Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of potassium 2-pyridyl trifluoroborate with aryl (heteroaryl) halides

Wei Ren ${ }^{\text {a,b }}$, Jingya Li ${ }^{\text {b }}$, Dapeng Zou ${ }^{\text {a,b,* }}$, Yangjie $\mathrm{Wu}^{\text {a }}$, Yusheng $\mathrm{Wu}{ }^{\mathrm{b}, \mathrm{c}, *}$
${ }^{\text {a }}$ Department of Chemistry, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, Zhengzhou University, Zhengzhou, Henan 450052, PR China
${ }^{\mathrm{b}}$ Tetranov Biopharm, LLC. 75 Daxue Road, Zhengzhou, Henan 450052, PR China
${ }^{\text {c }}$ Tetranov International, Inc. 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA

A R T I C L E I N F O

Article history:

Received 6 October 2011
Received in revised form 12 December 2011
Accepted 13 December 2011
Available online 17 December 2011

Keywords:

Palladium-catalyzed
Suzuki-Miyaura cross-coupling reaction Potassium 2-pyridyl trifluoroborate Aryl (heteroaryl) halides

Abstract

Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of potassium pyridine-2-trifluoroborates and various aryl (heteroaryl) halides can generate the corresponding desired coupling products with moderate to good yields. It can be carried out under the conditions with ethanol as solvent, $\mathrm{Pd}(\mathrm{OAc})_{2}$ and SPhos as catalyst system and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as a base.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Substituted heterobiaryls widely exist in natural products, pharmaceutically active molecules, agrochemicals and functional materials, and are mainly prepared by transition-metal-catalyzed cross-coupling reactions, ${ }^{1,3}$ such as Kumada-Corriu cross-coupling, ${ }^{2}$ Stille cross-coupling, ${ }^{3}$ Negishi cross-coupling ${ }^{4}$ or Suzu-ki-Miyaura cross-coupling. ${ }^{5}$ Among the various cross-coupling reactions, Suzuki-Miyaura reaction has become an indispensable instrument for preparing these compounds owing to its tolerance of a wide range of functional groups, high stability, relatively low toxicity and ready availability of organoboron compounds. ${ }^{6}$

Considerable efforts have been made to develop metal-ligand catalyst systems that facilitate the Suzuki-Miyaura cross-coupling reaction and increase its scope. ${ }^{7}$ In these known reports, the crosscoupling reaction of 2-pyridyl boron-based nucleophiles under palladium catalysis is inherently difficult due to their propensity to decompose via protodeboronation. ${ }^{8}$ Regarding Suzuki-Miyaura reaction of 2-pyridyl nucleophiles with aryl halides, only aryl iodides have been demonstrated as suitable coupling partners in the few published reports. ${ }^{5,9}$ Recently, some new catalytic system has been developed. Li and co-workers have reported cross-coupling

[^0]reaction of 2-pyridylboronic esters with aryl bromides by using palladium phosphine chloride and oxide catalysts under Suzu-ki-Miyaura conditions. ${ }^{10}$ Deng and co-workers have reported cross-coupling reaction of 2-pyridylboronic esters with aryl bromides by using palladium acetate and $1,1^{\prime}$-bis(diphenylphosphino) ferrocene with copper (I) halide as additive under Suzuki-Miyaura conditions. ${ }^{11}$ And to address this problem, many important surrogates have been developed, including trialkoxy or trihydroxyborate salts, diethanolamine adducts, sterically bulky boronic esters and boroxines. ${ }^{8,9,12}$ These methods can perform well for special substrates, but for heteroaryl halides and less expensive substrates, such as aryl chlorides, there is still a lot of challenge. In 2009, Burke and co-workers successfully applied the coupling of 2-pyridyl MIDA boronate with aryl chlorides to get moderate to good yields by using a slow-release strategy to circumvent the instability problems of 2-pyridylboronic acids. ${ }^{13}$

In recent years, organotrifluoroborates have become an important nucleophilic reagent in Suzuki-Miyaura cross-coupling, and it has been widely used due to its stability to air and moisture. Besides, this kind of potassium trifluoroborates can be easily made from a wide variety of organoboron reagents together with inexpensive potassium hydrogen fluoride $\left(\mathrm{KHF}_{2}\right)$. For the most part, these salts can be easily purified by recrystallization, precipitation, or Soxhlet extraction. ${ }^{14-16}$ Byproducts of the cross-coupling of organotrifluoroborates with organic halides are inorganic salts, which are readily separable from the desired products. However, regarding the direct coupling of potassium pyridine-2-
trifluoroborate with aryl halides, there were only two reports previously and the study results were not optimized. ${ }^{6 d, 15,16}$ Therefore, we synthesized a series of potassium pyridine-2trifluoroborates based on literature methods ${ }^{16}$ (Scheme 1). The catalytic system composed of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and SPhos efficiently promotes cross-coupling reactions of various potassium pyridine-2trifluoroborates with aryl halides and heteroaryl halides, allowing these coupling processes to produce moderate to good yields.

Scheme 1. Synthesis of potassium 2-pyridyltrifluoroborates.

2. Results and discussion

To find optimal cross-coupling conditions for potassium pyri-dine-2-trifluoroborate with aryl and heteroaryl halides, the coupling between potassium 6-fluoropyridine-2-trifluoroborate and 4bromobenzonitrile is chosen as a model reaction under the conditions with ethanol as solvent at $85^{\circ} \mathrm{C}$ in an oil bath and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as a base (as shown in Table 1), with the aim of testing the catalytic activity of different catalysts and ligands (Fig. 1). As seen from Table 1, the combination of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{PPh}_{3}, \mathrm{PCy}_{3}$, DavePhos, CyJohnPhos, RuPhos or XPhos generates moderate yields (Table 1, entries $1-6$). When SPhos was used as ligand, 83% yield was offered (Table 1, entry 7). When $2 \mathrm{~mol} \%$ of the catalyst loading was used, the coupling yield was decreased. But the yield was not improved significantly when the catalyst loading was increased to $5 \mathrm{~mol} \%$. So $3 \mathrm{~mol} \%$ loading of catalyst $\operatorname{Pd}(\mathrm{OAc})_{2}$ and $6 \mathrm{~mol} \%$ SPhos was fixed. Under the same catalytic system, when the equiv of potassium pyridine-2-trifluoroborate was decreased to 1.5 equiv, the yield was comparative lower. Next, the catalyst was changed to a Pd source of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, resulting in an 83% yield of 3aa (Table 1, entry 11). $\mathrm{Pd}(\mathrm{OAc})_{2}$ is chosen as Pd source for this reaction because it is cheaper than $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$.

