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An efficient enantiocontrolled entry to Martinella alkaloids
was achieved based on the unexpected discovery that a catalytic
amount of KH/dicyclohexyl-18-crown-6 induced an intramolec-
ular Mukaiyama–Mannich reaction of imine 3, leading to a
cascade sequence involving a novel silyl group migration to
furnish the pyrroloquinoline core 6.

Since its disclosure in 1995,1 the hexahydropyrrolo[3,2-c]-
quinoline core of martinelline (1) and martinellic acid (2) has
posed a considerable challenge to the synthetic community
(Figure 1). More than 20 successful approaches2 have been
documented on the synthesis of the unique heterocyclic system,
several of which culminated in the total syntheses of the natural
products.3 However, few of them allow efficient construction of
the ring system in an enantiocontrolled manner.2b,2d,3a–3c

We recently reported a novel protocol for the synthesis
of hexahydropyrrolo[3,2-c]quinoline 6 from imine 3,4 where
BF3.OEt2 promoted the tandem Mukaiyama–Mannich/hemi-
aminalization sequence (Scheme 1). During this investigation,
we reconfirmed Aubé’s crucial note2a indicating that the intra-
molecular hydrogen bonding between the imine and the carba-
mate N–H is formed in closely related substrates and suggesting
that such interaction would render the imine moiety inactive
toward external activation.

We indeed had trouble in controlling the specific activation

of imine 3 in a productive way: the reaction always gave a
significant amount of unidentifiable decomposed products.
Learning from these studies, we hypothesized that deprotonation
from the carbamate N–H by a suitable base could give rise to
isomerization of 7 to ortho-azaxylylene 8 which would then
participate in the subsequent intramolecular hetero-Diels–Alder
(h-DA) reaction (Scheme 2).

Efforts to identify conditions that realize the projected
isomerization/h-DA reaction led us to the novel base-catalyzed
reaction system that enables a much more efficient and diaster-
eoselective conversion of 3 to 6 as presented in the following.

As shown in Table 1, our investigations commenced with
low-nucleophilic strong base NaHMDS, but no reaction was
observed (Entry 1). When 3 was treated with a stoichiometric
amount of KH in THF (Entry 2), evolution of H2 was observed
and the color of the solution turned bright yellow. Despite the
marked change in appearance, the expected reaction had not oc-
curred and 3 was recovered. It was suggested that the deprotona-
tion from the carbamate N–H was surely achieved, but in both
cases, the resulting anion formed a stable chelate with the coun-
ter cation, maintaining a situation similar to that of the parent
imine (cf. 13 in Scheme 3). To break down this situation, we
added dicyclohexyl-18-crown-6 (Cy2-18-crown-6)

5 and found
its marked effect. Thus, the combination of KH (1.5 equiv)
and Cy2-18-crown-6 (1.5 equiv) provided the desired cycload-
ducts [6 (41%) and 10 (5%)] (Entry 3). After considerable ex-
perimentation, we found that the use of a catalytic amount of
KH/Cy2-18-crown-6 (0.1 equiv each) gave optimal and reprodu-
cible results, providing 6 and 10 in good yield (81%, dr = 77:4,
Entry 4). Gratifyingly, both the yield and the stereoselectivity
were markedly improved compared with our previously reported
protocol [BF3.OEt2 (1.5 equiv), 4A MS, CH2Cl2]. The diaster-
eomeric ratio of the products did not reflect the E:Z ratio of
the substrate, which provided insight into the reaction mecha-
nism (vide infra). Use of Lewis bases such as AcOK, AcOLi,6a

and KF resulted in zero conversion (Entries 5–7). The corre-
sponding products were also obtained using KOH, albeit in
low yield (Entry 8).

To gain insight into the reaction mechanism, we carried out
complementary experiments, using other imines 11 and 12
(Chart 1) having an alkyl enol ether or an (E)-alkenyl substitu-
ent. In both cases, no reaction was observed under the optimized
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Figure 1. Structure of Martinella alkaloids.
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Scheme 2. Synthetic plan for the tricyclic core system.
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condition,7,10 which suggested that the silyl enol ether was
essential for the base-catalyzed cyclization reaction.

We suppose the following mechanism of the base-catalyzed
cyclization, where TBS groups play a crucial role (Scheme 3).
The deprotonation from the carbamate N–H provides anion 13
with a potassium cation stabilized by chelation. The addition
of Cy2-18-crown-6 drives dissociation of the counter cation to
release anion 14. Under the reaction conditions, highly nucleo-
philic6a,6b pentavalent silicate 15 would be generated via an in-
tramolecular (A) or intermolecular activation (B). The resulting
silicate 15 would undergo a tandemMukaiyama–Mannich/hem-
iaminalization reaction to afford the desired tricyclic products.8

Resilylation might be achieved via either an internal or an exter-
nal pathway.9 We assume that the basic conditions allowed the
first Mannich-type adducts to enjoy an equilibrium between
cis-16, -17, and trans-18, this may be the main reason why the
marked improvement in terms of yield and stereoselectivity
was realized in comparison with the reaction under Lewis acidic
conditions, despite using the same substrate.

In summary, we have reported a novel and efficient protocol
for the stereoselective synthesis of the hexahydropyrrolo-
[3,2-c]quinoline core by tandem anionic cyclizations with a
catalytic KH/Cy2-18-crown-6 system. This work demonstrates
the first Mukaiyama–Mannich reaction between a less reactive
aldimine and silyl enol ether. Efforts to extend synthetic scope
of the base-catalyzed Mukaiyama–Mannich reaction are now
under way in our laboratory.
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N

N
MeO2C

Boc

11 (E:Z = 5:2) 12

OMe

OTBDPS

H
N

N
MeO2C

Boc

OBn

H

MEMO

Chart 1.

Table 1. Base-promoted annulations of imine 3
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Solvent
Temp Time Yield/%

/equiv /equiv /�C /h 6/10

1 NaHMDS (1.2) — THF �78 to rt 2 0/0

2 KH (1.5) — THF 0 to rt 2.5 0/0

3 KH (1.5) Cy2-18-crown-6 (1.5) THF 0 to rt 3 41/5

4 KH (0.1) Cy2-18-crown-6 (0.1) THF 0 to rt 10.5 77/4

5 AcOK (0.1) Cy2-18-crown-6 (0.1) DMF rt 12 0/0

6 AcOLi (1.1) TMEDA (1.15) DMF rt to 40 48 0/0

7 KF (0.1) Cy2-18-crown-6 (0.1) THF rt 2.5 0/0

8 KOH (0.45) Cy2-18-crown-6 (0.2) THF rt 1.5 30/6
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