m)	5.10 (m)	3.60 (dd) <u>11.1</u> <u>14.6</u>	3.76 (dd) <u>2.1</u> <u>14.6</u>		
3d	Ph-(CH ₂) ₄	н	н	н	7.20 (m) 2.65 (t) 2.01 (m) 1.89 (m)	5.14 (m)	3.60 (dd) <u>11.3</u> <u>14.46</u>	3.78 (dd) <u>1.86</u> <u>14.46</u>		
8d	Ph-(CH ₂) ₃	н	н	н	_ b	_ b	_ b	_ b		

^a Underlined data represent coupling constants in Hz. ^b Carbyl sulfate not detected.

Formation of β -sultones and carbyl sulfates*

Sulfonation of ω -phenyl-1-alkenes **1a-3a** with 2.0 equiv. of SO₃, at -60°C leads to the formation of thermally unsta-

ble β -sultones **1b-3b** which at 20°C are subsequently converted slowly into the corresponding carbyl sulfates **1d-3d**. Using 4.0 equiv. of SO₃, the formation of 6-(ω -phenylalkyl)-1,3,2,4-dioxadithiane 2,2,4,4,-tetraoxides **1d-3d** is followed by relatively slow sulfonation of the phenyl group at the *para* position, providing the corresponding ω [(4-sulfophenyl)alkyl]-1,3,2,4-dioxadithiane 2,2,4,4,-tetraoxides.

^{*} IUPAC names: β -sultone = 1,2-oxathiane 2,2-dioxide; in *m,n*-sultone, *m* refers to position of SO₂. Carbyl sulfate = 1,3,2,4-dioxadithiane 2,2,4,4,-tetraoxide.

$\mathbf{R}^4 = (\mathbf{CH}_2)$	$^{\rm R}_{\rm 2}{\rm R}^{\rm 5}$						
Alkene	Substituents	R°	С'Н	C ² H	C ³ H ₂	C ⁴ H ₂	R ⁵
9a	$R^{1} = Me$ $R^{2} = R^{3} = H$ $R^{5} = C_{6}H_{5}$	1.70 (dd) <u>3.3</u> <u>1.2</u>	5.53	(m)	2.36 (m)	2.72 (t) <u>7.0</u>	7.25 (m)
10a	$R^{1} = R^{3} = H$ $R^{2} = Me$ $R^{5} = C_{6}H_{5}$	1.67 (dd) <u>5.0</u> <u>0.9</u>	5.56	(m)	2.48 (m)	2.78 (t) <u>7.2</u>	7.36 (m)
14a	$R^{1} = R^{3} = H$ $R^{2} = Me$ $R^{5} = 4' - ClC_{6}H_{4}$	1.55 (d) <u>5.8</u>	5.43	(m)	2.33 (m)	2.64 (t) <u>7.5</u>	7.12 (d) 7.24 (d)
16a	$R^{1} = R^{3} = H$ $R^{2} = Me$ $R^{5} = 2' - ClC_{6}H_{4}$	1.59 (d) <u>4.9</u>	5.53	(m)	2.41 (m)	2.81 (t) <u>7.2</u>	7.21 (m, 3H) 7.36 (dd, 1H)
18a	$R^{1} = R^{3} = H$ $R^{2} = Me$ $R^{5} = 2', 4'-Cl_{2}C_{6}H_{3}$	1.55 (dd) <u>5.6</u> <u>0.9</u>	5.46	(m)	2.35 (m)	2.75 (t) <u>7.0</u>	7.15 (m, 2H) 7.36 (s, 1H)
20a	$R^{1} = R^{3} = H$ $R^{2} = Me$ $R^{5} = 2',6'-Cl_{2}C_{6}H_{3}$	1.61 (d) <u>4.9</u>	5.53	(m)	2.45 (m)	2.98 (t) <u>7.8</u>	7.05 (dt, 1H) 7.26 (d, 2H)
21a	$R^{1} = R^{2} = Me$ $R^{3} = H$ $R^{5} = C_{6}H_{5}$	1.59 (s) 1.72 (s)	-	5.24 (m)	2.32 (m)	2.66 (t) <u>6.0</u>	7.23 (m)
25a	$R^{1} = H$ $R^{2} = R^{3} = Me(E/Z)$ $R^{5} = C_{6}H_{5}$	1.52 1.73	5.23 (m)	-	2.33 (m)	2.70 (m)	7.26 (m)

Table IV ¹H NMR data of 5-phenyl-2-pentene derivatives^a.

 $\begin{array}{c} R^{3} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{5} \end{array}$

¹H NMR (CDCl₃, δ, ppm)

^a The substrates are numbered starting at the double bond. ^b Underlined data represent coupling constants in Hz. ^c R stands for R^1 and/or R^2 , as appropriate.

Table V ¹H NMR data of β -sultone products of 5-phenyl-2-pentene derivatives.

O R³

R١

 \mathbf{R}^2

¹H NMR (CD₂Cl₂, δ , ppm)^a

β-Sultone	R ¹	R ²	R ³	R ⁴	R	R ²	R ³	R ⁴
21c	Me	Ме	Ph(CH ₂) ₂	Н	1.63 (s)	1.51 (s)	_ b	4.41 (dd) <u>4.5</u> <u>11.0</u>
22c	Me	Et	н	Ph(CH ₂) ₂	1.59 (s)	_ b	4.36 (dd) 4.9 9.5	_ b
23c	Me	Et	Ph(CH ₂) ₂	Н	1.50 (s)	_ b	_ b	4.40 (dd) <u>4.9</u> <u>10.9</u>
24b	Ph(CH ₂) ₂	Ме	Н	Me	_ b	1.56 (s)	4.85 (q) <u>7.3</u>	1.47 (d) <u>7.3</u>
25b	Ph(CH ₂) ₂	Me	Me	Н	_ b	1.56 (s)	1.42 (d) <u>7.5</u>	4.65 (q) <u>7.5</u>

^a Underlined numbers represent coupling constants in Hz. ^b This signal could not be detected.

392

Table VI ¹H NMR data of tetraline derivatives.

