Published on 10 February 2014. Downloaded by University of Chicago on 28/10/2014 14:38:54.

ChemComm

COMMUNICATION

ROYAL SOCIETY

OF CHEMISTRY

View Article Online

View Journal | View Issue

2.Coordination of 18-crown-6 to Ce(i) cations:
solution dynamics and reactivityf

Cite this: Chem. Commun., 2014,
50, 3470

Received 18th January 2014,
Accepted 9th February 2014

Eric J. Schelter*

DOI: 10.1039/c4cc00448e

www.rsc.org/chemcomm

The coordination of 18-crown-6 to Ce[N(SiMes)Phfl; (PhF = penta-
fluorophenyl) results in a k*>-18-crown-6 complex, a unique coordina-
tion mode for an f-block cation. The k2-18-crown-6 complex showed
exchange with free 18-crown-6 in solution and facile rearrangement of
the crown ligand into a k%-18-crown-6 cerium complex.

The coordination chemistry of f-block cations with macrocyclic
polyethers (MCPE) is important historically in f-block chemistry and
has drawn attention for the development of new extractants, NMR
shift reagents, and model complexes for natural ionophores." As a
readily available MCPE prototype, 18-crown-6 exhibits larger stability
constants in forming 1:1 lanthanide complexes than its smaller or
acyclic counterparts. The log f; is 8.75 for La*" with 18-crown-6
in anhydrous propylene carbonate, compared to 6.38 and 5.30 with
15-crown-5 and 18-podand-6, respectively.” The flexibility of the
polyether moiety allows 18-crown-6 to bind lanthanide cations
throughout the series exclusively in the k®-coordination mode.'*

Previous work by Lappert and co-workers on the coordination
chemistry of 18-crown-6 with amide- and cyclopentadienide-
lanthanide complexes demonstrated that diverse coordination
chemistry could be achieved by varying the steric bulkiness of
the lanthanide supporting ligands, as well as the size of the
cations.”® Herein, we report a divergent coordination chemistry
of 18-crown-6 with Ce[N(SiMe;)Ph*]; (—Ph* = pentafluorophenyl)
(Scheme 1), featuring the first example of an 18-crown-6 moiety
k*-coordinated to an f-block cation. We also show that the
k%-18-crown-6 cerium(m) complex has rich solution behaviour;
k>-coordination of the 18-crown-6 provides a kinetic product,
which can be readily converted to k°-coordination through
ligand substitution with choice of solvent.

Previous work by our group® and others® on the coordination
chemistry of fluorinated ligands revealed that monometallic
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Scheme 1 Synthesis of k?- and k®-coordinated 18-crown-6 complexes
2 and 3, transformation from 2 to 3, and substitution reaction of 2.

species could be achieved through multiple labile C-F—M
interactions (M = Ln, U), even for ligands with relatively low
steric demand. This type of C-F—M interaction has been
observed crystallographically for electrophilic metal complexes.®
The displacement of such weak C-F—M interactions leads to
unconventional coordination chemistry including the binding of
neutral arene molecules in the solid state* and unusual coordina-
tion geometries.* We have also shown that C-F—M interactions
and substrate binding can be readily identified with solution
"9F and "H NMR spectroscopy using paramagnetic Ce(m) (4f")
cations.*® In the current work, we have reduced the number of
labile Ce-F interactions and increased the steric congestion
around the metal center to achieve a more crowded coordina-
tion sphere at the cerium cation by using {N[(SiMe;)Ph"]}~
ligands instead of [N(Ph"),]” ligands.**”
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Fig. 1 Thermal ellipsoid plot of 1 at the 30% probability level.

Stirring a concentrated pentane solution of Ce[N(SiMej),]s
with HN(SiMe;)Ph" for 1 week led to the precipitation of white
Ce[N(SiMe;)Ph*]; (1) in 83% yield. An X-ray diffraction study on
the colorless crystals obtained from a cold n-pentane solution
of 1 revealed a monomeric nine-coordinate cerium(ur) amide
structure with three Ce-N distances averaging 2.397(2) A, three
Ce-F contacts averaging 2.6248(16) A and three Ce: - -Me close
contacts (Ce-C distances averaging 3.084 A) (Fig. 1). The
compound is isostructural with Sm[N(SiMe;)Ph*]; reported by
Watkin and co-workers.”” Highly shifted proton resonance from
the -SiMe; group at —9.15 ppm, compared to Ce[N(SiMej;),]; at
—3.10 ppm in C¢Dg,” and broad ortho-F resonance at —173.09 ppm,
implicated their proximity to the paramagnetic Ce(ur) ion in
solution. Variable temperature data (Fig. S6 and S7, ESIf)
collected in toluene-ds showed at least eight '°F resonances
below the coalescence temperature, which likely arose from
an interplay between multiple C-F— Ce interactions™® and
Si-y-C-H — Ce agostic interactions.®

Reaction of 1 with 18-crown-6 in n-pentane, toluene, or
diethyl ether produced its 18-crown-6 adduct 2 as indicated
by NMR spectroscopy. A crystallographic study on 2 revealed
that the 18-crown-6 moiety was coordinated to the metal cation
in a x>-fashion with the associated ethylene moiety folded back
into the ring cavity (Fig. 2). The x*-coordination of 18-crown-6
has been documented with small metal cations,’ for example
MCI;(H,0)(k*-18-crown-6) (M = V, Cr),”*” MCl,(k*-18-crown-6)
(M = Ti, Sn),” (TiF,),(k*18-crown-6),"/ [PPh,][(VCl,)(k*18-
crown-6)],°” [In(k*18-crown-6)I,][In1,],** but not for f-block
cations with larger ionic radii and more available binding sites.
The Ce*" cation, at 101 pm, is comparable to Na* at 102 pm.*°
This unexpected k*-coordination mode can be attributed to the
interplay between steric hindrance of the N[(SiMe;)Ph"]”
ligands in 1 and their masking of the Ce™ ion by weak
C-F— Ce interactions.

