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Direct functionalization of protected histidines with aryl-
boronic acids is described under Chan–Lam–Evans condi-
tions to give the corresponding N(τ)-arylhistidines in moder-

Introduction

The functionalization of amino acids has attracted atten-
tion of synthetic chemists due to their chemical and bio-
logical stability and pharmacokinetic characteristics upon
introduction into peptide-based compounds.[1,2] In living
systems, the diversity of amino acid derived products is also
greatly extended by further functionalization at various
stages of biosynthesis. For example, N(τ)-(hetero)arylhistid-
ines are found in the active site of cytochrome c oxidase,[3,4]

in natural products (celogentins, moroidin),[5] and have
been isolated from liver proteins of rats treated with bromo-
benzene.[6] Moreover, synthetic N-arylimidazoles are found
in an increasing number of drugs such as Losartan (antihy-
pertension), Etomidate (hypnotic agent), and Flumazenil
(benzodiazepine antagonist).[7]

Among the various strategies described to obtain the
N(τ)-(hetero)arylhistidine derivatives,[3,8–10] metal-catalyzed
direct functionalization of protected histidines has recently
been described. To the best of our knowledge, these trans-
formations (Table 1) have been carried out by using
Ullmann coupling reactions from aryl iodides in low yields
(4 examples, �15% yield)[10] or by using copper catalyzed
cross-coupling reactions from aryllead triacetate (4 exam-
ples, 48–68% yield),[3] albeit the use of stoichiometric
amounts of lead detracts from the attractiveness of the
method. In the context of an on-going project on the syn-
thesis of celogentin C,[11] we have been interested in the di-
rect functionalization of such protected histidine deriva-
tives.
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ate to good yields (12 examples, up to 83% yield) under mild
conditions.

Table 1. Direct functionalization of protected histidines.

X Conditions Yield Ref.

I Cu(OTf)2 (10 mol-%,), Phen (20 mol-%), �15% [10]

dba (20 mol-%), Cs2CO3 (2 equiv.), 4 examples
DMF, xylene, 120 °C

Pb(OAc)3 Cu(OAc)2, DCM, r.t. 48–68% [3]

4 examples
B(OH)2 this work

Results and Discussion
Starting from commercially available Cbz-His-OMe (1),

whose protection pattern allows further modification of the
cross-coupled product, various condition reactions have
thus been undertaken. Despite a mass of different experi-
mental conditions tested, none of the latest versions of the
Buchwald–Hartwig[12] and Ullmann[13] conditions proved
successful in our hands (yields �10 %). Moving to the
Chan–Lam–Evans cross-coupling reaction had a dramatic
influence on the reaction outcome. The Chan–Lam–Evans
coupling has recently emerged as an interesting alternative
to the more classical copper-catalyzed Ullmann cross-cou-
pling reactions.[14,15]

These coupling reactions are compatible with a wide
range of heteroatom nucleophiles, including amines, amides,
nitrogen heterocycles, alcohols, and phenols to form car-
bon–heteroatom bonds from arylboronic acids and nitrogen
(and oxygen) nucleophiles under mild conditions.[16] In-
deed, protected tyrosines have recently been functionalized
by using the Chan–Lam–Evans methodology.[17] Moreover,
thanks to the success of Suzuki–Miyaura reactions, a large
number of arylboronic acids are now commercially avail-
able.
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Thus, starting from protected histidine 1 and phenyl-

boronic acid, different copper sources were first tested
(Table 2, Entries 1–3). As no reaction was observed with
Cu(OTf)2, the reaction in the presence of CuBr or Cu-
(OAc)2·H2O was next tested, leading to desired coupling
product 2a in moderate 26 and 31% yield, respectively.
Using the reaction conditions described by Yu and Xie,[18]

in methanol in an opened-air vessel, compound 2a was ob-
tained in a moderate 44% yield. To improve the yields, the
use of various additives was next investigated (Table 2, En-
tries 5–7).[19] Additives such as KF or molecular sieves were
not efficient (Table 2, Entries 6 and 7), whereas the use of
3 equiv. of NaOAc increased the yield to 62% (Table 2, En-
try 5). The presence of oxygen[18] is crucial in the catalytic
process (Scheme 2, Entry 8), as no reaction was observed
under inert atmosphere.

Table 2. Direct functionalization of 1 under Chan–Lam–Evans
coupling conditions.