Table 1
Screen of catalysts and ligands for the cross-coupling of potassium 6-fluoropyridine-2-trifluoroborate with 4-bromobenzonitrile ${ }^{\text {a }}$

Entry	Catalyst	Ligand	Yield $^{\mathrm{b}}(\%)$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	67
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PPh_{3}	72
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DavePhos	67
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	CyJohnPhos	63
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	XPhos	76
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	RuPhos	63
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	SPhos	83
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	SPhos	61^{c}
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	SPhos	$85^{\text {d }}$
10	$\operatorname{Pd}(\mathrm{OAc})_{2}$	SPhos	$71^{\text {e }}$
11	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$	SPhos	83

${ }^{\text {a }}$ All reactions are based on 4-bromobenzonitrile (0.25 mmol), potassium 6-fluoropyridine-2-trifluoroborate (0.50 mmol), catalyst ($3 \mathrm{~mol} \%$), ligand ($6 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.50 \mathrm{mmol})$, ethanol (2.0 ml), $85^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yield based on 1aa.
${ }^{\text {c }}$ Catalyst ($2 \mathrm{~mol} \%$), ligand ($4 \mathrm{~mol} \%$).
${ }^{\text {d }}$ Catalyst ($5 \mathrm{~mol} \%$), ligand ($10 \mathrm{~mol} \%$).
${ }^{e}$ Potassium 6-fluoropyridine-2-trifluoroborate (0.375 mmol).

PPh_{3}

PCy_{3}

XPhos

RuPhos

CyJohnPhos

Fig. 1. The structure of phosphine ligands.
To examine the influence of bases and solvents, the potassium 6-fluoropyridine-2-trifluoroborate with 4-bromobenzonitrile was also chosen as the model reaction by fixing $3 \mathrm{~mol} \%$ loading of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $6 \mathrm{~mol} \%$ SPhos. Various bases, such as NaHCO_{3}, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{PO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ were examined in the reaction. When $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were used as base, the excellent yield was obtained (Table 2, entries 4 and 5). It was found that the solvent played a critical role on the reaction efficiency (Table 2) by using dioxane and THF as solvent, only lower yield of 3aa was obtained (Table 2, entries 6 and 7). DMSO, DMF and isopropanol also offer moderate yields in this reaction (Table 2, entries 8 and 9). The desired product was obtained in 83% when ethanol was used as solvent (Table 2, entry 5), and water does not improve this reaction. Moreover, the yield was not improved evidently by prolonging the reaction time from 16 h to 18 h (Table 2, entry 5 vs 12). So, the combination of $3 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ and $6 \mathrm{~mol} \%$ SPhos in ethanol in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $85^{\circ} \mathrm{C}$ in an oil bath is chosed as optimum conditions.

Table 2
Screen of solvents and bases for the cross-coupling of potassium 6-fluoropyridine-2trifluoroborate with 4-bromobenzonitrile ${ }^{\text {a }}$

Entry	Base	Solvent	t / h	Yield $^{\mathrm{b}}(\%)$
1	NaHCO_{3}	Ethanol	16	78
2	$\mathrm{~K}_{3} \mathrm{PO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	Ethanol	16	80
3	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	Ethanol	16	81
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	Ethanol	16	83
5	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Ethanol	16	83
6	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Dioxane	16	14
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	THF	16	30
8	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	DMF	16	68
9	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	DMSO	16	77
10	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Isopropanol	16	68
11	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Ethanol/H2O (4:1)	16	81
12	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Ethanol	18	83

${ }^{\text {a }}$ All reactions are based on 4-bromobenzonitrile (0.25 mmol), potassium 6-fluoropyridine-2-trifluoroborate (0.50 mmol), $3 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 6 \mathrm{~mol} \%$ SPhos, 0.50 mmol base, 2.0 ml solvent, $85^{\circ} \mathrm{C}$ (oil bath), 16 h .
${ }^{\mathrm{b}}$ Isolated yield based on 1aa.

Under the optimized reaction conditions, we extended Suzu-ki-Miyaura cross-coupling reaction of potassium 6-fluoropyridine-2-trifluoroborate and various aryl halides. It can be seen from Table 3 that the optimized reaction conditions tolerate a variety of functional groups, including acetyl, cyano, nitro, keto, trifluoromethyl and methyl (Table 3, entries 1-11). Moreover, a series of aryl bromides, which contain different substitution groups, such as electron-

Table 3
Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of potassium 6-fluoropyridine-2-trifluoroborate with aryl halides ${ }^{\text {a }}$
(1ases)

[^1]donating and electron-withdrawing can readily be coupled with potassium 6-fluoropyridine-2-trifluoroborate to produce moderate to good yields of 73-94\% (Table 3, entries 1-11).
ortho-Substituted aryl bromides can also cross-couple with potassium 6-fluoropyridine-2-trifluoroborate under the optimized reaction conditions with moderate yields (49% and 68%, respectively, for Table 3, entries 10 and 12). Most notably, the coupling reaction can also happen between 4 -chloroacetophenone or 4-chlorobenzonitrile and potassium 6-fluoropyridine-2trifluoroborate to smoothly produce the desired products with yields of 77% and 79% (Table 3, entries 13 and 14). Overall, under these reaction conditions, substrates with electron-donating groups gave little higher yields than those with electronwithdrawing groups, which indicate that the electronic effects likely have an effect on the reaction. Substrates with substituents at ortho-position (Table 3, entry 10) gave lower yields than those at meta-position (Table 3, entry 9) or para-position (Table 3, entry 8), which shows that steric hindrance likely has a negative effect on the reaction.