5

x	SO ₃ H			'Η NMR (δ,	ppm) ^a			Solvent ^b
	$\mathbf{R}^4 \mathbf{R}^3$	D 3	D4	C ² U	C3U	C4U	CH (Ar)	
Tetraline	Substrate	ĸ	ĸ	C-H				
11h	$R^3 = X = H$ $R^4 = Me.$	3.32 (m)	1.42 (d) <u>7.2</u>	3.12 (m)	2.08 (m)	2.79 (m)	7.04 (m)	D ₂ O
11i	$R^{3} = H, X = SO_{3}K$ $R^{4} = Me$	3.46 (m)	1.46 (d) <u>7.2</u>	3.46 (m)	2.30 (m)	3.03 (m)	7.77 (m) 7.34 (d)	D ₂ O
12h	$R^4 = X = H$ $R^3 = Me$	1.27 (d) <u>6.8</u>	3.32 (m)	3.12 (m)	2.08 (m)	2.79 (m)	7.04 (m)	D ₂ O
12i	$R^4 = H, X = SO_3K$ $R^3 = Me$	1.40 (d) <u>6.8</u>	3.4	6 (m)	2.30 (m)	3.03 (m)	7.77 (m) 7.34 (d)	D ₂ O
13h	$R^{3} = H, X \approx Cl$ $R^{4} = Me$	3.47 (m)	1.45 (d) <u>7.1</u>	3.47 (m)	2.23 (m)	2.89 (m)	7.08 (m)	CD ₂ Cl ₂
14h	$R^4 = H, X = Cl$ $R^3 = Me$	1.37 (d) <u>6.9</u>	3.49	-3.45	2.23 (m)	2.89 (m)	7.08 (m)	CD ₂ Cl ₂
15h	$X = R^3 = H$ $R^5 = Cl, R^4 = Me$	3.48 (m)	1.48 (d) <u>7.2</u>	3.48 (m)	2.25 (m)	± 2.9 (br)	7.15 (m)	CD ₂ Cl ₂
16h	$R^4 = X = H$ $R^5 = Cl, R^3 = Me$	1.37 (d) <u>6.9</u>	3.4	8 (m)	2.25 (m)	± 2.9 (br)	7.15 (m)	CD ₂ Cl ₂
21h	$R^3 = R^4 = Me$ $X = H$	1.54 (s)	1.67 (s)	$3.32 (dd) \\ 11.1 \\ 2.7 \\ 2.7$	2.45 (m) 2.16 (m)	2.92 (m)	7.28 (br)	CD ₂ Cl ₂
28h	$R^{3} = X = H$ $R^{4} = Ph$	4.67 (d) <u>5.5</u>	7.19 (m)	3.68 (m)	2.28 (m)	3.03 (m)	7.19 (m)	CD ₂ Cl ₂
29h	$R^4 = X = H$ $R^3 = Ph$	7.19 (m)	4.78 (d) <u>4.6</u>	3.68 (m)	2.28 (m)	3.03 (m)	7.19 (m)	CD ₂ Cl ₂

^a Underlined data represent coupling constants in Hz. ^b Spectra in D₂O as solvent refer to the corresponding potassium sulfonate.

Sulfonation of a 1:2.1 mixture of (E)- (4a) and (Z)--4-phenyl-2-butenes (5a) with 2.0 equiv. of SO₃ at -60° C gave immediately a complex mixture of *trans*- and *cis*-2,3--sultones (4b + 5b) and isomeric 3,2-sultones (4c + 5c). Similar results were found for the reaction of a 1:4 mixture of (E)- (6a) and (Z)-7-phenyl-2-heptene (7a). For both (4a + 5a) and (6a + 7a), the 2,3-sultone/3,2-sultone ratio = 4:1, the *trans/cis* ratio of the sultones is the same as the starting E/Z ratio of ω -phenyl-2-alkenes 4a-7a. After raising the temperature to 20°C, the sultones are converted slowly into their corresponding carbyl sulfates.

Friedel-Crafts type of cycloalkylation reactions

Reaction of 5-phenyl-1-pentene (8a) with 1.1 equiv. of SO₃ at -60° C yields rapidly and quantitatively 1-(sulfomethyl)-1,2,3,4-tetrahydronaphthalene (8f). Initial products, such as the β -sultone or its carbyl sulfate, could not be detected, even at -60° C. Reaction of 8a with ≥ 2 equiv. of SO₃ at -60° C leads to the rapid formation of 8f, followed, at room temperature, by slow sulfonation at the phenyl ring to yield 1-(sulfomethyl)-1,2,3,4-tetrahydronaphthalene-7-sul-

fonic acid (8g). Reaction of 8a with 1.2 equiv. of SO_3 according to method B (see Experimental) gave potassium 1-(sulfomethyl)-1,2,3,4-tetrahydronaphthalene in 93% yield.

Reaction of (E)- (9a) and (Z)-6-phenyl-2-hexene (10a) with 1.2 equiv. of SO₃, at low temperature, leads to the exclusive formation of 1-(1-sulfoethyl)-1,2,3,4-tetrahydronaphtalene (9f). This Friedel-Crafts type of cyclization is extremely fast: at -60° C, it is complete within 10 min.

Sulfonation of mixtures of different ratios of (E)- (11a) and (Z)-5-phenyl-2-pentene (12a) (1.0:3.0, 1.0:1.0 and 4.6:1.0) with 2.0 equiv. of SO₃ leads to a similar intramolecular Friedel-Crafts alkylation, to yield quantitatively the *trans* and *cis* isomers of 1-methyl-1,2,3,4-tetrahydronaphthalene-2-sulfonic acid (11h and 12h)⁹ in the same ratio as the starting E/Z ratio of the 2-pentenes 11a and 12a. Reaction of a mixture of 11a and 12a with an excess (≥ 4 equiv.) of SO₃ according to method B gave a mixture of the *trans* and *cis* isomers of dipotassium 1-methyl-1,2,3,4-tetrahydronaphthalene-2,7-disulfonate (11i and 12i).

Reaction of a 1:3 mixture of (E)- (13a) and (Z)-5-(4-chlorophenyl)-2-pentenes (14a) and a 1:2.8 mixture of (E)- (15a) and (Z)-5-(2-chlorophenyl)-2-pentenes (16a) with 1.0 equiv.

Table VII ¹³C NMR data of tetraline derivatives.

	R ⁴ R ³ SO ₃ H			¹³ C NMF	ς (δ, ppm)			Solvent"
Tetraline	Substrate	Rb	C(1)	C(2)	C(3)	C(4)	C(5-8)	
11h	$R^{3} = X = H$ $R^{4} = Me$	25.2	32.1	63.2	22.0	26.4	± 126	D ₂ O
12h	$R^4 = X = H$ $R^3 = Me$	19.3	34.0	61.2	18.9	28.5	± 126	D ₂ O
13h	$R^{3} = H,$ X = Cl $R^{4} = Me$	26.4	35.6	63.4	24.4	27.7	± 130	D ₂ O
14h	$R^4 = H,$ X = Cl $R^3 = Me$	20.2	36.1	61.3	20.8	29.7	± 132	D ₂ O
21h	$R^{3} = R^{4} = Me$ $X = H$	25.6 30.8	38.2	69.8	23.0	29.6	<u>+</u> 127	CD ₂ Cl ₂
28h	$R^{3} = X = H$ $R^{4} = Ph$	-	44.6	62.3	19.0	28.2	-	CD ₂ Cl ₂
29h	$R^4 = X = H$ $R^3 = Ph$	-	45.1	64.7	22.2	26.8		CD_2Cl_2

^a Spectra in D_2O as solvent refer to the corresponding potassium sulfonate. ^b R stands for R^3 and/or R^4 , as appropriate.

Table VIII ¹H NMR data of 1, w-diphenylalkenes.

¹H NMR (CDCl₃, δ , ppm)^a

Alkene		$2 \times Ph$	H ⁴	H ³	H ²	H ¹	H
26a, 27a	n = 1 $m = 0$	7.35 (m)			3.57 (d) 3.72 (d)	6.50) (m)
28a, 29a	n = 2 $m = 0$	7.39 (m)		2.92 (t) <u>8.1</u>	2.65 (m) 2.77 (m)	6.50) (m)
30a, 31a	n = 3 $m = 0$	7.27 (m)	2.68 (m)	1.81 (m)	2.30 (m)	6.41	l (m)

^a Underlined data represent coupling constants in Hz.

Table IX CHO and CHS ¹H NMR data of β -sultone products of $1, \omega$ -diphenylalkenes.

