Accepted Manuscript

Cu (I) catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC): Synthesis of 17α -[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nor- testosterone-17 β -yl acetates targeting progestational and antipro-liferative activities

Z.H. Mohamed, Nawal A. El-Koussi, Nadia M. Mahfouz, Adel F. Youssef, Gehad A. Abdel Jaleel, Samia A. Shouman

PII: S0223-5234(15)30008-8

DOI: 10.1016/j.ejmech.2015.04.045

Reference: EJMECH 7860

To appear in: European Journal of Medicinal Chemistry

Received Date: 4 December 2014

Revised Date: 30 March 2015

Accepted Date: 22 April 2015

Please cite this article as: Z.H. Mohamed, N.A. El-Koussi, N.M. Mahfouz, A.F. Youssef, G.A. Abdel Jaleel, S.A. Shouman, Cu (I) catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC): Synthesis of 17α -[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nor- testosterone- 17β -yl acetates targeting progestational and antipro-liferative activities, European Journal of Medicinal Chemistry (2015), doi: 10.1016/j.ejmech.2015.04.045.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1st author:

Z. H. Mohamed (Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt) corresponding auther

2nd author:

Nawal A. El-Koussi (Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt)

3rd author:

Nadia M. Mahfouz (Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt)

4th author:

Adel F. Youssef (Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt)

5th author:

Gehad A. Abdel Jaleel (Pharmacology Department, National Research Center, El-Bohoth St., Dokki, Cairo, Egypt)

6th author:

Samia A. Shouman (Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt)

Cu (I) catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC): Synthesis of 17α -[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nortestosterone-17 β -yl acetates targeting progestational and antiproliferative activities.

Abstract

The progestational potency and selectivity of synthetic steroidal agonists can be enhanced by even larger chemical moieties at 17 α -position of the steroid backbones. Hereby a series **5a-c** and **6a-c** of novel 17 α -[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nortestosterone-17 β -yl acetates were designed and synthesized using click chemistry approach searching progestogenic derivatives with potential anticancer activity. Compounds **5a,b** and **6a,c** have affected to different extents the three histopathological parameters considered for evaluation of their progestational activity. The compounds **5a,b** and **6a,c** showed modifications in rat uterus at 35.7-34.8 nM levels with privileged endometrial thickening effect and least change of uterine weight relative to NEA at 52.9 nM level. Up to 40 mg/Kg dose compounds **5b** and **6c** were non-toxic. Molecular docking of the ligands in PR showed in the majority of cases a conformational fitting into the active site different from that of the reference steroid NEA. Compound **6b** revealed about 46.4% growth inhibition of CNS cancer SNB-75 cell line, 56% growth inhibition of renal cancer A498 cell line and 56.7% growth inhibition of prostate cancer PC-3 cell line which was mediated by cell cycle arrest. Drugability of the screened compounds showed tolerated results after being challenged to diverse physicochemical parameters.

1. Introduction

Steroidal derivatives in which ring D is modified with exo-heterocycles exhibit numerous forms of biological activity and are attractive for medicine. A large number of steroid derivatives containing five- or six-membered 17β -exo-heterocycles are known to cause the efficient inhibition of 17α hydroxylase / C17, 20-lyase (P45017 α), which can block androgen synthesis at an early stage, and may therefore be useful in the treatment of prostatic carcinoma. Also some steroid compounds are known to exert hormone receptor-independent antiproliferative activity via the inhibition of angiogenesis, tubulin polymerization and the up regulation of apoptotic pathways [1].

As previously reported progesterone receptor pockets can rearrange to accommodate different agonists [2]. Searching the progestational potency and selectivity of synthetic steroid agonists were enhanced by bulky chemical moieties at 17α position of the steroid backbones [3].

In drug discovery 1,4-disubstituted-1,2,3-triazole moieties are attractive connecting units because they are stable to metabolic degradation and capable of hydrogen bonding, which can be favorable in the binding with biomolecular targets and can improve the solubility [4].

Cu (I) catalyzed alkyne-azide C1,3-dipolar M the resulting diazonium salts with sodium azide

cycloaddition (CuAAC) was exploited by many authors for the synthesis of 1,4-disubstituted 1,2,3triazoles of antiproliferative [5-8], antiviral [9], antitubercular [10,11], antifungal [12-15] and antibacterial agents [16,17].