Entry Catalyst Conditions Additives Isolated
(10 mol-%) (50 °C, 24 h) yield [%]

1 Cu(OTf)2 DCM, air – NR
2 CuBr DCM, air – 26
3 Cu(OAc)2·H2O DCM, air – 31
4 Cu(OAc)2·H2O MeOH, air – 44
5 Cu(OAc)2·H2O MeOH, air NaOAc (3 equiv.) 62
6 Cu(OAc)2·H2O MeOH, air KF (3 equiv.) 40
7 Cu(OAc)2·H2O MeOH, air 4 Å MS 27
8 Cu(OAc)2·H2O MeOH, N2 NaOAc (3 equiv.) NR

Moreover, compound 2a was obtained as a single re-
gioisomer (to the less-hindered τ nitrogen atom as pre-
viously observed by Konopelski[3] and Hanzlik[10] by com-
parison with the previously described NMR spectroscopic
data[3]) and in the absence of racemization. A racemization-
free process is indeed essential when dealing with epimeriz-
able amino acid derivatives. To check its stereogenic integ-
rity, 2a was first saponified in the presence of LiOH and
then coupled to H-()-Val-OMe (Scheme 1). The absence of
racemization could be observed by comparing the 1H and
13C NMR spectra and the HPLC chromatograms (see the
Supporting Information) of crude 3 to a diastereomeric
mixture obtained from 2a and racemic H-()Val-OMe.
Compound 3b was observed as a single diastereomer
(�98:2 by 1H NMR spectroscopy and HPLC, see the Sup-
porting Information), confirming the stereochemical integ-
rity of 2a, and thus that the Chan–Lam–Evans protocol
proceeds without racemization under these reaction condi-
tions.[20]

With these optimized reaction conditions in hand, we
next employed a variety of arylboronic acids in this cross-
coupling reaction. As illustrated in Scheme 2, the reaction
tolerated a variety of functional groups.[20] In the presence
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Scheme 1. Epimerization studies.

of further aryl groups such as 1- and 2-naphthalenes (i.e.,
2b and 2c) and p-phenyl groups (i.e., 2d) the products were
obtained in 69, 47, and 81 % yield, respectively.

Halogens in the para position (i.e., 2e and 2f), which po-
tentially allow further functionalization of the aromatic
ring, are well tolerated: 53 and 61% yield, respectively. Elec-
tron-rich (i.e., 2g–j) and electron-poor (i.e., 2k) aromatics
were next successfully tested (60–83% yield). Finally and

Scheme 2. Scope of the Chan–Lam coupling of 1 with various bor-
onic acids.
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not surprisingly,[13b] in the presence of the sterically hin-
dered 2,6-dimethylphenyl boronic acid, compound 2l was
obtained in lower yield (31 %). Next, in light of the synthe-
sis of celogentin C,[11] various heteroaromatic boronic acids
were tested in this reaction. However, a heteroatom on the
boronic acid was found to be detrimental to efficiency, and
no cross-coupling product could be observed from benzo-
thiophene, (Boc- and unprotected) indoles, and quinoline
derivatives (Scheme 3). Because histidine itself is heteroaro-
matic, such a behavior is puzzling. However heterocyclic
boronic acids are known to be poorly active in Chan–Lam
coupling reactions.[14f,15g]

Scheme 3. Chan–Lam–Evans coupling reactions with heteroaro-
matic boronic acids.

Finally, the use of potassium organotrifluoroborates was
next tested in these reactions (Scheme 4).[21] However, no
real improvement was observed (Scheme 4) in these trans-
formations and compounds 2a and 2b were obtained in 60
and 68% yield, respectively (62 and 69% yield, respectively,
from the corresponding boronic acid).

Scheme 4. Chan–Lam–Evans coupling reactions with organotri-
fluoroborates.

Conclusions

In conclusion, we have developed a regioselective, race-
mization-free, and efficient functionalization of protected
histidines with various aromatic boronic acids. Under
Chan–Lam–Evans conditions, using a modified and im-
proved Yu/Xie protocol [air, Cu(OAc)2·H2O, MeOH, 50 °C]
in the presence of NaOAc (3 equiv.), the cross-coupling
products were isolated in moderate to good yields (12 exam-
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ples, 31–83 % yield) without epimerization. The use of these
mild reaction conditions for the synthesis of pharmacologi-
cally active N(τ)-(hetero)arylhistidines is currently under
progress.

Experimental Section
General Protocol for the Chan–Lam Coupling: To a solution of Z-
Hist(OMe) (1 equiv.), NaOAc (3 equiv.), and Cu(OAc)2·H2O
(0.1 equiv.) in MeOH (0.4 ) was added arylboronic acid (3 equiv.).
The mixture was heated in an open-air vessel at reflux for 24 h.
The mixture was concentrated under vacuum, and the crude mate-
rial was loaded on to a silica gel column and purified by
chromatography with a mixture of cyclohexane/AcOEt.

Supporting Information (see footnote on the first page of this arti-
cle): Characterization data of the prepared compounds, HPLC
traces, copies of the 1H and 13C NMR spectra.
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