β-Sultone	Config.		H۲	H ¹
26a	trans	n = 1	5.25 (d)	4.94 (q)
27a	cis	m = 0	5.72 (d) <u>8.5</u>	5.41 (m)
29a	cis	n = 2 $m = 0$	5.63 (d) <u>8.4</u>	5.08 (m)
30a	trans	n = 3 m = 0	5.10 (d)	4.71 (q)
31a	cis	<i>m</i> - 0	5.67 (d) <u>8.4</u>	5.11 (m)

^a Underlined data represent coupling constants in Hz.

of SO₃ yields at low temperature $(-60^{\circ}C)$ a mixture of the trans- and cis-2,3-sultones (13b + 14b and 15b + 16b), the trans- and cis-3,2-sultones (13c + 14c and 15c + 16c) and the Friedel-Crafts cyclization products 1-methyl-7-chloro--1,2,3,4-tetrahydronaphthalene-2-sulfonic acids (13h + 14h) and 1-methyl-5-chloro-1,2,3,4-tetrahydronaphthalene-2-sulfonic acids (15h + 16h), respectively. For both the reaction of 13a + 14a and 15a + 16a, the 2,3-sultone/3,2-sultone ratio is 2:3 (see Table X). The trans and cis isomers of the sultones and of the cyclization products are in the same ratios as the starting E/Z ratios of the starting materials 13a-16a. After raising the temperature to 20°C, the sultones were converted rapidly into the substituted tetralines 13h + 14h and 15h + 16h, respectively. Sulfonation of a mixture of (E)- (17a) and (Z)-5-(2,4-dichlorophenyl)-2-pentene (18a) and of a mixture of (E)- (19a) and (Z)-5--(2,6-dichlorophenyl)-2-pentene (20a) with 1.0 equiv. of SO₃ at -60° C leads to complete conversion into the 2,3- and 3,2-sultones, again in a ratio of 2:3. Reaction of the mixtures of geometric isomers 17a + 18a and 19a + 20a with \geq 2.0 equiv. of SO₃ leads, after the initial fast formation of β-sultones, to subsequent slow conversion into the corresponding carbyl sulfates 17d-20d and 17e-20e; in fact, the conversion of the β -sultones after 5 days at room temperature is only 60%. Reaction of an isomeric mixture of 5-(4-chlorophenyl)-2-pentenes (13a and 14a) with 0.9 equiv. of SO₁ at -60° C gave a 8.5:0.5:1.0 mixture of the substituted tetralines (13h and 14h), β -sultones [2,3-sultones (13b and 14b) and 3,2-sultones (13c an 14c)] and starting

Table XI ¹H NMR data of 2,3- and 3,2-sultones of **13a–20a**.

Sultone (13-20)	Configuration	$H^{2}(\delta, (\pm 0.05) \text{ ppm})$	$H^{3}(\delta, (\pm 0.05) ppm)$
2,3-sultone (13b, 15b, 17b, 19b)	trans	4.47 (m)	4.14 (m)
(14b, 16b, 18b, 20b)	cis	4.95 (q) ^a	4.59 (m)
3,2-sultone (13c, 15c, 17c, 19c)	trans	4.34 (m)	4.34 (m)
(14c, 16c, 18c, 20c)	cis	4.79 (m)	4.79 (m)

Alkene ^b		β-Sultone c at - 60	omposition °C (°₀)
		2,3 (b)	3,2 (c)
(<i>E</i>)-2-hexene ⁶		82	18
(Z)-2-hexene ⁶		80	20
(E)-2-octene ²³		80	20
(E)-7-phenyl-2-heptene	(6a)	79	21
(Z)-7-phenyl-2-heptene	(7a)	80	20
(E)-5-(2-chlorophenyl)-2-pentene	(13a)	36	64
(Z)-5-(2-chlorophenyl)-2-pentene	(14a)	38	62
(E)-5-(4-chlorophenyl)-2-pentene	(1 5 a)	37	63
(Z)-5-(4-chlorophenyl)-2-pentene	(16a)	39	61
(E)-5-(2,4-dichlorophenyl)-2-pentene	(17a)	41	59
(Z)-5-(2,4-dichlorophenyl)-2-pentene	(18a)	40	60
(E)-5-(2,6-dichlorophenyl)-2-pentene	(19a)	39	61
(Z)-5-(2,6-dichlorophenyl)-2-pentene	(20a)	39	61
(E)-4-phenyl-2-butene	(4a)	83	17
(Z)-4-phenyl-2-butene	(5a)	81	19
(E)-3-phenyl-2-propene ^{1,a}		≥98	≤2
(Z)-3-phenyl-2-propene ^{1.a}		≥98	≤2

^a For reasons of convenience the 1-phenyl-1-propenes are numbered as being a ω -phenyl-2-alkene. ^b The 6-phenyl-2-hexenes (**9a** and **10a**) and 5-phenyl-2-pentenes (**11a** and **12a**) at -60° C cyclize too rapidly to determine the ratio of the intermediary 2,3and 3,2-sultones.

compound. After raising the temperature to 25° C, the composition of the reaction mixture remained the same; only after 12 h at room temperature were all the various sultones present converted into tetralines **13h** and **14h**. However, upon injection of 0.2 equiv. of SO₃ into the reaction mixture formed at -60° C, the β -sultone products and the unconverted substrate were rapidly converted into substituted tetralines **13h** and **14h**.

The (characteristic) ¹H NMR data of the 2,3- and 3,2-sultones, resulting from $13a-20a^{10}$, are listed in Table XI. 5-Phenyl-2-pentenes. Reaction of 5-phenyl-2-methyl-2-pentene (21a) with 1.0 equiv. of SO_3 at low temperature $(-60^{\circ}C)$ yields quantitatively 3,2-sultone 21c. This rapid sultone formation is followed, at 0°C, by slow conversion into 1,1-dimethyl-1,2,3,4-tetrahydronaphthalene-2-sulfonic acid (21h). The ¹³C NMR data of 21c are given in the Experimental. Reaction of 21a with 1.0 equiv. of SO₃ according to method B gave the potassium salt of 21h. Sulfonation of a 1.3:1 mixture of (Z)- (22a) and (E)-6-phenyl-3-methyl-3-hexene (23a) with 1.0 equiv. of SO_3 , at $-60^{\circ}C$ also leads to the complete formation of a 1.3:1 mixture of the cis- and trans-4,3-sultones 22c and 23c, which are then both slowly converted into (E)-6-phenyl--3-methyl-2-hexene-4-sulfonic acid (32k). A similar reaction occurs with a 1:1 mixture of (E)- (24a) and (Z)-5-phenyl--3-methyl-2-pentene (25a). After rapid formation (at -60°C) of cis- and trans-2,3-sultones 24b and 25b, slow

conversion (at 0° C) into only (E)-5-phenyl-3-methyl--3-pentene-2-sulfonic acid (**33k**) took place. Reaction of **22a** and **23a** with 2.0 equiv. of SO₃ and subsequent alkaline work-up gave only potassium (E)-6-phenyl-3-methyl--2-hexene-4-sulfonate (**32l**) in high yield (90%).

 $1,\omega$ -Diphenylalkenes. Reaction of a 1:1 mixture of (E)- (26a) and (Z)-1,3-diphenyl-1-propene (27a) with 1.0 equiv. of SO₃ at -60° C leads to formation of a 1:1 mixture of the 2,1-sultones 26c and 27c. The *trans*-2,1-sultone 26c is at -20° C slowly converted into *trans*-carbyl sulfate 26e, whereas *cis*-2,1-sultone 27c is at 0°C slowly converted into 1-phenylindane-2-sulfonic acid (34) (one isomer only¹¹). At room temperature, *trans*-carbyl sulfate 26e is also eventually converted into disubstituted indane 34.