We further investigated the coupling reaction between potassium 6-fluoropyridine-2-trifluoroborate and a range of substituted heteroaryl halides. As shown in Table 4, a variety of heteroaryl halides containing nitrogen- and sulfur-heteroaryl halides can be converted to coupling products with moderate to good yields (Table 4). The reaction of 6-bromo-2-methoxypyridine with potassium 6-fluoropyridine-2-trifluoroborate can proceed well to provide the desired product with 82% yield (Table 4, entry 1). However, when coupling an unsubstituted 2-bromopyridine with potassium 6-fluoropyridine-2-trifluoroborate, it only produced 27% yield (Table 4 , entry 2). A cross-coupling product with 78% yield is obtained from coupling 3-bromopyridine and 4-bromopyridine with potassium 6-fluoropyridine-2-trifluoroborate (Table 4, entries 3 and 7). It is interesting to see that a challenging substrate, 5-bromo-2-aminopyridine, was coupled with potassium 6-fluoropyridine-2trifluoroborate, producing 89\% yield (Table 4, entry 4). Similarly, 5-bromo- N-methyl-2-pyridinamine can be successfully converted into the corresponding coupling product with 61% yield (Table 4, entry 8). This is in sharp contrast to the fact that 5-bromobenzo[b] thiophene can successfully couple with potassium 6-fluoropyridine-2-trifluoroborate to produce the corresponding coupling product in yield of 94% (Table 4, entry 12). The crosscoupling condition can also be applied to heteroaryl chlorides, such as 2-chloro-6-methoxy pyridine and 2-chloro-6phenylpyrazine and the corresponding coupling products were obtained in yields of 65% and 59% (Table 4, entries 10 and 11).

Under these conditions, we expanded the Suzuki-Miyaura cross-coupling reaction to different potassium pyridine-2trifluoroborates. For example, potassium 6-methoxypyridine-2trifluoroborate is coupled with 5-bromo-2-trifluoromethylpyridine and 4-chlorobenzonitrile, giving desired coupling products with good yields of 80% and 83%, respectively (Table 5, entries 1 and 2). In addition, the coupling reaction of potassium $6-N, N$-dimethylpyr-idine-2-trifluoroborate with 4-bromobenzonitrile and 1-bromo-4(trifluoromethyl) benzene generated the desired products with 77% and 52% yields (Table 5, entries 3 and 4). Similarly, potassium 6-benzyloxypyridine-2-trifluoroborate is coupled with 5-bromo-2trifluoromethylpyridine and 4-bromotoluene to produce the corresponding coupling products in 34% and 25% yields, respectively (Table 5, entries 5 and 6). Coupling potassium 6-chlorinelypyridine-2-trifluoroborate with 4-bromobenzonitrile provides the desired product with 26% yield (Table 5, entry 7).

3. Conclusions

In summary, Palladium-catalyzed Suzuki-Miyaura crosscoupling reaction of potassium 2-pyridyltrifluoroborates with aryl

Table 4
Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of potassium 6-fluoropyridine-2-trifluoroborate with heteroaryl halides ${ }^{\text {a }}$

1

(1bb)

(3be)

6

(3bf)

7

(1bg)

8

(1bh)

(3bg)

(3bh)

9

(3bi)

10

[^2]and heteroaryl halides can produce moderate to good yields by using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as a base, ethanol as a solvent and $\mathrm{Pd}(\mathrm{OAc})_{2}$ and SPhos as catalyst system. Moreover, a wide range of substrates with electron-donating, electron-neutral, electron-withdrawing and other functional groups can as well fit with this system.

4. Experimental section

4.1. General methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data were recorded with a Bruker DPX 400 instrument by using tetramethylsilane (TMS) as the internal standard. All coupling constants (J) are reported in hertz (Hz). Melting points were measured with an XT4A microscopic apparatus. High-resolution mass spectra were recorded with a Waters Q-Tof micro spectrometer by using electrospray ionization (ESI). Preparative TLC was performed on silica gel plates and developed with ethyl acetate/hexane. All solvents were dried according to standard methods. Aryl halides were obtained from commercial sources and were generally used without further purification.

4.2. Preparation of potassium 2-pyridyltrifluoroborates (A-E)

A 100 mL single-neck flask was evacuated under vacuum, flame-dried and then charged with nitrogen gas three times. Anhydrous THF was added to the flask via syringe and a solution of a variety of functional groups 2-bromopyridine (1.0 equiv) in THF was added following by triisopropyl borate (1.1 equiv) via syringe at $-78{ }^{\circ} \mathrm{C}$. A solution of $2.5 \mathrm{M} n$-BuLi in hexane (1.1 equiv) was added dropwise via constant pressure funnel over 2.0 h at $-78^{\circ} \mathrm{C}$. After the addition of n-BuLi was complete, the mixture was kept at $-78{ }^{\circ} \mathrm{C}$ with stirring for an additional 3.0 h , then allowed to warm up room temperature overnight. The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and an aqueous solution of KHF_{2} (3.0 equiv) was added dropwise with vigorous stirring. After stirring for an additional 4.0 h , the solvents were completely removed under vacuum. The crude product was then taken up in methanol and filtered, elimination of the solvent of methanol gave the white solid, and then the white solid was washed with acetone and filtered, collected, and dried in vacuo to afford the desired pure product as a light white solid ($\mathbf{A}-\mathbf{E}$).
4.2.1. Characterization data for potassium 6-fluoropyridine-2trifluoroborate (A). White solid; mp $>247{ }^{\circ} \mathrm{C}$; 21% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm}$): $\delta 6.65$ (dd, $J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (dd, $J=7.0$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{q}, J=16.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO, ppm): $\delta 103.7$ (d, $J=38.8 \mathrm{~Hz}), 122.4,138.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 163.2$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{BF}_{4} \mathrm{KN}-\mathrm{K}\right]^{-}: 164.0295$, found: 164.0290 .
4.2.2. Characterization data for potassium 6-methoxypyridine-2trifluoroborate (B). White solid; mp $>247{ }^{\circ} \mathrm{C} ; 26 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm}$): $\delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO, ppm): $\delta 52.4,106.1,118.7,136.6,162.4$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BF}_{3} \mathrm{KNO}-\mathrm{K}\right]^{-}: 176.0495$, found: 176.0492 .
4.2.3. Characterization data for potassium 6-N,N-dimethylpyridine-2-trifluoroborate (C). White solid; mp $>247{ }^{\circ} \mathrm{C} ; 32 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO, ppm): $\delta 3.29$ (s, 6H), 6.35 (d, J=8.4 Hz, 1H), 6.65 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO, ppm): δ 37.6, 107.1, 117.05, 136.1, 158.5; EIMS: m / z calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{BF}_{3} \mathrm{KN}_{2}-\mathrm{K}\right]^{-}: 189.1$, found: 189.1 .
4.2.4. Characterization data for potassium 6-benzyloxypyridine-2trifluoroborate (D). White solid; mp $>247{ }^{\circ} \mathrm{C} ; 30 \%$ yield. ${ }^{1} \mathrm{H}$ NMR