Our group applied CuAAC reaction for the condensation of the terminal ethynyl group of norethindrone enanthate and levonorgestrel with 3- and 4-substituted phenyl azides to prepare 1,4- disubstituted-1,2,3-triazole derivatives. In animal experiments the new derivatives disclosed potent progestational action at nM levels and marked decrease in uterine contraction [18].

In extension of our previous work we conjugated 17α -ethynyl group of norethindrone acetate (NEA) with three positional isomers of azidobenzoic acid and their methyl esters to prepare 17α -[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nortesto-sterone- 17β -yl acetates as potential candidates of progestational and antiproliferative activities. In the planned work we discussed the relation between the observed biological activity of the prepared isomers and *in silico* ligand receptor interaction abilities.

2. Results and discussion

2.1. Chemistry

Compounds **5a–c** and **6a-c** were synthesized by conventional methods outlined in **Scheme 1**. Different methods were reported for the synthesis of organic azides [19]. In our work 2-,3-, and 4azidobenzoic acids **2a-c** were prepared by diazotization of the available 2-, 3-, and 4aminobenzoic acids **1a-c**, followed by azidation of

[20]. Methyl azidobenzoates **3a-c** were obtained via esterification of the corresponding azidobenzoic acids 2a-c with methanol under reflux in presence of sulfuric acid as catalyst. It was observed that the o-azidobenzoic acid, 2a and its methyl ester, 3a showed the lowest yield (83 and 63% respectively) relative to the other two isomers that may be attributed to the steric hindrance of the vicinal moieties on the reacting substrates. The targeted derivatives of NEA, 5a-c and 6a-c, were prepared under click reaction conditions through 1,3cycloaddition of the terminal ethynyl group of NEA, 4 and the respective azides, 2a-c and 3a-c catalyzed by Cu (I). The reactions were performed at room temperature under nitrogen and in presence of ten equivalents of sodium ascorbate in (1:1) aqueous t-BuOH milieu. Trial to accelerate the synthesis of compound 5c by heating the reaction mixture up to 60 °C was unsuccessful where unidentified products were obtained. Sensitivity of CuAAC reaction to steric hindrance was observed through the decreased yields (45% and 50%) of the triazoles 5a and 6a derived from *o*-azidobenzoic acid, 2a and its methyl ester, 3a relative to the other ligands prepared from the *m*- and *p*-isomers (55-75%). All of the synthetic compounds were characterized by IR, ¹H-NMR, and elemental analyses. ¹³C-NMR for representative compounds was also carried out and was confirmed by DEPT experiments at 135°. All compounds gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structures.

2.2.1. In vivo progestational activity

Development of X-ray crystal structure of the human progesterone receptor-ligand binding domain (PR-LBD) complexed with progesterone, norethisterone and other synthetic agonist and antagonist progestins paved the way for the development of novel clinically useful PR ligands. The binding of these ligands to the LBD subsequently induces conformational changes that lead to cascade of biological outcomes [21]. The preliminary in vivo progestational activity of the synthesized compounds 5a-c and 6a-c was evaluated using adult female Wistar rats. Induced uterine histopathological changes displayed by Table 1 and Fig. 1 were matched with the reference NEA and the vehicle DMSO as a control.

Differences observed in thickness of endometrium, myometrium and height of epithelial cells were correlated essentially with the hydrogen bonding interaction forces between the docked ligands and the progesterone receptor displayed by Table 2.

It is well documented that hydrophobic interaction is the main binding force of the steroid ligands with the PRs. Our docked ligands on PR showed contribution of 3-5 hydrophobic interaction forces more than NEA that cope with their relatively higher clog P values. Correlation between hydrophobic forces variations and the observed morphological modifications on the uterus cannot be perceived. On the other hand Cunha et al hydrogen bonding with the receptor, particularly in sites close to the C-17 hydroxyl function in the 19-nortestostenone series and at C-3 and C-20 in progesterone derivatives [22].

interactions

The effect of hydrogen bonding interaction forces was more influential either by their allowed number or position within the ligands.

The effect of structure variations in the prepared series on endometrial thickness can be directly correlated with the number of hydrogen bond interaction forces of ligands with the receptor. Thus **5a**, **b** and **6c** with the strongest endometrial thickening effect showed 1-2 hydrogen bonding interaction forces more than any one of **5c**, **6a**, **b** and NEA. The added number of hydrogen bonding was accompanied by decreased binding energies (Δ G) values.