Reaction of a mixture of isomers (E)- (28a) and (Z)-1,4-diphenyl-1-butene (29a) in a ratio of 2.5:1 with 1.5 equiv. of SO₃ at -60° C leads to the stereospecific formation of *trans*- and *cis*-2,1-sultones **28c** and **29c** (*trans/cis* 2.5:1), compounds which are relatively rapidly converted into a mixture of *trans*- (28h) and *cis*-1-phenyl-1,2,3,4-tetra-hydronaphthalene-2-sulfonic acid (29h) in the same isomeric ratio as the starting material. Sulfonation of a 1.7:1 mixture of (E)- (30a) and (Z)-1,5-diphenyl-1-pentene (31a) with 2.0 equiv. of SO₃ leads at -60° C to the rapid formation of *trans*- (30c) and *cis*-2,1-sultones (31c), respectively, in a 1.7:1 ratio. After raising the temperature to

 -20° C, the 2,1-sultones are both slowly converted into *trans*-carbyl sulfate **30e**¹².

Attempts to effect intermolecular Friedel-Crafts type of alkylation

Reaction of cis-4-octene with 1.0 equiv. of SO₃ in chloroform at -40°C leads to quantitative formation of the 4,5-sultone¹³. After raising the temperature to 20°C and adding 1.2 mol equiv. of methoxybenzene, the reaction mixture was found to contain (Z)-4-octene, cis-4,5-octanesultone, 1-methoxybenzene and 1-methoxybenzene-4-sulfonic acid¹³ as the only components, illustrating transfersulfonation of the arene by the β -sultone. Similar reactions were carried out with 1-octene and trans-4-octene in order to establish the effect of the β -sultone structure (see Table XII). The results clearly demonstrate the difference in transfer sulfonation in the order 1,2-> cis-4,5-> trans-4,5--octanesultone. We have also varied the arene and have compared toluene, anisole and 1,3-dimethoxybenzene in their reactions with cis-4,5-octanesultone in chloroform (see Table XII). Toluene with cis-4,5-octanesultone does not lead to transfer sulfonation. The experimental data of the transfer sulfonation of anisole and 1,3-dimethoxybenzene are compiled in Table XII. In order to test whether the intermolecular Friedel-Crafts alkylation can be induced by

Table XII Reaction of arenes with β -sultones¹³ in 0.50 ml of CD_2Cl_2 and 0.36 mmol dioxane-d₈ at 22°C.

		Prostion		Reaction mixture	composition (mmo)
Substrate	Reagent	time (min)	Arene	β-Sultone	Arene-4- -sulfonic acid	Alkene"
toluene	cis-4,5-octanesultone	0	0.290	0.182	0	0.058
		120 1430	0.290 0.290	0.182	0	0.058 0.058
anisole	cis-4,5-octanesultone	0	0.290	0.168	0	0.072
ļ		110	0.271	0.149	0.019	0.091
		220	0.261	0.139	0.029	0.101
		355	0.247	0.125	0.043	0.115
		1425	0.184	0.062	0.106	0.178
1,3-dimethoxybenzene	cis-4,5-octanesultone	0	0.290	0.162	0	0.078
		90	0.258	0.130	0.032	0.110
		215	0.226	0.098	0.064	0.142
		345	0.195	0.067	0.095	0.173
		1415	0.128	0	0.162	0.240
anisole	trans-4.5-octanesultone	0	0.290	0.189	0	0.051
		95	0.277	0.176	0.013	0.064
		215	0.273	0.172	0.017	0.068
		335	0.267	0.166	0.023	0.074
		1425	0.223	0.122	0.067	0.118
anisole	1.2-octanesultone ^b	0	0.290	0.143	0	0.061
	,	110	0.263	0.116	0.027	0.088
		230	0.235	0.088	0.055	0.116
		400	0.207	0.060	0.083	0.144
		1430	0.157	0	0.143	0.204
anisole	cis-4,5-octanesultone +	0	0.290	0.194	0	0.046
	0.072 mmol SO ₃	110	0.167	0.194	0.113	0.046
	(at t 10 min)	235	0.148	0.175	0.142	0.065
		355	0.129	0.156	0.161	0.084
		1400	0.146	0.073	0.244	0.167
toluene	cis-4,5-octanesultone +	0	0.290	0.184	0	0.056
	0.072 mmol SO ₃ (at t 10 min)	105	0.290	0.240	0	0

^a The cis- and trans-4,5-octanesultone yield (Z)- and (E)-4-octene, respectively. ^b At -60° C in addition to the 1,2-octanesultone, 15% of β , γ -unsaturated sulfonic acid was formed, probably by a direct "ene" type of reaction, the amount of which remained constant at 22°C for 1430 min²³.

Scheme 1. Mechanisms for cycloalkylation of 5-phenyl-1-pentene (8a) with SO₃.

SO₃ catalysis, as was observed for the cycloalkylation of the 5-(4-chlorophenyl)-2-pentenes **13a** and **14a**, we added 0.3 equiv. of SO₃ directly after mixing *cis*-4,5-octanesultone with 1.2 equiv. of anisole at 22 °C. This led only to the very rapid formation of 0.3 equiv. of anisole-4-sulfonic acid and did not lead to any Friedel–Crafts alkylation. Mixing of *cis*-4,5-octanesultone with 1.2 equiv. of toluene and addition of 0.3 equiv. of SO₃ led to the sulfonation of the remaining (Z)-4-octene (*cf.*, Table XII) and not to the sulfonation of toluene. Attempts at intermolecular Friedel–Crafts alkylation of 1,3-xylene with *trans*-4,5-octanesultone as reagent, using 2.1 mol equiv. of aluminum chloride as a catalyst²², did not lead to any alkylated product.

Discussion

Reaction of ω -phenyl-1-alkenes **1a-3a** with sulfur trioxide at -60° C yields quantitatively β -sultones **1b-3b**¹⁵. At 25° C, these β -sultones in the presence of a residual of SO₃ are converted into their corresponding carbyl sulfates 1d-3d. With the ω -phenylalkenes, there is intramolecular competition between the C=C and phenyl moieties for reaction with SO₃. With 1.0 equiv. of SO₃, no sulfo-deprotonation of the phenyl group is observed beyond the limits of 'H NMR detection which is 2%. Applying the relationship of the relative substrate conversion for two competitive intramolecular reactions as a function of time, as reported by Ingold¹⁶, to each of the three ω -phenylalkenes **1a-3a**, it follows that $k_{\text{olefine}}/k_{\text{phenyl}} \ge 100$. This is in line with the value of 130 reported by *Takei* et al.¹⁷ for the intermolecular competition of 1-hexadecene and dodecylbenzene. With respect to the relative reactivity of the β -sultone and phenyl group towards SO₃, we also did not observe sulfo-deprotonation of the phenyl group beyond the limits of ¹H NMR detection.

