

Tetrahedron Letters 42 (2001) 6337-6340

TETRAHEDRON LETTERS

Dihalomethylation of N-protected phenylalanine esters

Tomoyuki Onishi, Yasuyuki Otake, Naoko Hirose, Takashi Nakano, Takayoshi Torii, Masakazu Nakazawa and Kunisuke Izawa*

AminoScience Laboratories, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Japan

Received 18 May 2001; revised 5 July 2001; accepted 13 July 2001

Abstract—Dihalomethylation of several *N*-protected amino acid esters gave *N*-protected α -aminoalkyl- α' -dihalomethylketones, which are useful intermediates for the synthesis of *erythro* β -amino- α -hydroxycarboxylic acids, in good yield. The dihalomethylketones were successfully converted to *N*-protected α -aminoalkyl- α' -halomethylketones by selective catalytic hydrogenation. © 2001 Elsevier Science Ltd. All rights reserved.

We previously described practical methods for the synthesis of α -aminoalkyl- α '-chloromethylketone derivatives via the chloromethylation of *N*-protected 3-oxazolidin-5-ones or *N*-imine-protected amino acid esters.^{1,2} Based on our results, we concluded that during the chloromethylation, the amino group should be protected by an appropriate *N*-protecting group without leaving a hydrogen atom unprotected. As an extension of the study, we turned our attention to the reaction of *N*-protected amino acid esters with dihalomethyllithium, which can be conveniently generated in situ from dihalomethane and base.^{3,4} In this paper, we report the dihalomethylation of several kinds of *N*-protected amino acid esters and its application to the synthesis of N-protected α -aminoalkyl- α' -halomethyl-ketones.

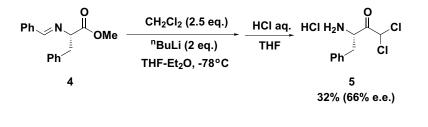
First, the reaction of dichloromethyllithium⁵ and *N*diphenylmethylene-protected amino acid ester $1,^{6,7}$ which has been used in studies of chloromethylation, was investigated.^{8,9} Due to the slower generation of dichloromethyllithium compared to that of chloromethyllithium, the addition of *n*-butyllithium in hexane to a solution of ester 1 and CH₂Cl₂ in THF did not give the desired dichloromethylketone (procedure B, Table 1). However, since dichloromethyllithium is relatively stable¹⁰ and can be kept in ethereal solution at -78° C,⁸ the addition of ester 1 to a solution of

Table 1. Comparison between dihalomethylation and chloromethylation of compound 1

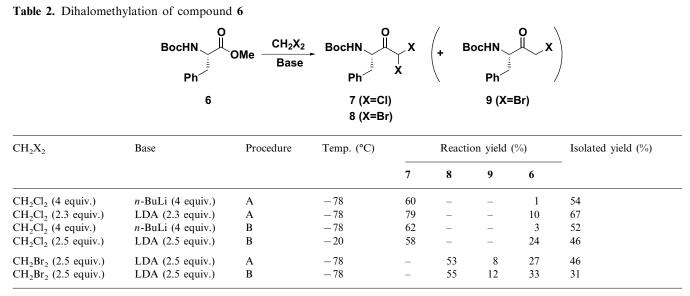
	Y≓ Y OMe —	RCH2CI Ph N BuLi Ph	O Cl or Ph N Ph ^{Cl} Ph	O CI Ph	
	1	2 (X:	=CI) 3 (X=B	r)	
XCH ₂ Cl	n-BuLi	Procedure	Conditions	Yield (%)	
				2	3
CH ₂ Cl ₂ (2.5 equiv.)	2 equiv.	А	THF- Et_2O , -78°C	96	_
CH_2Cl_2 (2.5 equiv.)	2 equiv.	В	THF– Et_2O , – 78°C	Trace	_
BrCH ₂ Cl (1.3 equiv.)	1.3 equiv.	А	THF, −78°C	_	0
$BrCH_2Cl$ (1.3 equiv.)	1.3 equiv.	В	THF, −78°C	_	Quant.

Procedure A: Ester 1 was added to a solution of dichloromethyllithium (or chloromethyllithium).