The prepared compounds, **5a-c** and **6a**, **c** and the reference NEA showed varied magnitude of pronounced endometrial thickening than the control with maintained stronger effect than myometrial thickening. The reversed picture displayed by compound **6b** was an exception since its myometrial thickening effect was much more prominent than the endometrial. Molecular docking of 6b in the PR (Table 2 and Fig. 2A&B) revealed the participation of the steroid C-3 and the mbenzoate ester carbonyls in hydrogen bonding with Asn719 and Arg766 respectively. Such orientation, associated with decreased ΔG score was different from that displayed by the docked *o*- and *p*- esters, 6a and 6c where their C-3 carbonyls were hydrogen bounded to the two amino acids Gln725 and Arg766 similarly involved by docked NEA (Fig. M histopathological parameters

neters considered for

2C). Compound **6c** showed an additional hydrogen bonding initiated between the ester carbonyl and **Asn719**. The evident differences between hydrogen bonding attachment sites of the C-3 and ester carbonyls revealed by **6a** (Fig. 2D) and **6c** on one side and those of **6b** can explain the anomalous thickening behavior of the latter.

According to the docking results, the presented interpretation cannot satisfy the three fold myometrial thickening effect of **6b** relative to the acidic **5c** showing the same ligand receptor interaction pattern. Here, other prevailing parameter than their identical binding mode to PR must be thought. Among relevant possibilities is the two fold cLog P values of the ester group **6a-c** relative to the carboxyl derivatives which correlates with the observed higher pattern of their myometrial thickening effect relative to those displayed by the acidic ones **5a-c**.

Furthermore the compounds **5a-c**, **6b**, **c** showed epithelial cell height values equal to or less than that of the control while **6a** is the one that showed significant higher value than the control and matching that of NEA. Actually **6a** is the single ligand in the series in which C-3 carbonyl was bound to **Gln725** and **Arg766** via two hydrogen bonds like in NEA with no further participation of other bonding interaction.

In the prepared series the substituted phenyl bridged via the 1,2,3-triazole moiety to the steroidal frame, have favorably altered interaction with the receptor. Substituents in **5a,b** and **6a,c** have affected to different extents the three evaluation of the progestational activity. Their role was disclosed through their ability to modify the hydrogen bonding interaction of the C-3 carbonyl group with the receptor amino acids in the active site. It was evident too that hydrogen bonding interaction of Arg766 in the active site with either C-3 or the polar functions on the phenyl ring is essential for activity. On the other hand Gln725 may be replaced or coupled with Asn719 in the binding process to the ligands with at least conservation or enhancement of activity relative to the reference.

Relative uterine weights (RUW) of most of the screened compounds were changed within the range $(1.3 \pm 0.1: 2.0 \pm 0.13)$ which is insignificantly different from that of the reference drug (1.7 ± 0.05) . One exception **5c** was found to be significantly different (3.9 ± 0.35) in RUW relative to the references.

Distinct variations of the progestational activity of the prepared compounds and those cited in Ref. [18] (Fig. 3) are going to be correlated with the disparity of type and position of substituents on the phenyl ring.

Meta substitution on phenyl ring by the electron withdrawing groups CO_2Me and NO_2 in the interties **6b** and **8** (Table 1), showed lower progestational activity in relation to **6c** and **9** isomers substituted in the para positions that was allied with relative higher Hansch electronic σ values of the para analogues [23].

On the other hand, the derivatives with ionizable carboxyls **5b**, **5c** and **7** did not show a

correlation between the progestational activity and M results against the screened cancer cell lines are

Hansch electronic σ values. It is worthy to note that separation of the COOH group by CH₂ distinctly ameliorated the activity of **7** relative to **5c**.

Under our experimental conditions **5a,b** and **6a,c** showed potent progestational activity (35.7-34.8 nM) with privileged endometrial thickening effect and least change of uterine weight relative to NEA (52.9 nM).

2.2.2. Acute toxicity and lethality (LD₅₀)

Acute toxicity of two active compounds 5b and 6c with prominent progestational activity was determined according to Buck et al using albino mice [24]. The animals were grouped (three per group), separately received 5, 10, 15, 30 or 40 mg/kg dose and observed over 24 h for signs of toxicity and number of deaths. Control animals receiving the vehicle (10% DMSO) were kept under the same conditions without addition of **5b** or 6c. All animals treated with the tested compounds up to 40 mg /kg dose were alive during the 24 h of observation and did not show visible signs of acute compounds toxicity. Therefore these were considered to be non-toxic.