Reaction of 5-phenyl-1-pentene (8a), which has a $-(CH_2)_3$. -linkage between the Ph and the C=C, with 1.1 equiv. of SO₁ at -60° C yields very rapidly and quantitatively 1-(sulfomethyl)-1,2,3,4-tetrahydronaphthalene (8f). We propose that the formation of 8f proceeds as shown in Scheme 1. Initial β -sultone formation is followed by S_N^2 displacement of the phenyl C(2') on the oxygen-carrying carbon. Although we have not been able to demonstrate the presence, even at -60° C, of a β -sultone or carbyl sulfate as intermediate in this sulfocyclization reaction, we propose the existence of a β -sultone because of the results found for reactions of the (monochlorophenyl)alkenes with SO₃ (see later). Sulfonation of 5-phenyl-1-pentene (8a) with an excess of sulfur trioxide (>2 equiv.) at -60° C leads to cycloalkylation, which is followed at 20°C by sulfonation of the phenyl ring of the resulting tetraline 8f to yield 1-(sulfomethyl)-1,2,3,4-tetrahydronaphthalene-7-sulfonic acid (see Scheme 1). Exclusive sulfonation at position 7 is in line with the results of *Schaasberg-Nienhuis*¹⁸, who observed that the rate constants for the sulfonation of ω -phenyl-1-alkene-sulfonic acids with sulfuric acid at the *para* position increase strongly with increasing length of the intermediate polymethylene chain¹⁹. Reaction of the 5-phenyl-2-hexenes (**9a** + **10a**), which also have a $-(CH_2)_3$ - linkage between the Ph and the C=C, with 1.1 equiv. of SO₃ at -60° C yields very rapidly and quantitatively 1-(1-sulfoethyl)-1,2,3,4-tetrahydronaphthalene (**9f**).

Reaction of (E)- (11a) and (Z)-5-phenyl-2-pentenes (12a), which have a $-(CH_2)_2$ - linkage between the Ph and C=C, with 1.1 equiv. of SO₃ at -60 °C leads to the quantitative formation of 11h and 12h, respectively. For a series of experiments with varying ratios of (E)- and (Z)-5-phenyl--2-pentene (1:3, 1:1 and 4.6:1), sulfocyclization was in each experiment found to lead to the same ratio of the resulting *trans* and *cis* isomers as that of the starting (E) and (Z) isomers, indicating (i) that β -sultones are the likely intermediates and (ii) that cyclization proceeds stereospecifically (see Scheme 2).

Scheme 2. Cycloalkylation of (E)-5-phenyl-2-pentene (11a).

According to the results on the sulfonation of (E)-2-octene obtained by *Bakker*²⁰ and on those of (E)- (6a) and (Z)-7-phenyl-2-heptene (7a), one would expect that, with both the 5-phenyl-2-pentenes (**11a** and **12a**) and the 6-phenyl-2-hexenes (**9a** and **10a**), a mixture of 2,3- and 3,2-sultones will be formed in a ratio of 4:1 (cf., Table X). The formation of only one final cyclization carbon skeleton $(\geq 97\%)$, viz., 1-methyl-1,2,3,4-tetrahydronaphthalene-2-sulfonic acids (**11h** and **12h**) and 1-(1-sulfoethyl)-1,2,3,4-tetra

hydronaphthalene (9f), respectively, is, therefore, unexpected. Apparently, an equilibrium must exist between the isomeric m,n- and n,m-sultones of which the interconverting steps have to be very fast, even at -60° C, which may proceed by a direct or indirect interconversion via the starting phenylalkene and sulfur trioxide (see later). The present results clearly show that the reaction is stereospecific and proceeds with inversion at C(2). Therefore, we describe the sulfocyclization as an S_N^2 reaction at C(2), as depicted in Scheme 3. This assignment is in line with the

Scheme 3. S_N^2 cycloalkylation of trans-5-phenyl-3,2-pentanesultone.

mechanism for the hydrolysis of aliphatic β -sultones which proceeds with inversion under neutral and acidic reaction conditions²¹. $S_N 2$ type of reactions of *trans*- (9b) and *cis*-6-phenyl-2,3-hexanesultone (10b) and *trans*- (11c) and *cis*-5-phenyl-3,2-pentanesultone (12c) lead (see Scheme 4) to σ -complexes A and B, respectively. The final cyclization products C and D are subsequently formed by proton transfer in a six-membered cyclic transition state. We never observed formation of an indane skeleton for sulfur trioxide cycloalkylation of simple ω -phenylalkenes as observed by *Colonge*⁷ using sulfuric as reagent.

A method to demonstrate the presence of β -sultones, as precursor for cycloalkylation, is to introduce one or two deactivating chloro substituents in the phenyl ring which will reduce nucleophilicity of the phenyl group and thus lower the rate of the Friedel-Crafts type of cyclizaton. In fact reaction of 5-(4-chlorophenyl)-2-pentenes (13a and 14a) and 5-(2-chlorophenyl)-2-pentenes (15a and 16a) with SO₃ at - 60°C gave a mixture of 2,3- and 3,2-sultone in ratio 2:3. However, subsequent Friedel-Crafts reaction is still quite fast at that temperature. The reaction of 5-(2,4--dichlorophenyl)-2-pentene (17a and 18a) and 5-(2,6--dichlorophenyl)-2-pentene (19a and 20a) with SO_3 at - 60°C, also gave a mixture of 2,3- and 3,2-sultones in a ratio 2:3. With these substrates, the β -sultone does not undergo Friedel-Crafts cyclization to form the substituted tetraline, because the 6-position of the phenyl group is not sufficiently reactive (as with 17a and 18a), or it is blocked by chlorine (as with 19a and 20a). Reaction of both (17a + 18a) and (19a + 20a) with excess of sulfur trioxide $(\geq 2 \text{ equiv.})$ leads, after rapid formation at -60° C of the two m,n- and n,m-alkanesultones, to formation of the corresponding carbyl sulfates. This reaction is very slow at 25°C: after 5 days, only 60% of the β -sultones were converted. The ratio of unconverted β -sultones remains 2:3, illustrating that rate coefficients for SO_3 insertion into the $O-SO_2$ bond are approximately equal for the two β -sultones. Reaction of 1,4-diphenyl-1-butenes (28a and 29a) with 1.5 equiv. of SO₃ at -60° C leads, analogously to that of the geometric isomers of 5-phenyl-2-pentene (11a and 12a), to quantitative formation of 1-phenyl-1,2,3,4-tetrahydronaphthalene-2-sulfonic acids (28h and 29h). This sulfocyclization proceeds stereospecifically and is very fast even at -60° C. Reaction of 1,3-diphenyl-1-propenes (26a and 27a) with 1.5 equiv. of SO₃ at -60° C quantitatively yields the *trans*and cis-2,1-sultones, respectively, which upon raising the temperature to -20°C are slowly converted into 1-phenylindan-2-sulfonic acid (34). Starting with a 1:1 mixture of (E)- and (Z)-1,3-diphenyl-1-propene, only one isomer of 34

Scheme 4. General mechanism for cycloalkylation of ω -phenylalkenes.

is formed, which is probably the *trans* isomer for steric reasons, illustrating that the cycloalkylation is not stereo-specific. It is, therefore, proposed that the sulfocyclization proceeds via the conjugatively stabilized benzylic sulfonate dipolar intermediate (see Scheme 5).

Scheme 5. Mechanisms for cycloalkylation of (E)- (26a) and (Z)-1,3-diphenyl-1-propene (27a) with SO_3 .

Such a dipolar intermediate is also important in the sulfonation of a 1.7:1 mixture of (E)- (30a) and (Z)-1,5-diphenyl-1-pentene (31a) with 2.0 equiv. of SO₃. At -60° C, stereospecific formation of β -sultones 30c and 31c took place, followed by non-stereospecific conversion, via the dipolar intermediate, into the *trans*-carbyl sulfate 30e. It thus appears that benzylic sulfonate dipolar species¹ are essential intermediates in the reduction, or even the total loss of stereospecificity in the Friedel-Crafts cyclization upon sulfonation of 1,3- and 1,5-diphenyl-1-alkenes with SO₃ at temperatures above -20° C.