Procedure B: n-Butyllithium was added to a solution of ester 1 and dichloromethane (or bromochloromethane).

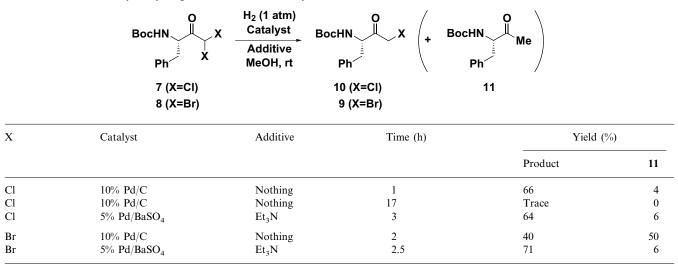

* Corresponding author. Fax: +81-44-211-7610; e-mail: kunisuke_izawa@ajinomoto.com

^{0040-4039/01/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01253-9


dichloromethyllithium in Et₂O–THF successfully gave the desired dichloromethylketone **2** in high yield¹¹ (procedure A) and with high optical purity (98% e.e. after hydrolysis).¹² This result is in contrast to the case of chloromethylation, since chloromethyllithium is quite unstable and could not be stored even at -78° C.¹⁰

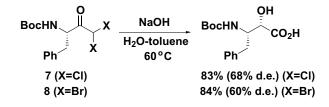
In an attempt to obtain various *N*-protected α -aminoalkyl- α '-dichloromethylketones, the dichloromethylation of *N*-benzylidene-protected amino acid ester **4**¹³ followed by hydrolysis with hydrochloric acid was also examined and gave unprotected α -aminoalkyl- α '-dichloromethylketone **5** as a HCl salt in 32% yield with modest optical purity (66% e.e.) (Scheme 1).¹⁴ The instability of compound **5** under acidic conditions may decrease the yield. Partial racemization is probably due to the abstraction of the α -proton by dichloromethyllithium, which is more basic than chloromethyllithium.

As mentioned above, compound **5** is not a stable enough intermediate for preparation of several kinds of *N*-protected α -aminoalkyl- α '-dichloromethylketones. This prompted us to examine direct dihalomethylation of *N*-carbamate-protected amino acid esters, which are not suitable substrates for the chloromethylation.¹ The results are summarized in Table 2. Using the same procedure as above, the addition of N-Boc-protected amino acid ester 6 to an Et₂O-THF solution of dichloromethyllithium, which was generated in situ from CH₂Cl₂ and *n*-BuLi, directly gave *N*-carbamateprotected α -aminoalkyl- α '-dichloromethylketone 7 in 54% yield without racemization (procedure A). Abstraction of the proton of NH in the carbamate contributes to the full retention of stereochemistry. The yield was nicely increased to 67% when LDA was used as a base.¹⁵ Interestingly, in the case of N-carbamate-protected amino acid esters, the addition of base (n-BuLi or LDA) to a solution of ester and CH₂Cl₂ also gave the desired product (procedure B). Using procedure B, dichloromethylation could be performed at -20°C, which is a much higher temperature.16 Furthermore, we examined the dibromomethylation of ester 6. The addition of ester 6 to a THF solution of dibromomethyllithium,¹⁷ generated in situ from CH₂Br₂ and LDA, gave the desired dibromomethylketone 8 in 46% yield.¹⁸ Compound 8 could also be obtained using procedure B. In the case of dibromomethylation, accompanying formation of bromomethylketone 9^{19} was observed. Impurity 9would be given by lithium-bromine exchange after the addition of dibromomethyllithium to $6.^{20,21}$ The


Scheme 1.

Procedure A: Ester 6 was added to a solution of dihalomethyllithium.

Procedure B: The base was added to a solution of ester 6 and dihalomethane.



