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Direct functionalization of protected histidines with aryl-
boronic acids is described under Chan-Lam-Evans condi-
tions to give the corresponding N(t)-arylhistidines in moder-

ate to good yields (12 examples, up to 83 % yield) under mild
conditions.

Introduction

The functionalization of amino acids has attracted atten-
tion of synthetic chemists due to their chemical and bio-
logical stability and pharmacokinetic characteristics upon
introduction into peptide-based compounds.!'?! In living
systems, the diversity of amino acid derived products is also
greatly extended by further functionalization at various
stages of biosynthesis. For example, N(t)-(hetero)arylhistid-
ines are found in the active site of cytochrome ¢ oxidase,>#
in natural products (celogentins, moroidin),”! and have
been isolated from liver proteins of rats treated with bromo-
benzene.[®! Moreover, synthetic N-arylimidazoles are found
in an increasing number of drugs such as Losartan (antihy-
pertension), Etomidate (hypnotic agent), and Flumazenil
(benzodiazepine antagonist).l”]

Among the various strategies described to obtain the
N(1)-(hetero)arylhistidine derivatives,*-8-19 metal-catalyzed
direct functionalization of protected histidines has recently
been described. To the best of our knowledge, these trans-
formations (Table 1) have been carried out by using
Ullmann coupling reactions from aryl iodides in low yields
(4 examples, <15% yield)!'Y or by using copper catalyzed
cross-coupling reactions from aryllead triacetate (4 exam-
ples, 48-68% yield),®! albeit the use of stoichiometric
amounts of lead detracts from the attractiveness of the
method. In the context of an on-going project on the syn-
thesis of celogentin C,l''l we have been interested in the di-
rect functionalization of such protected histidine deriva-
tives.
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Table 1. Direct functionalization of protected histidines.

Nﬁ\NH N=\
/(‘%/ ArX SNTA
—_—
P\N CO,R conditions P\N CO,R
H
X Conditions Yield Ref.
1 Cu(OTf), (10 mol-%,), Phen (20 mol-%o), <15% 0o
dba (20 mol-%), Cs,CO; (2 equiv.), 4 examples
DME, xylene, 120 °C
Pb(OAc); Cu(OAc),, DCM, rt. 48-68% Bl
4 examples

B(OH),  this work
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Results and Discussion

Starting from commercially available Cbz-His-OMe (1),
whose protection pattern allows further modification of the
cross-coupled product, various condition reactions have
thus been undertaken. Despite a mass of different experi-
mental conditions tested, none of the latest versions of the
Buchwald—Hartwigl'”l and Ullmann['¥ conditions proved
successful in our hands (yields <10%). Moving to the
Chan-Lam-Evans cross-coupling reaction had a dramatic
influence on the reaction outcome. The Chan-Lam-Evans
coupling has recently emerged as an interesting alternative
to the more classical copper-catalyzed Ullmann cross-cou-
pling reactions.['4-17]

These coupling reactions are compatible with a wide
range of heteroatom nucleophiles, including amines, amides,
nitrogen heterocycles, alcohols, and phenols to form car-
bon-heteroatom bonds from arylboronic acids and nitrogen
(and oxygen) nucleophiles under mild conditions.'® In-
deed, protected tyrosines have recently been functionalized
by using the Chan-Lam-Evans methodology.'” Moreover,
thanks to the success of Suzuki-Miyaura reactions, a large
number of arylboronic acids are now commercially avail-
able.
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Thus, starting from protected histidine 1 and phenyl-
boronic acid, different copper sources were first tested
(Table 2, Entries 1-3). As no reaction was observed with
Cu(OTf),, the reaction in the presence of CuBr or Cu-
(OAc),'H,O was next tested, leading to desired coupling
product 2a in moderate 26 and 31% yield, respectively.
Using the reaction conditions described by Yu and Xie,['8]
in methanol in an opened-air vessel, compound 2a was ob-
tained in a moderate 44% yield. To improve the yields, the
use of various additives was next investigated (Table 2, En-
tries 5-7).1'%1 Additives such as KF or molecular sieves were
not efficient (Table 2, Entries 6 and 7), whereas the use of
3 equiv. of NaOAc increased the yield to 62% (Table 2, En-
try 5). The presence of oxygen!'8l is crucial in the catalytic
process (Scheme 2, Entry §), as no reaction was observed
under inert atmosphere.