Intermolecular Friedel-Crafts alkylation of arenes by sultones was reported by *Truce* and *Hoerger*²², who showed that 1,4-butanesultone readily reacts with aromatic compounds in the presence of aluminum chloride as

Figure 1. Transfer sulfonation of anisole by 1,2- (----), cis-4,5- (-----) and trans-4,5-octane sultone ($\cdot - \cdot - \cdot$).

Figure 2. Transfer sulfonation of toluene (······), anisole (----) and 1,3-dimethoxybenzene (----) by cis-4,5--octanesultone.

catalyst to give good yields of 4-aryl-1-butanesulfonates. For the dependence of the rate of cycloalkylation of 5-(4-chlorophenyl)-2-pentene (13a) on the SO₃ concentration, it appears that the tetralinesulfonic acid formation is catalyzed by SO₃ (see Scheme 1, steps 2 + 3). Attempts to effect intermolecular Friedel-Crafts alkylation with β -sultones as reagents did not give the desired alkylation of the aromatic compound, but instead led to transfer of SO₃ from the β -sultones to the aromatic compounds (cf., Table XII). Typical conversion curves are shown in Figures 1 and 2. Transfer sulfonation is thought to proceed by reactions (1) and (2). From steady-state treatment of the SO₃ concentration, one arrives for the rate of sulfonation of arene and for the rate of β -sultone conversion at equations (3) and (4), respectively. The rate of transfer sulfonation depends both on the rate of desulfonation of the β -sultone and the reactivity of the arene relative to that of the (reformed) alkene.

$$\beta$$
-sultone $\xrightarrow{1}$ alkene + SO₃ (1)

$$ArH + SO_3 \xrightarrow{2} ArSO_3H$$
 (2)

$$\frac{d[ArSO_{3}H]}{dt} = \frac{k_{1} \cdot k_{2} \cdot [ArH] \cdot [\beta-sultone]}{k_{-1} \cdot [alkene] + k_{2} \cdot [ArH]}$$
(3)

 $\frac{d[\beta-sultone]}{dt}$

$$k_1 \cdot [\beta\text{-sultone}] \cdot \left(1 - \frac{1}{1 + k_2 \cdot [\text{ArH}]/(k_{-1} \cdot [\text{alkene}])}\right)$$
 (4)

Transfer sulfonation of linear olefins by β -sultones has previously been reported²³: *trans*-3,4-hexanesultone with 1.0 equiv. of cyclopentene at 25°C for 20 h led to the formation of 1,2-cyclopentanesultone and (*E*)-3-hexene (both at a yield of 35%). The existence of a very fast equilibrium between the isomeric *m*,*n*- and *n*,*m*-sultones in the sulfocyclization at -60° C (see before) cannot be explained by the relatively very slow desulfonation of the β -sultone and subsequent resulfonation, as observed in the abovementioned transfer sulfonations at 25°C. The free energy of activation is apparently very much higher for the dissociation of the β -sultone into alkene and SO₃ than that for the interconversion of the two isomeric β -sultones. Therefore, we propose that the very fast *m,n*-sultone $\neq n,m$ -sultone interconversion proceeds via a π -complex intermediate between SO₃ and the C=C bond of the alkene.

As shown in Table XI, the ratios of the 2,3- and 3,2-sultones for the 5-(monochlorophenyl)- (13a-16a) and 5-(dichlorophenyl)-2-pentenes (17a-20a), *viz.*, of 4:6, differ significantly from the ratios of 8:2 observed for the aliphatic alkenes, the two 7-phenyl-2-heptenes (6a and 7a) and the two 4-phenyl-2-butenes (4a and 5a). This deviating β -sultone ratio for 13a-20a (and possibly for 11a and 12a) may be explained in terms of anchimeric assistance by the phenyl group in the formation of the 3,2-sultones.

With respect to the synthetic scope of Friedel–Crafts cyclization, sulfocyclization (β -sultone initiated cyclization) of the phenylalkenes is more attractive than Brønsted-acidcatalyzed cyclization of phenylalkenes in view of the formation of only one product, usually formed in quantitative yield. In contrast, proton-acid-catalyzed (*e.g.*, trifluoroacetic acid²⁴) cycloalkylation of arylalkenes generally yields, in addition, a variety of side products, due to hydride shifts in the initially formed carbenium type intermediates, among others.

Experimental

The ¹H NMR and ¹³C NMR spectra were recorded on Bruker WM-250 and AC-200 instruments; mass spectra were recorded on Varian MAT-711 and ZAB-2HF double-focussing mass spectrometers.

Materials

 ω -Phenylalkenes **2a-10a** and **21a-31a** were prepared in two steps from the corresponding primary alcohols, starting by oxidation, as reported by *Corey* and *Suggs*²⁵, followed by Wittig reaction of the resulting aldehydes, using the appropriate alkyltriphenylphosphonium bromide²⁶.

(*E*)- and (*Z*)-5-phenyl-2-pentene (**11a** and **12a**) were synthesized by alkylation of 4-phenyl-1-butyne with methyl iodide, as described by *Brandsma*²⁷, followed by hydrogenation of the resulting 5-phenyl-2-pentyne. **11a** was hydrogenized using P-2 Nickel as catalyst²⁸ and **12a** using lithium aluminum hydride²⁹.

5-[($\dot{D}i$)chlorophenyl]-2-pentenes **13a**-**20a** were each prepared via a three-step synthesis starting from the corresponding 3-[($\dot{d}i$)chlorophenyl]propenoic acids. Reduction of these compounds, according to the method reported by *Nystrom* et al.³⁰, led to the corresponding aryl-1-alkanols, which upon oxidation as described by *Swern* et al.³¹ gave the corresponding ω -arylalkanals. A Wittig reaction of these aldehydes with ethyltriphenylphosphonium bromide²⁶ finally yielded the corresponding 5-[($\dot{d}i$)chlorophenyl]-2-pentenes.

3-Phenyl-1-propene (1a) was obtained commercially and used without further purification.

The ${}^{1}H$ NMR data of the substrates are listed in Table I, IV and VIII and later in the text.

Sulfonation procedures and analysis

Method A (standard procedure). Liquid sulfur trioxide $(10 \ \mu$ l, 0.24 mmol) was injected into a stirred solution of 32 \ \mu l of dioxane-d₈ (0.36 mmol) in 0.5 ml of CD₂Cl₂, cooled at -70° C under an Ar atmosphere. 20 \ \mu l of, e.g., 5-phenyl-2-pentene (0.24 mmol) was then injected into the stirred solution. The reaction mixture was transferred under Ar into a cooled NMR tube and 'H NMR spectra were taken at chosen temperatures, ranging from -60° C up to room temperature, after appropriate time intervals in which the NMR tube was kept at -70° C. The complete procedure took (in total) 4-6 h, unless stated otherwise.

Method B. 1.0 or 0.5 mmol of e.g. 5-phenyl-2-pentene was injected to a stirred solution of 1.0 mmol of SO₃, 1.5 mmol of dioxane and 10 ml of dichloromethane, cooled at -30° C under an Ar atmosphere and the mixture stirred for 1 h. The reaction mixture was warmed to 0°C and then poured into 10 ml of water and neutralized to pH 7 with an aqueous solution of KOH. Dichloromethane was removed by rotary evaporation and, then the remaining water and dioxane were removed by freeze drying. The remaining potassium sulfonates were dissolved in D₂O or DMSO-d₆ and subjected to NMR analysis.