The solution '°F spectrum of 2 showed three resonances at
room temperature indicating a symmetric environment for the
amide ligands on the NMR timescale. Only one broad symmetric
proton resonance was observed for the bound 18-crown-6
molecule at —1.30 ppm, implicating a fluxional process at the
bound ether moiety. This is in contrast to the observation in
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Fig. 2 Thermal ellipsoid plot of 2 at the 30% probability level.

TiCl,(k*18-crown-6), where multiple proton resonances are
suggestive of tightly coordinated 18-crown-6 to the smaller and more
Lewis acidic Ti*" cation.? A variable temperature NMR experiment
was performed on 2 in toluene-dg from 300-200 K and decoalescence
of the coordinated 18-crown-6 proton resonances was observed
at 240 K; decoalescence of '°F resonances due to C-F— Ce
interactions was observed at 210 K (Fig. S8 and S9, ESIf).
Storing a CgDs solution of 2 at room temperature led to
gradual appearance of two new sets of pentafluorophenyl ring
signals as well as two sets of -SiMe; proton resonances ina 1:2
ratio over several hours by '°F and "H NMR spectroscopies. Facile
conversion to the new product was accomplished upon treating 2
with polar solvents, including tetrahydrofuran, dimethoxyethane,
pyridine, or DCM (Scheme 1). X-ray analysis of colorless crystals
obtained from thf-hexanes layering determined the product 3
to comprise charge separated cations and anions in the form
of {Ce(k®-18-crown-6)[N(SiMe;)Ph*],}" and {Ce[N(SiMe;)Ph*],}~
(Fig. 3). No C-F— Ce interactions were observed in the solid-state
structure for the cationic moiety, Ce(i®-18-crown-6)[N(SiMe;)Ph*],".
The sharp doublet attributed of the ortho-F atom of the cation in
its "°F NMR spectrum also supported the absence of C-F— Ce

Fig. 3 Thermal ellipsoid plot of the anionic (left) and cationic (right)
fragments of 3 at the 30% probability level (left: Ce"[N(SiMes)Phfl,~, right:
Ce"(k°-18-crown-6)[N(SiMe3)Ph™,*).
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interactions in solution. On the other hand, the {Ce"'[N(SiMe;)Ph"],}~
anion exhibits two C-F—Ce interactions in the solid state at an
average of 2.680(2) A. These are evident by the broad ortho-F
resonance in the solution *>F NMR spectrum (Fig. S11, ESI{).

Complex 3 could also be directly prepared by reacting
0.5 equiv. of 18-crown-6 with 1 in THF, DME, pyridine, or
DCM in near quantitative yield (Scheme 1). In contrast, 1 reacts
with neat DME to form a 1:1 adduct, as judged by 'H and *F
spectroscopies, that does not convert to a charge-separated
complex. Ce[N(SiMej;),]; does not react with 18-crown-6 under
the conditions used for the formation of 3, likely due to the
relatively larger steric bulk of the [N(SiMejs),]™ ligand.

The solution exchange behavior of 2 (k>-18-crown-6) or 3
(k®-18-crown-6) with free 18-crown-6 was investigated with "H NMR
Exchange Spectroscopy (EXSY). Facile exchange between free
18-crown-6 and k*-18-crown-6 occurred for 2, while no exchange
was observed between free 18-crown-6 and x°-18-crown-6 for 3
(Fig. S18 and S19, ESI¥).

The weak coordination of x*>-18-crown-6 was also demonstrated
by its clean substitution reaction with neutral and anionic donors.
Reaction of 2 with 1 equiv. of 4,4'-di-tert-butyl-2,2’-bipyridyl
(‘Bu,bipy) or KN(SiMe;)Ph® resulted in the clean formation of
(‘Bu,bipy)Ce[N(SiMe;)Ph*]; (4) or {Ce[N(SiMe;)Ph*],} ", respec-
tively (Scheme 1). Similar to the coordination sphere in 2, 4
preserved one C-F— Ce interaction at 2.673(4) A (Fig. S4, ESIt).
However, no further displacement of the amide ligands to form
a charge-separated complex could be achieved by reacting 4
with excess ‘Bu,bipy.

We have demonstrated the presence of C-F—Ce interactions
affords unconventional coordination chemistry of Ce[N(SiMe;)Ph"];
with 18-crown-6, leading to the isolation of x® and the first
k>-coordinated crown ether to an f-block cation. The «*18-crown-6
showed facile exchange with free 18-crown-6, as indicated by
'H EXSY experiments as well as its clean substitution reactions with
neutral or anionic donors. The transformation of complex 2 to 3
suggested K°coordinated complex 3 is the thermodynamically
favoured product while the combination of sterics and C-F—Ce
interaction allowed the first isolation of an intermediate, k>
coordination form. We expect these results will bring more attention
to the solution dynamics and solvent effects in molecular f-block
chemistry. Further investigations into reversible coordination
relevant to C-F—M interactions are currently underway.
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