Table 5
Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of potassium pyridine-2-trifluoroborate with aryl (heteroaryl) halides ${ }^{\text {a }}$

Entry

[^3](400 MHz, DMSO, ppm): $\delta 5.33$ (s, 2H), 6.46 (d, J=8.0 Hz, 1H), $6.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO, ppm): $\delta 66.1,107.0,119.5,127.8,128.2$, 128.3, 128.6, 136.7, 138.6, 162.2; HRMS (ESI): m / z calcd for $\left[^{C_{12}} \mathrm{H}_{10} \mathrm{BF}_{3} \mathrm{KNO}-\mathrm{K}\right]^{-}: 252.0808$, found: 252.0803 .
4.2.5. Characterization data for potassium 6-chlorinepyridine-2trifluoroborate (E). White solid; mp $>247{ }^{\circ} \mathrm{C}$; 35% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO, ppm): $\delta 7.05$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (d, $J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO, ppm): $\delta 119.6$, 124.2, 136.7, 149.4; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{BClF}_{3} \mathrm{KN}-\mathrm{K}\right]^{-}$: 179.9999, found: 180.0002 .
4.3. General procedure for the Pd-catalyzed Suzuki-Miyaura reaction of potassium 6-fluoropyridine-2-trifluoroborate with aryl halides (Table 3)

A $10-\mathrm{mL}$ Schlenk tube was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mg}$, $0.0075 \mathrm{mmol}, 3 \mathrm{~mol} \%$), S Shos ($6.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 6 \mathrm{~mol} \%$),
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($53.0 \mathrm{mg}, 0.50 \mathrm{mmol}, 2$ equiv), potassium 6-fluoropyridine-2-trifluoroborate ($101.5 \mathrm{mg}, 0.50 \mathrm{mmol}, 2$ equiv) and aryl halides ($0.25 \mathrm{mmol}, 1.0$ equiv), followed by the addition of ethanol (2.0 ml). The reaction was carried out at $85^{\circ} \mathrm{C}$ for 16 h under the protection of nitrogen gas. Then, the reaction mixture was allowed to cool down to room temperature and the reaction solution was filtered through a thin pad of silica gel (eluting with ethyl acetate) and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to produce the desired products (ethyl acetate/hexane $=1: 2-1: 80$).

4.4. General procedure for the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of potassium 6-fluoropyridine-2trifluoroborate with heteroaryl halides (Table 4)

A $10-\mathrm{mL}$ Schlenk tube was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mg}$, $0.0075 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$), SPhos ($6.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 6.0 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad(53.0 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, 2.0$ equiv), potassium 6-fluoropyridine-2-trifluoroborate ($101.5 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.0$ equiv)
and heteroaryl halides ($0.25 \mathrm{mmol}, 1.0$ equiv), followed by the addition of ethanol (2.0 ml). The reaction was carried out at $85^{\circ} \mathrm{C}$ for 16 h under the protection of nitrogen gas. Then, the reaction mixture was allowed to cool down to room temperature and the reaction solution was filtered through a thin pad of silica gel (eluting with ethyl acetate) and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to produce the desired products (ethyl acetate/ hexane $=1: 2-1: 80$).

4.5. General procedure for the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of potassium 2-pyridyltrifluoroborates with aryl halides (Table 5)

A $10-\mathrm{mL}$ Schlenk tube was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mg}$, $0.0075 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$), SPhos ($6.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 6.0 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($53.0 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, 2.0$ equiv), potassium 2pyridyltrifluoroborates ($0.50 \mathrm{mmol}, 2.0$ equiv) and aryl halides ($0.25 \mathrm{mmol}, 1.0$ equiv), followed by the addition of ethanol (2.0 ml). The reaction was carried out at $85^{\circ} \mathrm{C}$ for 16 h under the protection of nitrogen gas. Then, the reaction mixture was allowed to cool down to room temperature and the reaction solution was filtered through a thin pad of silica gel (eluting with ethyl acetate) and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to produce the desired products (ethyl acetate/hexane $=1: 15-1: 25$).