The structural assignments of the products were made from the ¹H NMR spectra of the reaction mixture solutions, using deuterated solvents or from the isolated potassium sulfonates in D_2O [or DMSO- d_6] as solvent on the basis of the observed chemical shifts, absorption area ratios and coupling constants in combination with substituent shielding parameters³². The ¹H and ¹³C NMR spectral data of the various products are compiled in Tables II and III, and in this section. The compositions of the reaction mixtures were determined by multicomponent ¹H NMR analysis on the basis of specific absorptions of the assigned components³³.

Starting material

4-Phenyl-2-butene (E/Z 1:2.1) (4a and 5a). ¹H NMR (CD_3NO_2 , δ , ppm): 1.67 (m, 3H, CH₃), 3.41 (m, 2H, CH₂), 5.63 (m, 2H, CH=CH), 7.27 (m, 5H, C₆H₅).

7-Phenyl-2-heptene (E/Z 1:1.4) (6a and 7a). ¹H NMR (CD₂Cl₂, δ , ppm): 1.40 (m, 2H, CHCH₂CH₂), 1.61 (m, 5H, CH₃, C₆H₅CH₂CH₂), 2.06 (m, CHCH₂), 2.62 (m, 2H, C₆H₅CH₂), 5.42 (m, 2H, CH=CH, 7.22 (m, 5H, C₆H₅).

6-Phenyl-2-hexene (E/Z^{34}) (**9a** and **10a**). ¹H NMR (CD₂Cl₂, δ , ppm): 1.60 (d, J 4.9 Hz, 3H, CH₃), 1.66 (m, 2H, CHC<u>H₂</u>), 2.10 (m, 2H, CH₂C<u>H₂</u>), 2.64 (t, J 7.5 Hz, 2H, C₆H₅C<u>H₂</u>), 5.46 (m, 2H, HC=CH), 7.24 (m, 5H, C₆H₅).

Products

6-Phenyl-1.2-hexanesultone (**3c**). ¹³C NMR (CD₂Cl₂, δ, ppm): 24.8 (CH₂CH₂CHO), 31.5 (CH₂CH₂Ph), 35.3 (CH₂CHO), 36.0 (CH₂Ph), 64.8 (CH₂SO₂), 66.2 (CHO), 126.2, 128.7, 128.8, 142.5 (aromatic C).

5-Phenyl-2-methyl-3,2-pentanesultone (**21c**). 13 C NMR (CD₂Cl₂, δ , ppm): 22.3 (<u>CH</u>₃CO), 27.6 (<u>CH</u>₂CHS), 28.7 (<u>CH</u>₃CO), 33.0 (<u>CH</u>₂CH₂CHS), 77.0 (CO), 78.4 (<u>CHSO</u>₂), 126.6, 128.5, 128.7, 139.5 (aromatic C).

6-Phenyl-3-methyl-4,3-hexanesultone (cis/trans 1.3:1) (**22c** and **23c**). ¹³C NMR (CD₂Cl₂, δ , ppm): 7.9/8.6 (CH₃CH₂), 19.9/25.2 (CH₃CO), 27.3/34.9 (CH₃CH₂), 28.2/28.4 (CH₂CS), 33.5/33.6 (CCH₂CH₂), 77.2/79.4 (CHSO₂)), 80.0 (CO), 127.0, 128.9, 129.0, 129.1, 139.6 (aromatic C).

Potassium 1-(sulfomethyl)-1.2.3,4-tetrahydronaphthalene (**8f**). ¹H NMR (D₂O, δ, ppm): 1.79 (m, 2H, CH₂CH₂CH₂), 2.02 (m, 2H, CH₂CH₂CH), 3.20 (m, 4H, CH₂SO₃K, CCH₂CH₂), 3.39 (m, 1H, CHCH₂SO₃K), 7.22 (m, 4H, aromatic H). ¹³C NMR (D₂O, δ, ppm): 18.8 (CH₂CH₂CH₂), 26.7 (CH₂CH₂CH), 29.2 (CHCH₂SO₃K), 33.9 (CCH₂), 58.4 (CH₂SO₃K), 126.2, 126.7 (aromatic C). MS (FAB⁺) m/z: 421 [(M + K)⁺, 67], 383 (40), 303 (100), 253 (35), 147 (51), 91 (24). (FAB⁺) m/z: 343 [(M - K)⁻, 100], 225 (54), 80 (34).

1-Sulfomethyl-1,2,3,4-tetrahydronaphthalene-7-sulfonic acid (8g). ¹H NMR (CD_2Cl_2 , δ , ppm): 1.86 (m, 2H, $CH_2CH_2CH_2$), 2.06 (m, 2H, CH_2CH_2CH), 2.85 (m, 2H, CCH_2CH_2), 3.42 (m, 2H, CH_2SO_3H), 3.56 (m, 1H, $CHCH_2SO_3H$), 7.27 (d, J 8.1 Hz, 1H, CH_2CCH), 7.64 (dd, J 2.0, 8.0 Hz, 1H, $CHCHCSO_3H$), 7.77 (d, J 1.5 Hz, 1H, $CCHCSO_3H$).

Dipotassium 1-(sulfomethyl)-1,2,3,4-tetrahydronaphthalene-7-sulfonate. ^{13}C NMR (D₂O, δ , ppm): 20.2 (CH<u>C</u>H₂CH₂), 28.7 (CH₂<u>C</u>H₂CH₂), 30.7 (CCH₂CH₂), 36.5 (CHCH₂SO₃K), 59.2 (CH₂SO₃K), 125.1, 127.8, 131.9 (CH(Ar)), 141.6, 142.1, 143.5 (C(Ar)).

Potassium 1-(1-sulfoethyl)-1.2,3,4-tetrahydronaphthalene (9f).¹H NMR (D₂O, δ, ppm): 1.11 (d, J 6.9 Hz, 3H, CH₃CHSO₃K), 1.5-2.5 (m, 4H, CHCH₂CH₂), 2.74 (m, 2H, CCH₂CH₂), 3.67 (m, 2H, CHCHSO₃K), 7.26 (m, 4H, aromatic H). MS (FD) m/z: 317 $[(M + K)^+, 100]$; the isotopic pattern of 9f is in agreement with the molecular structure.

(E)-6-Phenyl-3-methyl-2-hexene-4-sulfonic acid (32k). ¹H NMR (CD_2Cl_2, δ, ppm) : 1.74 (d, J 7.2 Hz, 3H, $CH_3CH=C$), 1.78 (d, J 2.00-2.75 $C\underline{H}_{3}C = CHCH_{3}),$ 1.0 Hz, 3H. [br, 4H. (CH₂)₂CHSO₃H], 3.55 (dd, J 4.0, 11.1 Hz, 1H, CHSO₃H), 5.65 $(dq, J 1.0, 7.2 Hz, 1H, CH_3CH = C), 7.20 (m, 5H, C_6H_5).$

(E)-6-phenyl-3-methyl-2-hexene-4-sulfonate (32I). Potassium ¹³C NMR (D_2O , δ , ppm): 15.3 (1C, $H_3CCH=C$), 16.0 (1C, $H_3CC=CH$), 32.1 (CH_2CHSO_3K), 35.6 ($C_6H_5CH_2$), 72.0 (CHSO₃K), 128.6 (CH=C), 130.2 [4'-C(Ph)], 131.08, 131.1[2'-, 3'-, 5'-, 6'-C(Ph)], 132.7 [1'-C(Ph)], 144.2 (C = \underline{C} (CH₃)CH).