Table 2. Direct functionalization of 1 under Chan-Lam-Evans

coupling conditions.
TN=\ B(OH), Nf\N <:>
NH<t

—_—

N Cbz.
cbz N"COMe  conditions z N7 CozMe
1 2a

Entry Catalyst Conditions Additives Isolated

(10 mol-%) (50 °C, 24 h) yield [%o]
1 Cu(OTf), DCM, air - NR
2 CuBr DCM, air - 26
3 Cu(OAc)»H,O DCM, air - 31
4 Cu(OAc)»H,O MeOH, air - 44
5 Cu(OAc) yH,0 MeOH, air NaOAc (3 equiv.) 62
6 Cu(OAc)»H,O MeOH, air KF (03 equiv.) 40
7 Cu(OAc)»H,O MeOH, air 4 A MS 27
8 Cu(OAc)»H,O MeOH, N,  NaOAc (3 equiv.) NR

Moreover, compound 2a was obtained as a single re-
gioisomer (to the less-hindered t nitrogen atom as pre-
viously observed by Konopelskil® and Hanzlik!'¥ by com-
parison with the previously described NMR spectroscopic
datal®!) and in the absence of racemization. A racemization-
free process is indeed essential when dealing with epimeriz-
able amino acid derivatives. To check its stereogenic integ-
rity, 2a was first saponified in the presence of LiOH and
then coupled to H-(L)-Val-OMe (Scheme 1). The absence of
racemization could be observed by comparing the 'H and
13C NMR spectra and the HPLC chromatograms (see the
Supporting Information) of crude 3 to a diastercomeric
mixture obtained from 2a and racemic H-(br)Val-OMe.
Compound 3b was observed as a single diastereomer
(>98:2 by '"H NMR spectroscopy and HPLC, see the Sup-
porting Information), confirming the stereochemical integ-
rity of 2a, and thus that the Chan-Lam-Evans protocol
proceeds without racemization under these reaction condi-
tions.l?%

With these optimized reaction conditions in hand, we
next employed a variety of arylboronic acids in this cross-
coupling reaction. As illustrated in Scheme 2, the reaction
tolerated a variety of functional groups.[*’l In the presence
3812
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N=\
N=\ N—Ph
~ N—Ph A
1) LiOH, THF H
D —
Cbz. Cbz\N NYCOZMe
N">CO,Me  2) HCI, H-(L)Val-OMe  H i
H (1.3 equiv.) 0~
2a EDC, HOBT, DCM 3

single diastereomer
93% isolated yield

Scheme 1. Epimerization studies.

of further aryl groups such as 1- and 2-naphthalenes (i.c.,
2b and 2c¢) and p-phenyl groups (i.e., 2d) the products were
obtained in 69, 47, and 81% yield, respectively.

Halogens in the para position (i.e., 2e and 2f), which po-
tentially allow further functionalization of the aromatic
ring, are well tolerated: 53 and 61% yield, respectively. Elec-
tron-rich (i.e., 2g—j) and electron-poor (i.e., 2k) aromatics
were next successfully tested (60-83% yield). Finally and

N=\ N=\ N
—Ar
f\/ ArB(OH), (3 equiv.) =
Cbz. T o~ Cbz.
2SN COMe  Cu(OAC)kH,0  COZN"Sco e
H o, (10 mol-%) H
NaOAc (3 equiv.) 2

MeOH, air, 65 °C

N=\ N=\ O
o o
Cbz. Cbhz.