4.6. Characterization of products

4.6.1. 4-(6-Fluoro-2-pyridinyl)benzonitrile (Table 3, entries 1 and 14) (3aa). White solid; mp $134-135{ }^{\circ} \mathrm{C}$; 83% and 79% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.97$ (dd, $J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dd, $J=5.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{q}, J=7.8,15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.12 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 109.3$ (d, $J=37.2 \mathrm{~Hz}), 113.0,117.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 118.5,127.4,132.6,141.5$, 142.0 (d, $J=7.7 \mathrm{~Hz}$), 153.9 (d, $J=13.4 \mathrm{~Hz}$), 163.4 (d, $J=238.9 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{FN}_{2}+\mathrm{H}\right]^{+}: 199.0672$, found: 199.0674.
4.6.2. 2-Fluoro-6-[4-(trifluoromethyl)phenyl]pyridine (Table 3, entry 2) (3ab). White solid; mp $43-46{ }^{\circ} \mathrm{C}$; 84% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 6.95$ (dd, $\left.J=5.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.68(\mathrm{dd}, J=5.1,7.5 \mathrm{~Hz}$, 1 H), 7.73 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.90 (q, $J=7.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 108.9$ (d, $J=37.3 \mathrm{~Hz}), 117.8(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 125.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 127.2,128.1(\mathrm{q}$, $J=270.8 \mathrm{~Hz}), 131.8(\mathrm{q}, J=32.2 \mathrm{~Hz}), 140.8,142.0,154.6(\mathrm{~d}, J=13.3 \mathrm{~Hz})$, 163.4 (d, $J=238.1 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~F}_{4} \mathrm{~N}+\mathrm{H}\right]^{+}$: 242.0593, found: 242.0583.
4.6.3. 2-Fluoro-6-(4-nitrophenyl)pyridine (Table 3, entry 3) (3ac). Yellow solid; mp $128-129^{\circ} \mathrm{C} ; 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm): $\delta 7.00$ (dd, $J=5.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (dd, $J=5.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (q, J=7.7, $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.20(\mathrm{~m}, 2 \mathrm{H}), 8.31-8.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 109.6$ (d, $J=37.1 \mathrm{~Hz}$), 118.2 (d, $J=3.8 \mathrm{~Hz}), 124.0,127.7,142.1(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 143.2,148.4,153.5$ (d, $J=13.3 \mathrm{~Hz}$), 163.4 (d, $J=238.9 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 219.0570$, found: 219.0578 .
4.6.4. 1-[4-(6-Fluoro-2-pyridinyl)phenyl]ethanone (Table 3, entries 4 and 13) (3ad). White solid; $\mathrm{mp} 126-128^{\circ} \mathrm{C} ; 81 \%$ and 77% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $3, \mathrm{ppm}$): $\delta 2.64(\mathrm{~s}, 3 \mathrm{H}), 6.93(\mathrm{dd}, J=5.1,8.0 \mathrm{~Hz}$, 1 H), 7.68 (dd, $J=5.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (q, $J=7.8,15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.03-8.05 (m, 2H), 8.08-8.10 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 26.7,108.7(\mathrm{~d}, J=37.4 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 127.0,128.9$ (d, $J=18.8 \mathrm{~Hz}), 137.5,141.6,141.9(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 154.8(\mathrm{~d}, J=13.3 \mathrm{~Hz})$,
163.4 (d, J=237.9 Hz), 197.7; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}+\mathrm{H}\right]^{+}: 216.0825$, found: 216.0827.
4.6.5. 1-[3-(6-Fluoro-2-pyridinyl)phenyl]ethanone (Table 3, entry 5) (3ae). Yellow oil; 80% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.69$ (s, 3H), 6.93 (dd, $J=5.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (dd, $J=5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{q}, J=7.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 26.7,108.3(\mathrm{~d}, J=37.2 \mathrm{~Hz}), 117.5(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 126.6,129.1,129.2$, 131.4, 137.6, 138.0, 141.9 (d, $J=7.7 \mathrm{~Hz}$), 155.1 (d, $J=13.2 \mathrm{~Hz}$), 163.4 (d, $J=237.7 \mathrm{~Hz}$), 197.9; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}+\mathrm{H}\right]^{+}$: 216.0825, found: 216.0823.
4.6.6. 2-Fluoro-6-(4-methoxyphenyl)pyridine (Table 3, entry 6) (3af). White solid; mp $69-71{ }^{\circ} \mathrm{C}$; 94% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 3.87$ (s, 3H), 6.80 (dd, $\left.J=4.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=5.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{q}, J=7.9,15.8 \mathrm{~Hz}$, 1 H), 7.97 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 55.3,106.6(\mathrm{~d}, J=37.6 \mathrm{~Hz}), 114.1,116.3(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.2,130.1$, 141.5 (d, $J=7.7 \mathrm{~Hz}$), 155.9 (d, $J=13.4 \mathrm{~Hz}$), $160.8,163.3$ (d, $J=236.1 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FNO}+\mathrm{H}\right]^{+}$: 204.0825, found: 204.0821.
4.6.7. 2-Fluoro-6-(3-methoxyphenyl)pyridine (Table 3, entry 7) (3ag). Yellow oil; 88% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 3.89$ $(\mathrm{s}, 3 \mathrm{H}), 6.87(\mathrm{dd}, J=5.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=4.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{q}$, $J=8.0,15.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 55.3,107.8$ (d, $J=37.5 \mathrm{~Hz}$), 112.0, 115.6, 117.4 (d, $J=3.6 \mathrm{~Hz}$), 119.2, 129.7, 138.9, $141.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 156.0(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 160.0,163.3(\mathrm{~d}, J=236.6 \mathrm{~Hz})$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FNO}+\mathrm{H}\right]^{+}: 204.0825$, found: 204.0821.
4.6.8. 2-Fluoro-6-p-tolylpyridine (Table 3, entry 8)(3ah). Yellow oil; 93% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.39$ (s, 3H), 6.81 (dd, $J=5.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (dd, $J=5.1,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (q, $J=7.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 21.3,107.2$ (d, $J=37.5 \mathrm{~Hz}$), 116.9 (d, $J=4.0 \mathrm{~Hz}), 126.8,129.5(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 134.7,139.7,141.6(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, 156.3 (d, $J=13.3 \mathrm{~Hz}$), 163.4 (d, $J=236.3 \mathrm{~Hz}$); HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}+\mathrm{H}\right]^{+}: 188.0876$, found: 188.0870 .
4.6.9. 2-Fluoro-6-m-tolylpyridine (Table 3, entry 9) (3ai). Yellow oil; 91% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.45$ (s, 3H), 6.86 (dd, $J=5.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (dd, $J=5.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 21.4,107.4$ (d, $J=37.4 \mathrm{~Hz}$), 117.3 (d, $J=4.0 \mathrm{~Hz}), 123.9,127.5,128.6,130.3,137.4,138.4,141.5(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, 156.3 (d, $J=13.2 \mathrm{~Hz}$), 163.3 (d, $J=236.6 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}+\mathrm{H}\right]^{+}: 188.0876$, found: 188.0871 .
4.6.10. 2-Fluoro-6-o-tolylpyridine (Table 3, entry 10) (3aj). Yellow oil; 49% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 6.90$ (dd, $J=5.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (q, $J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 21.8$, 108.7 (d, $J=37.0 \mathrm{~Hz}$), 122.7 (d, $J=4.2 \mathrm{~Hz}$), 127.4, 130.2, 131.1, 132.3, 137.4, 140.1, 142.5 (d, $J=7.7 \mathrm{~Hz}$), 160.2 (d, $J=13.5 \mathrm{~Hz}$), 164.3 (d, $J=237.2 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}+\mathrm{H}\right]^{+}: 188.0876$, found: 188.0871.
4.6.11. 2-Fluoro-6-phenylpyridine (Table 3, entry 11) (3ak). Yellow oil; 82% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.85$ (dd, $J=4.9$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{dd}, J=5.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (q, $J=7.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-8.00(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 107.6$ (d, $J=37.4 \mathrm{~Hz}), 117.3,126.9,128.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.6$, $137.5,141.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 156.2(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 163.4(\mathrm{~d}, J=236.7 \mathrm{~Hz})$;

HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{FN}+\mathrm{H}\right]^{+}$: 174.0719, found: 174.0716.
4.6.12. 2-Fluoro-6-(1-naphthalenyl)pyridine (Table 3, entry 12) (3al). Yellow oil; 68% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.98$ (dd, $J=5.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.47-7.57$ (m, 4H), 7.63 (dd, $J=5.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.87-7.94(\mathrm{~m}, 3 \mathrm{H}), 8.15\left(\mathrm{q}, J=5.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 107.7(\mathrm{~d}, J=36.8 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 125.2$ (d, $J=4.4 \mathrm{~Hz}), 126.0,126.7,127.7,128.4,129.4,130.8,133.8,136.6,141.3$ (d, $J=7.7 \mathrm{~Hz}), 157.8(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 163.1(\mathrm{~d}, J=237.9 \mathrm{~Hz}) ;$ HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FN}+\mathrm{H}\right]^{+}$: 224.0876, found: 224.0874.
4.6.13. 6-Fluoro-6'-methoxy-2,2'-bipyridine (Table 4, entries 1 and 10) (3ba). White solid; mp $78-79^{\circ} \mathrm{C}$; 82% and 65% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 4.03$ (s, 3H), 6.79 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (dd, $J=5.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{q}, J=7.9,15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=5.3,7.5 \mathrm{~Hz}, 1 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 53.2,109.1(\mathrm{~d}, J=37.3 \mathrm{~Hz}$), 111.7, 114.0, $117.9,139.4,141.6$ (d, $J=7.6 \mathrm{~Hz}), 151.7,154.8(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 162.9$ (d, $J=236.6 \mathrm{~Hz}$), 163.4; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$: 205.0777, found: 205.0773.
4.6.14. 6-Fluoro-2,2'-bipyridine (Table 4, entry 2) (3bb). Yellow solid; mp $70-72{ }^{\circ} \mathrm{C}$; 27% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.95$ (dd, $J=5.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (dd, $J=1.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (q, 7.0 , $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.92$ (m, 1H), 8.31 (dd, $J=5.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.35$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 109.4(\mathrm{~d}, J=37.1 \mathrm{~Hz}), 118.1(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 121.3,124.2,137.0$, 141.8 (d, $J=7.5 \mathrm{~Hz}), 149.2,154.5,154.9(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 163.1$ (d, $J=237.1 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FN}_{2}+\mathrm{H}\right]^{+}: 175.0672$, found: 175.0663.
4.6.15. 6-Fluoro-2,3'-bipyridine (Table 4, entry 3)(3bc). Yellow solid; $\mathrm{mp} 36-38{ }^{\circ} \mathrm{C}$; 78% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.94$ (dd, $J=5.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (q, $J=3.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (dd, $J=5.1$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{q}, J=7.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.3(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.67$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 108.6$ (d, $J=37.1 \mathrm{~Hz}$), 117.4 (d, $J=3.9 \mathrm{~Hz}$), 123.6, 133.1, 134.3, 141.9 (d, $J=7.7 \mathrm{~Hz}$), 148.1, 150.4, 153.5 (d, $J=13.4 \mathrm{~Hz}$), 163.5 (d, $J=238.4 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FN}_{2}+\mathrm{H}\right]^{+}$: 175.0672, found: 175.0665.
4.6.16. 6-Fluoro-2,3'-bipyridin-6'-amine (Table 4, entry 4) (3bd). White solid; mp $139-141^{\circ} \mathrm{C}$; 89% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 4.66$ (s, 2H), 6.59 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dd, $J=4.9,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51$ (dd, $J=5.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (q, $J=7.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, $J=6.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$: $\delta 106.8(\mathrm{~d}, J=37.4 \mathrm{~Hz}), 108.4,115.8$ (d, $J=4.0 \mathrm{~Hz}), 124.0,136.5,141.6$ (d, $J=7.8 \mathrm{~Hz}), 147.1,154.4(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 159.1,163.5(\mathrm{~d}, J=236.8 \mathrm{~Hz}) ;$ HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FN}_{3}+\mathrm{H}\right]^{+}: 190.0781$, found: 190.0775.
4.6.17. 6-Fluoro-6'-(trifluoromethyl)-2,3'-bipyridine (Table 4, entry 5) (3be). Yellow solid; mp $102-104{ }^{\circ} \mathrm{C}$; 94% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.92$ (dd, $J=8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (dd, $J=7.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{q}, J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.42 (dd, $J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 109.6(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 110.0,118.0,120.5,125.6(\mathrm{q}, J=272.6 \mathrm{~Hz})$, $135.8,142.3$ (d, $J=7.8 \mathrm{~Hz}), 148.2,149.1(\mathrm{q}, J=34.7 \mathrm{~Hz}), 151.9(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}$), 163.6 (d, $J=239.7 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}: 243.0545$, found: 243.0546 .
4.6.18. 6-Fluoro-2'-methyl-2,3'-bipyridine (Table 4, entry 6) (3bf). White solid; mp $96-9{ }^{\circ}{ }^{\circ} \mathrm{C} ; 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 2.64(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{dd}, J=8.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.23(\mathrm{q}$, $J=7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.8,6.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.89(\mathrm{q}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{dd}, J=4.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 23.5,108.1$ (d, $J=36.8 \mathrm{~Hz}$), 121.1, 121.3 (d, $J=4.2 \mathrm{~Hz}), 134.0,137.3,141.4(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 149.1,156.1,156.7$ (d, $J=13.6 \mathrm{~Hz}$), $163.0(\mathrm{~d}, \mathrm{~J}=238.6 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for