Yield was determined by HPLC.

obtained dihalomethylketones 7 and 8 could be converted to *erythro* β -amino- α -hydroxycarboxylic acids by stereoselective hydrolysis, which was recently reported by the Kaneka group (Scheme 2).^{22,23}

Next. obtain *N*-protected α -aminoalkyl- α' to halomethylketones from dihalomethylketones, the selective catalytic hydrogenation of N-protected α aminoalkyl-a'-dihalomethylketones was studied (Table 3). Hydrogenation of dichloromethylketone 7 using 10% Pd/C as a catalyst gave chloromethylketone 10^2 in 66% yield. However, prolonging the reaction time caused cleavage of Boc group due to the generation of HCl. Hydrogenation of dibromomethylketone 8 only gave a mixture of bromomethylketone 919 and methylketone $11.^{24}$ To our delight, the selective hydrogenation of compounds 7 and 8 proceeded nicely using 5% Pd/BaSO₄ (Lindlar catalyst) in the presence of triethylamine, which is essential for acceleration of the reaction. Under these conditions, chloromethylketone 10 and bromomethylketone 9 were obtained in respective yields of 64 and 71% with good selectivity.²⁵

In conclusion, the dihalomethylation of several *N*-protected amino acid esters was investigated. In contrast to chloromethylation, direct dihalomethylation of *N*-carbamate-protected amino acid esters afforded *N*-carbamate-protected α -aminoalkyl- α '-dihalomethylketones, which are useful intermediates for the synthesis of *erythro* β -amino- α -hydroxycarboxylic acids, in good yield. The resultant dihalomethylketones could be con-

verted to halomethylketones via selective catalytic hydrogenation using Lindlar catalyst in the presence of triethylamine.

References

- Onishi, T.; Hirose, N.; Nakano, T.; Nakazawa, M.; Izawa, K. *Tetrahedron Lett.* 2001, 42, 5883.
- Onishi, T.; Nakano, T.; Hirose, N.; Nakazawa, M.; Izawa, K. *Tetrahedron Lett.* 2001, 42, 5887.
- Koebrich, G.; Flory, K.; Drischel, W. Angew. Chem., Int. Ed. Engl. 1964, 3, 513.
- 4. Taguchi, H.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1974, 96, 6510.
- Albizati, K. F. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1995; Vol. 3, pp. 1723–1725.
- O'Donnell, M. J.; Polt, R. L. J. Org. Chem. 1982, 47, 2663.
- 7. Polt, R.; Peterson, M. A. Tetrahedron Lett. 1990, 31, 4985.
- Bacquet, C.; Villieras, J.; Normant, J.-F.; Normant, H. C. R. Acad. Sci. Paris Ser. C 1974, 278, 929.
- Barluenga, J.; Baragana, B.; Alonso, A.; Concellon, J. M. J. Chem. Soc., Chem. Commun. 1994, 969.
- 10. Koebrich, G.; Fischer, R. H. Tetrahedron 1968, 24, 4343.
- 11. A solution of dichloromethane (2.5 equiv.) in anhydrous THF was added to a solution of *n*-butyllithium (2 equiv.) in hexane–Et₂O–THF at –78°C. After stirring for 10 min at –78°C, a solution of ester **1** was added dropwise. After stirring for 2 h at –78°C, saturated NH₄Cl aqueous solution was added. The product was extracted to give **2** as a pale yellow oil. ¹H NMR (CDCl₃) δ 3.12 (dd, *J*=4.6, 13.2 Hz, 1H), 3.20 (dd, *J*=8.4, 13.2 Hz, 1H), 4.56 (dd, *J*=4.6, 8.4 Hz, 1H), 6.52 (d, *J*=9.9 Hz, 2H), 6.53 (s, 1H), 6.96–7.05 (m, 2H), 7.15–7.47 (m, 9H), 7.61 (d, *J*=9.1 Hz, 2H).
- 12. A solution of dichloromethylketone 2 in THF was treated with an excess of 2 mol/l HCl at rt for 1.5 h. Enantiomer purity was determined as 98% e.e. by HPLC using a Crownpak CR(+) column.