(E)-5-Phenyl-3-methyl-3-pentene-2-sulfonic acid (33k). ¹H NMR (CD₂Cl₂, δ, ppm): 1.60 (d, J 7.1 Hz, .3H, CH₃CHSO₃H), 1.88 (s, 3H, $CH = CCH_3$), 3.47 (d, J 7.2 Hz, 2H, CH_2CH), 3.97 (q, J 7.1 Hz, 1H, $CHSO_3H$), 5.84 (m, 1H, $HC=CCH_3$), 7.27 (m, 5H, $C_{6}H_{5}$).

1-Phenylindane-2-sulfonic acid (34). ¹H NMR (CD₂Cl₂, δ, ppm): 3.55 (m, 2H, CH₂), 4.00 (m, 1H, C<u>H</u>SO₃H), 4.87 (d, J 6.6 Hz, C<u>H</u>C₆H₅), 6.90 (d, J 7.2 Hz, 1H, 7-H), 7.31 (m, 8H, aromatic H). ¹³C NMR (CD₂Cl₂, δ, ppm): 34.96 (CH₂), 53.9 (<u>C</u>HC₆H₅), 68.9 (CHSO₃H), 124.7, 125.5, 127.6, 127.8, 128.0, 128.7, 129.1 (aromatic C), 140.0 (3a-C), 143.4 (7a-C), 144.2 (8-C). MS (FAB⁺) m/z: 351 $[(M + K)^+, 50], 301 (30), 213 (98), 177 (90)$. Accurate mass calculated for C₁₅H₁₃O₃SK₂: 318.9445; found: 318.9445.

1-phenyl-1,2,3,4-tetrahydronaphthalene-2-sulfonic acid Potassium (28h). MS (FD) m/z: 365 [(M + K)⁺, 100], the isotopic pattern of 28h is in agreement with the molecular structure.

Acknowledgements

The authors wish to thank Dr. J. Stapersma for valuable discussions, Mrs. H. van der Laan-Ctvrteckova for recording the low-temperature NMR spectra and Drs. J. B. Kramer for performing some experiments.

References and notes

- ¹ R. M. Schonk, B. H. Bakker and H. Cerfontain, Recl. Trav. Chim. Pays-Bas 111, 49 (1992).
- ² M. Nagayama, O. Okumura, S. Noda, H. Mandai and A. Mori, Bull. Chem. Soc. Japan 47, 2158 (1974).
- ³ B. H. Bakker and H. Cerfontain, Tetrahedron Lett. 28, 1703 (1987).
- R. Taylor, "Electrophilic Aromatic Substitution", Wiley & Sons, Chichester, 1990, p. 209-213, and references cited therein.
- A. Koeberg-Telder and H. Cerfontain, J. Chem. Soc. Perkin II 1776 (1976).
- ⁶ R. M. Schonk, unpublished results.
- ⁷ J. Colonge and P. Garnier, Bull. Soc. Chim. France 15, 436 (1948).
- C. M. Suter, P. B. Evans and J. M. Kiefer, J. Am. Chem. Soc. 60, 538 (1938).
- The exact configuration cannot be assigned on the basis of 'H NMR spectroscopy due to the small difference in the coupling constants (J 4.6 and 5.5 Hz for 11h and 12h, respectively). We expect that the sulfocyclization must proceed with

inversion at C(2), so that 11h and 12h will have the trans and cis configurations, respectively (see Scheme 3).

- ¹⁰ The four specific ¹H NMR absorption peaks of the *cis* and trans- β -sultone ring hydrogens of the 2,3- and 3,2-sultones resulting from 13a-20a are within each of the four groups, within 0.05 ppm.
- ¹¹ This isomer, in all likelihood, has the *trans* configuration¹², although this could not be established using ¹H NMR spectroscopy.
- ¹² Sulfonation of (Z)-1-phenyl-1-propene with SO₃ leads to the formation of the trans-carbyl sulfate in view of the importance of the resonance-stabilized benzylic-sulfonate dipolar species in the product formation¹.
- ¹³ B. H. Bakker and H. Cerfontain, Tetrahedron Lett. 28, 1699 (1987).
- ¹⁴ H. D. Goossens, H. J. A. Lambrechts, H. Cerfontain and P. de Wit, Recl. Trav. Chim. Pays-Bas 107, 426 (1988).
- ¹⁵ No β , γ -unsaturated sulfonic acid was formed at -60° C, which indicates that the "ene" reaction, observed with aliphatic alkenes²³, does not take place during sulfonation of ω -phenyl-1--alkenes.
- ¹⁶ V. M. Castro, Ph.D. Thesis (in French), Institute National Polytechnique de Toulouse, France, 1986.
- 17 K. Takei, K. Tsuto, S. Miyamoto and J. Wakatsuki, J. Am. Oil. Chem. Soc. 62, 314 (1985).
- ¹⁸ H. Cerfontain and Z. R. H. Schaasberg-Nienhuis, J. Chem. Soc. Perkin Trans. II 180 (1973).
- ¹⁹ The rate coefficients for sulfodeprotonation at positions 6 and 7 of 1-(sulfomethyl)-1,2,3,4-tetrahydronaphthalene (8f) were calculated using the sulfonation rate coefficients for 2-phenyl--1-ethanesulfonic acid (2P1ESA) and 5-phenyl-1-pentanesulfonic acid (5P1PSA) at the para positions¹⁸ of k_2/k_6 $k_{\rm 2P1ESA}/k_{\rm 5P1PSA} = 53.$
- ²⁰ B. H. Bakker and H. Cerfontain, 2nd Congres Mondial des Agents de Surface (1988), Vol. II, p. 32.
- B. H. Bakker, R. M. Schonk and H. Cerfontain, Recl. Trav. Chim. Pays-Bas 111, 138 (1992).
- ²² W. E. Truce and F. D. Hoerger, J. Am. Chem. Soc. 76, 5357 (1954).
- ²³ B. H. Bakker and H. Cerfontain, Tetrahedron Lett. 30, 5451 (1989).
- ²⁴ T. J. Mason and R. O. C. Norman, J. Chem. Soc. Perkin Trans. II 1840 (1973)
- ²⁵ E. J. Corey and J. W. Suggs, Tetrahedron Lett. 16, 2647 (1975).
- ²⁶ A. Maercker, in "Organic Reactions", Vol. 14, A. C. Cope, ed., Wiley & Sons, New York, 1965, p. 270-490, and references cited therein.
- ²⁷ L. Brandsma, "Preparative Acetylenic Chemistry", Elsevier, Amsterdam, 2nd ed., 1988, p. 39, and references cited therein.
- ²⁸ C. A. Brown and V. K. Ahujal, J. Org. Chem. 38, 2226 (1973).
- ²⁹ H. Hiemstra, M. H. A. M. Sno, R. J. Vijn and W. N. Speckamp, J.
- Org. Chem 50, 4014 (1985). ³⁰ R. F. Nystrom and W. G. Brown, J. Am. Chem. Soc. 69, 2549 (1947).
- A. J. Mansura, Shui-Ling Huang and D. Swern, J. Org. Chem. 43, 2482 (1978).
- ³² M. Hesse, H. Meier and B. Zeeh, "Spectroscopische Methoden in der organischen Chemie", George Thieme Verlag, Stuttgart, 2nd ed., 1984, p. 176.
- H. Cerfontain, A. Koeberg-Telder, C. Kruk and C. Ris, Anal. Chem. 46, 72 (1974).
- 34 The E/Z ratio could not be established on the basis of ¹H NMR spectroscopy due to overlap of the specific absorption signals.