4.6.19. 6-Fluoro-2,4'-bipyridine (Table 4, entry 7) (3bg). White solid; mp $81-83{ }^{\circ} \mathrm{C}$; 78% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.99$ (dd, $J=5.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, $J=5.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.87-7.95$ ($\mathrm{m}, 3 \mathrm{H}$), $8.74(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$: $\delta 108.9$ (d, $J=37.2 \mathrm{~Hz}), 116.9(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 119.9,141.1(\mathrm{~d}, J=7.7 \mathrm{~Hz})$, $143.5,149.6,152.4$ (d, $J=13.2 \mathrm{~Hz}$), 162.5 (d, $J=238.9 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FN}_{2}+\mathrm{H}\right]^{+}: 175.0672$, found: 175.0660.
4.6.20. 6-Fluoro-N-methyl-2,3'-bipyridin-5'-amine (Table 4, entry 8) (3bh). White solid; mp $104-106{ }^{\circ} \mathrm{C}$; 61% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 2.98(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=5.1$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (dd, $J=5.1,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{q}, J=7.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 29.2,103.7,109.4(\mathrm{~d}, J=37.6 \mathrm{~Hz}$), 110.2, 117.9 (d, $J=3.9 \mathrm{~Hz}$), 141.8 (d, $J=7.7 \mathrm{~Hz}$), 146.0, 148.8, 154.3 (d, $J=13.1 \mathrm{~Hz}$), 160.3, 163.3 (d, $J=237.9 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FN}_{3}+\mathrm{H}\right]^{+}$: 204.0937, found: 204.0938.
4.6.21. 2-(6-Fluoro-2-pyridinyl)quinoline (Table 4, entry 9) (3bi). White solid; $\mathrm{mp} 110-112{ }^{\circ} \mathrm{C}$; 64% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 7.01$ (dd, $J=5.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.77$ ($\mathrm{m}, 1 \mathrm{H}$), 7.86 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (q, $J=7.8,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58$ (dd, $J=5.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 109.8$ (d, $J=37.1 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 127.1,127.7,128.4,129.8(\mathrm{~d}, J=8.7 \mathrm{~Hz})$, $137.0,141.9$ (d, $J=7.4 \mathrm{~Hz}), 147.9,154.6,155.1$ (d, $J=12.6 \mathrm{~Hz}), 163.2$ (d, $J=237.3 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FN}_{2}+\mathrm{H}\right]^{+}: 225.0828$, found: 225.0825.
4.6.22. 2-(6-Fluoropyridin-2-yl)-6-phenylpyrazine (Table 4, entry 11) (3bk). White solid; mp $58-60{ }^{\circ} \mathrm{C}$; 59% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.04$ (dd, $\left.J=5.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.98$ (q, $J=7.7,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.48(\mathrm{dd}, J=5.6,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 9.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 110.4(\mathrm{~d}, J=36.9 \mathrm{~Hz}), 118.7(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 127.0,129.0,130.1,136.1$, 141.1, 142.0 ($\mathrm{d}, J=6.4 \mathrm{~Hz}$), 148.5, 151.1, 153.2 (d, $J=13.4 \mathrm{~Hz}$), 163.1 (d, $J=238.3 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FN}_{3}+\mathrm{H}\right]^{+}: 252.0937$, found: 252.0930.
4.6.23. 2-Benzo[b]thiophen-5-yl-6-fluoropyridine (Table 4, entry 12) (3bl). White solid; mp $111-113{ }^{\circ} \mathrm{C}$; 94% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 6.87$ (dd, $\left.J=4.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=5.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{q}, J=7.7$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.98(\mathrm{~m}, 2 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 107.5(\mathrm{~d}, J=37.4 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 122.2,122.8$, 122.9, 124.4, 127.3, 134.0, 140.1, 141.0, 141.7 (d, $J=7.6 \mathrm{~Hz}$), 156.4 (d, $J=13.5 \mathrm{~Hz}$), 163.4 (d, $J=236.6 \mathrm{~Hz}$); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNS}+\mathrm{H}\right]^{+}: 230.0440$, found: 230.0441 .
4.6.24. 6-Methoxy-6'-(trifluoromethyl)-2,3'-bipyridine (Table 5, entry 1) (3ca). Yellow solid; mp 59-61 ${ }^{\circ} \mathrm{C}$; 80% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 4.04$ (s, 3H), 6.79 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.76(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 53.3,111.4,113.4,120.2,125.7$ (q , $J=272.2 \mathrm{~Hz}), 135.1,137.1,139.4,147.5,148.3,150.3,164.1$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}: 255.0745$, found: 255.0744.
4.6.25. 4-(6-Methoxypyridin-2-yl)benzonitrile (Table 5, entry 2) (3cb). White solid; mp $78-80^{\circ} \mathrm{C}$; 83% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 3.97(\mathrm{~s}, 3 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.61(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.1(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 53.4,111.0,112.1,113.5$, 119.0, 127.2, 132.4, 139.4, 143.2, 152.3, 163.9; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$: 211.0871, found: 211.0865.
4.6.26. 4-(6-(Dimethylamino)pyridin-2-yl)benzonitrile (Table 5, entry 3) (3cc). Green solid; mp 80-82 ${ }^{\circ} \mathrm{C} ; 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 3.18(\mathrm{~s}, 6 \mathrm{H}), 6.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.15$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 37.9,105.7,108.4$, 111.6, 119.1, 127.1, 132.2, 137.9, 144.3, 152.6, 159.0; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3}+\mathrm{H}\right]^{+}$: 224.1188 , found: 224.1183.
4.6.27. N, N-Dimethyl-6-(4-(trifluoromethyl)phenyl)pyridin-2-amine (Table 5, entry 4) (3cd). White solid; mp $54-56{ }^{\circ} \mathrm{C}$; 52% yield. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 3.17(\mathrm{~s}, 6 \mathrm{H}), 6.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $8.14(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 37.9$, $105.2,108.2,125.4(\mathrm{q}, J=3.7 \mathrm{~Hz}), 126.9,128.4$ (q, $J=270.2 \mathrm{~Hz}), 130.6$ (q, $J=32.1 \mathrm{~Hz}$), 137.9, 143.5, 153.4, 159.1; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$: 267.1109 , found: 267.1105 .
4.6.28. 2-(Benzyloxy)-6-(4-(trifluoromethyl)phenyl)pyridine (Table 5, entry 5) (3ce). Yellow solid; mp $117-119{ }^{\circ} \mathrm{C} ; 34 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 5.50(\mathrm{~s}, 2 \mathrm{H}), 6.87$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.42$ (m, 4H), 7.49 (d, J=7.5 Hz, 2H), 7.70-7.77 (m, 2H), 8.44 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.3(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 67.7$, $111.8,113.8,120.3,123.0(q, J=272.2 \mathrm{~Hz}), 127.9,128.5,135.2,137.1$, 137.2, 139.7, 147.6, 147.9, 148.4, 150.4, 163.6; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}+\mathrm{Na}\right]^{+}: 352.0925$, found: 352.0875 .
4.6.29. 2-(Benzyloxy)-6-p-tolylpyridine (Table 5, entry 6) (3cf). Yellow solid; mp $79-81^{\circ} \mathrm{C} ; 25 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.42(\mathrm{~m}, 6 \mathrm{H})$, 7.53 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 21.3,67.4,109.3,112.7,126.6$, 127.8, 128.1, 128.4, 129.3, 136.3, 137.8, 138.8, 139.3, 154.7, 163.2; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}: 276.1388$, found: 276.1384.
4.6.30. 4-(6-Chloropyridin-2-yl)benzonitrile (Table 5, entry 7) (3cg). White solid; mp $139-142^{\circ} \mathrm{C} ; 26 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.79(\mathrm{~m}$, $3 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 112.1,117.6,118.2,123.0,126.5,131.6,138.6,140.7,150.8,154.7$;

HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{2}+\mathrm{H}\right]^{+}: 215.0376$, found: 215.0372.