- 13. Dondoni, A.; Perrone, D. Tetrahedron Lett. 1992, 33, 7259.
- 14. A solution of dichloromethane (2.5 equiv.) in anhydrous THF was added to a solution of *n*-butyllithium in hexane-Et₂O-THF at -78°C. After stirring for 10 min at -78°C, a solution of ester 4 was added dropwise. After stirring for 2 h at -78°C, an excess of 2 mol/l HCl aq. was added. Yield was determined by HPLC using an Inertsil ODS-2 column. Enantiomer purity was determined by HPLC using a Crownpak CR(+) column.
- 15. A solution of dichloromethane (2.3 equiv.) in anhydrous THF was added to a solution of lithium diisopropylamide (2.3 equiv.) in heptane–ethylbenzene–THF at -78° C. After stirring for 10 min at -78° C, a solution of ester **6** was added dropwise (procedure A). After stirring for 1 h at -78° C, 1 mol/l HCl was added. The product was extracted and purified by crystallization from ethyl acetate to give **7** as a white solid. The reaction yield was determined by HPLC using an Inertsil ODS-2 column. Enantiomer purity was determined by HPLC using a Chiralcel OD-H column. [α]_D²⁰= -52.7° (*c* 2.25, CH₂Cl₂); ¹H NMR (CDCl₃) δ 1.40 (s, 9H), 3.01 (dd, *J*=7.9, 13.8 Hz, 1H), 3.22 (dd, *J*=5.7, 13.8 Hz, 1H), 4.62–5.00 (m, 2H), 6.08 (s, 1H), 7.17–7.22 (m, 2H), 7.22–7.36 (m, 3H).
- 16. A solution of ester **6** and dichloromethane (2.5 equiv.) in anhydrous THF was cooled to -20° C, and lithium diisopropylamide (2.5 equiv.) in heptane–ethylbenzene–THF was added dropwise (procedure B). After stirring for 1 h at -20° C, 2 mol/l HCl was added.
- Albizati, K. F. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1995; Vol. 3, pp. 1569–1573.
- 18. A solution of dibromomethane (2.3 equiv.) in anhydrous

THF was added to a solution of lithium diisopropylamide (2.5 equiv.) in heptane–ethylbenzene–THF at -78°C. After stirring for 10 min at -78°C, a solution of ester **6** was added dropwise. After stirring for 1 h at -78°C, 1 mol/1 HCl was added. The product was extracted and purified by crystallization from ethyl acetate to give **8** as a white solid. The reaction yield was determined by HPLC using an Inertsil ODS-2 column. $[\alpha]_D^{20} = -40.6^\circ$ (*c* 2.0, CH₂Cl₂); ¹H NMR (CDCl₃) δ 1.41 (s, 9H), 3.04 (dd, *J*=7.3, 13.8 Hz, 1H), 3.20 (dd, *J*=6.2, 13.8 Hz, 1H), 4.64–5.05 (m, 2H), 6.00 (s, 1H), 7.17–7.37 (m, 5H).

- Raddaz, P.; Jonczyk, A.; Minck, K.-O.; Schmitges, C. J.; Sombroek, J. J. Med. Chem. 1991, 34, 3267.
- Kowalski, C. J.; Haque, M. S. J. Org. Chem. 1985, 50, 5140.
- Chen, P.; Cheng, P. T. W.; Spergel, S. H.; Zahler, R.; Wang, X.; Thottathil, J.; Barrish, J. C.; Polniaszek, R. P. *Tetrahedron Lett.* 1997, *38*, 3175.
- 22. Matsumoto, S.; Matsuo, K.; Sugawa, T.; Moroshima, T.; Inoue, K. US Patent 6,020,518, 2000.
- Matsumoto, S.; Matsuo, K.; Moroshima, T.; Sugawa, T.; Inoue, K.; Takahashi, S. The 74th Spring Annual Meeting of The Chemical Society of Japan 1998, 1, D5, 44, 962. Similar results were obtained in our experiments.
- Kawai, M.; Boparai, A. S.; Bernatowicz, M. S.; Rich, D. H. J. Org. Chem. 1983, 48, 1876.
- 25. A catalytic amount of 5% $Pd/BaSO_4$ was added to a mixture of dihalomethylketone 7 (or 8) and triethylamine. After stirring for 3 h under a H₂ atmosphere, insoluble material was filtered off. The reaction yield was determined by HPLC using an Inertsil ODS-2 column.