N"COozMe N"COaMe
2a (62%) 2b (69%)
@, N
N=\ N Ph
S
Cbz. ChZ\“Sco,Me
N CO,Me H
2¢ (47%) 2d (81%)
N=\ N=\
Cbz\H CO,Me Cbz\H CO,Me
2e (53%) 2f (61%)
N=\ N=\
Cbz.
Cbz‘u CO,Me N7 Co,Me
2g (78%) 2h (83%)
N=\ N=\
N OBn /(g/N
. Cbz. MeO
Cbzn COo,Me ZH COo,Me
2i (60%) 2 (61%)
N=\ N=\
F
Cbz‘” cOo,Me Cbz‘” CO,Me
2k (74%) 21 (31%)

Scheme 2. Scope of the Chan-Lam coupling of 1 with various bor-
onic acids.
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not surprisingly,!'3"! in the presence of the sterically hin-
dered 2,6-dimethylphenyl boronic acid, compound 21 was
obtained in lower yield (31%). Next, in light of the synthe-
sis of celogentin C,['! various heteroaromatic boronic acids
were tested in this reaction. However, a heteroatom on the
boronic acid was found to be detrimental to efficiency, and
no cross-coupling product could be observed from benzo-
thiophene, (Boc- and unprotected) indoles, and quinoline
derivatives (Scheme 3). Because histidine itself is heteroaro-
matic, such a behavior is puzzling. However heterocyclic
boronic acids are known to be poorly active in Chan—Lam
coupling reactions.!!4%-15¢l

N=\

N=N N—HetAr
/(g/NH HetAr-B(OH), ﬁ/
+> Cbz
Cbz. N7 SCO,Me
N™ "COMe  Cu(OAc)H;0 H 2
1 (10 mol-%) 4

NaOAc (3 equiv.)
MeOH, air, 65 °C

Nt
P=H, Boc

Scheme 3. Chan-Lam-Evans coupling reactions with heteroaro-
matic boronic acids.

Finally, the use of potassium organotrifluoroborates was
next tested in these reactions (Scheme 4).>!) However, no
real improvement was observed (Scheme 4) in these trans-
formations and compounds 2a and 2b were obtained in 60
and 68% yield, respectively (62 and 69% yield, respectively,
from the corresponding boronic acid).

R

N=\ X BF;K N=\ @

NH N
J\/’\/ | P f\/ \ | /

> Cbz. R
bz CO,Me  CUu(OAc),*H0 “>N">co,Me
H (10 mol-%) H
1 NaOAc (3 equiv.) 2

MeOH, air, 65 °C

. =
o oy
Cbz. Cbz.

N”coMe N”cogMe
2a (60%) 2b (68%)

Scheme 4. Chan-Lam-Evans coupling reactions with organotri-
fluoroborates.

Conclusions

In conclusion, we have developed a regioselective, race-
mization-free, and efficient functionalization of protected
histidines with various aromatic boronic acids. Under
Chan-Lam-Evans conditions, using a modified and im-
proved Yu/Xie protocol [air, Cu(OAc),'H,O, MeOH, 50 °C]
in the presence of NaOAc (3 equiv.), the cross-coupling
products were isolated in moderate to good yields (12 exam-
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ples, 31-83% yield) without epimerization. The use of these
mild reaction conditions for the synthesis of pharmacologi-
cally active N(t)-(hetero)arylhistidines is currently under
progress.

Experimental Section

General Protocol for the Chan-Lam Coupling: To a solution of Z-
Hist(OMe) (1 equiv.), NaOAc (3equiv.), and Cu(OAc),'H,O
(0.1 equiv.) in MeOH (0.4 M) was added arylboronic acid (3 equiv.).
The mixture was heated in an open-air vessel at reflux for 24 h.
The mixture was concentrated under vacuum, and the crude mate-
rial was loaded on to a silica gel column and purified by
chromatography with a mixture of cyclohexane/AcOEt.

Supporting Information (sce footnote on the first page of this arti-
cle): Characterization data of the prepared compounds, HPLC
traces, copies of the 'H and '*C NMR spectra.
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