Acknowledgements

We thank the National Natural Science Foundation of China (20772114, 21172200) and the Innovation Fund for Outstanding Scholar of Henan Province (0621001100) for the financial support of this research. We thank Dr. Weiguo Zhu, Mr. Jianxun Kang for their excellent analytical support.

References and notes

1. (a) Ackermann, L.; Potukuchi, H. K. Synlett 2009, 2852; (b) Meyers, K. M.; Kim, N.; Mendez-Andino, J. L.; Hu, X. E.; Mumin, R. N.; Klopfenstein, S. R.; Wos, J. A.; Mitchell, M. C.; Paris, J. L.; Ackley, D. C.; Holbert, J. K.; Mittelstadt, S. W.; Reizes, O. Bioorg. Med. Chem. Lett. 2007, 17, 814.
2. Ackermann, L.; Potukuchi, H. K.; Kapdi, A. R.; Schulzke, C. Chem.-Eur. J. 2010, 16, 3300.
3. Napier, S.; Marcuccio, S. M.; Tye, H.; Whittaker, M. Tetrahedron Lett. 2008, 49, 6314.
4. Coleridge, B. M.; Bello, C. S.; Ellenberger, D. H.; Leitner, A. Tetrahedron Lett. 2010, 51, 357.
5. Deshayes, K.; Broene, R. D.; Chao, I.; Knobler, C. B.; Diederich, F. J. Org. Chem. 1991, 56, 6787.
6. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147; (c) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633; (d) Darses, S.; Genet, J. P. Chem. Rev. 2008, 108, 288; (e) Lindup, R. J.; Marder, T. B.; Perutz, R. N.; Whitwood, A. C. Chem. Commun. 2007, 3664.
7. (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722; (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550; (c) Bedford, R. B.; Cazin, C. S. J. Chem. Commun. 2001, 1540; (d) Kirchoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 1945; (e) Grasa, G. A.; Viciu, M. S.; Huang, J.; Zhang, C.; Trudell, M. L.; Nolan, S. P. Organometallics 2002, 21, 2866; (f) Feuerstein, M.; Berthiol, F.; Doucet, H.; Santinelli, M. Synlett 2002, 1807; (g) Molander, G. A.; Fumagalli, T. J. Org. Chem. 2006, 71, 5743.
8. Billingsley, K. L.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 4695.
9. For examples, of Suzuki-Miyaura reactions of 2-pyridylboronic acids, see: (a) Mandolesi, S. D.; Vaillard, S. E.; Podesta, J. C.; Rossi, R. A. Organometallics 2002, 21, 4886; (b) Bouillon, A.; Lancelot, J. C.; Santos, J. S. de O.; Collot, V.; Bovy, P. R.; Rault, S. Tetrahedron 2003, 59, 10043; (c) Shinozuka, T.; Shimada, K.; Matsui, S.; Yamane, T.; Ama, M.; Fukuda, T.; Taki, M.; Takeda, Y.; Otsuka, E.; Yamato, M.; Naito, S. Bioorg. Med. Chem. 2006, 14, 6807.
10. Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S. A.; Stauffer, S. R.; Burgey, C. S. Org. Lett. 2009, 11, 345.
11. Yang, D. X.; Colletti, S. L.; Wu, K.; Song, M. Y.; Li, G. Y.; Shen, H. C. Org. Lett. 2009, 11, 381.
12. (a) Hodgson, P. B.; Salingue, F. H. Tetrahedron Lett. 2004, 45, 685; (b) Gros, P.; Doudouh, A.; Fort, Y. Tetrahedron Lett. 2004, 45, 6239; (c) Yamamoto, Y.; Takizawa, M.; Yu, X. Q.; Miyaura, N. Angew. Chem., Int. Ed. 2008, 47, 928.
13. Knapp, O. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961.
14. Molander, G. A.; Canturk, B.; Kennedy, L. E. J. Org. Chem. 2009, 74, 973.
15. (a) Darses, S.; Genet, J. P. Eur. J. Org. Chem. 2003, 22, 4313; (b) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275; (c) Stefani, H. A.; Cella, R.; Vieira, S. A. Tetrahedron 2007, 63, 3623.
16. Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302.

[^0]: * Corresponding authors. Tel.: +1 732253 7326; fax: +1 732253 7327; e-mail addresses: dapeng.zou@tetranov.com (D. Zou), yusheng.wu@tetranovglobal.com, yushengwusp@yahoo.com (Y. Wu).

[^1]: ${ }^{\text {a }}$ Reaction conditions: aryl halides (0.25 mmol), potassium 6-fluoropyridine-2trifluoroborate (0.50 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($3 \mathrm{~mol} \%$), SPhos ($6 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.50 mmol), ethanol (2.0 mL), $85^{\circ} \mathrm{C}$ (oil bath), 16 h .
 ${ }^{\mathrm{b}}$ Isolated yields based on 1a.

[^2]: ${ }^{\text {a }}$ Reaction conditions: heteroaryl halides (0.25 mmol), potassium 6-fluoropyridine-2-trifluoroborate (0.50 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (3 mol \%), SPhos ($6 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.50 \mathrm{mmol})$, ethanol (2.0 mL), $85^{\circ} \mathrm{C}$ (oil bath), 16 h .
 ${ }^{\mathrm{b}}$ Isolated yields based on $\mathbf{1 b}$.
 ${ }^{\mathrm{c}} \mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.75 mmol$)$.

[^3]: ${ }^{\text {a }}$ Reaction conditions: aryl halides (0.25 mmol), potassium 2-pyridyl trifluoroborate (0.50 mmol), $\mathrm{Pd}(\mathrm{OAc}) 2(3 \mathrm{~mol} \%), \mathrm{SPhos}(6 \mathrm{~mol} \%), \mathrm{Na}{ }_{2} \mathrm{CO} 3(0.50 \mathrm{mmol})$, ethanol (2.0 mL), $16 \mathrm{~h}, 85^{\circ} \mathrm{C}$.
 ${ }^{\mathrm{b}}$ Isolated yields based on 1c.
 ${ }^{\text {c }} 4$-Bromobenzonitrile $(0.50 \mathrm{mmol}), \mathrm{E}(1.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\mathrm{SPhos}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, ethanol (4.0 mL), $24 \mathrm{~h}, 85{ }^{\circ} \mathrm{C}$.