2.2.3. In vitro anticancer activity

The newly synthesized 17α -(1-substituted-1,2,3triazol- 4-yl)-19-nortestosterone acetates, **5a-c** and **6a-c** (Conc. 10^{-5} M) were screened for their anticancer activity according to NCI *in vitro* protocols [25] against a panel consisting of 60 human tumor cell lines. These cell lines were derived from eight cancer types: leukemia, nonsmall cell lung, colon, CNS, ovarian, renal, prostate and breast cancers. The most prominent activity listed in Table 3 and the whole results are provided in the supplementary data.

Krämer et al studied the effect on the proliferation of HCC1500 cells incubated with estradiol and steroidal compounds in absence and in presence of growth factors. Norethendrone together with six progestins and testosterone showed to varying degrees antiproliferative effect [26]. Another study carried out by Xu et al on the effects of progestogens in human breast cancer cells suggested that progestins exert different actions on estrogen-metaboilizing enzymes depending on the specific progestogen and regimen used [27].

Our screened compounds showed varied growth inhibitory effects on breast, prostate and other cancer cell lines. No clear difference in anticancer activity can be correlated with the positional isomers of the carboxyl substituent. The attained best results was shown by compound **6b** which revealed 46.4% inhibition of SNB-75 cell line of CNS cancer and about 56 % inhibition of both A498 cell line of renal cancer and PC-3 cell line of prostate cancer.

The effects of compound **6b** on cell cycle distribution of PC-3 cell line were evaluated by flow cytometry [28]. Treatment of PC-3 cell line with compound **6b** at the concentration 10^{-5} M resulted in accumulation of 31.76 % of cells at S phase as compared to 27.87 % in untreated cells (Fig. 4). On the contrary the cell population at Go-G1 phase was reduced to 53.94 % compared to the untreated cells 59.01 %, while the cell percentage of G2-M 14.75 % was slightly increased compared

to the untreated cells 13.12 %. The obtained results \bigwedge 3. Conclusion

imply that the anticancer activity of **6b** derivative could be preceded by the accumulation of cells in the S phase. It is clear that property of induction of cell cycle arrest make this series of 17α -[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nortestosterone acetates promising progestins with anticancer potentials.

2.3. Physicochemical calculations and drugability

The effect of the structural modification on the physicochemical properties of norethindrone acetate was also attempted. Lipinski rule parameters, solubility (logS), the topological polar surface area (TPSA) and molecular volume calculated using Molecular Operating Environment (MOE[®]) version **10.2010** [29] and the molins-piration server [30].

Calculations displayed in Table 4 reveals: i) the planned structural modification of NEA had slightly increased the Lipinski parameters to the extent not affecting the drugability of these targets. ii) introduced modifications slightly diminished predicted water solubility relative to NEA, however the pendent ionization center carboxyl group provides the possibility of salt formation with bases that can enhance water solubility, iii) increased polar surface area of the target compounds was within the accepted limit [31] for orally active drugs that are transported passively by the transcellular route, iv) the increase in the molecular volume of the targeted compounds did not hamper interaction with the flexible PR active site that accommodate bulky ligands.

Anchored polar carboxyl moiety to NEA via 1,2,3-triazole ring provided the acid isomers 5a,b and the esters **6a.c** with potent progestational activity at nM levels without exerting any toxicity up to 40 mg/Kg dose. Molecular docking analysis of the bound conformers to PR revealed that the added moieties to the steroid nucleus strongly affected the binding modes which can be correlated with the biological activity. A number of the prepared compounds disclosed varied activities against certain cell lines of prostate, renal and CNS cancers. Compound **6b** exerted the most prominent cytotoxic activity which was mediated by cell cycle arrest. Our results strongly suggest that our agents may provide a promising new avenue for the development of progestogens with anticancer activity.

4. Experimental

4.1. General methods

All chemicals and reagents used in current study were of analytical grade. TLC was performed on 60 F254 precoated sheets 20 X 20 cm, layer thickness 0.2 mm (E. Merck, Germany) and visualized in UV light (254 nm). Column chromatography was performed using Fluka silica gel 60 (particle size 0.063 - 0.02 mm.) eluting with ethyl acetate and hexane. Melting points (uncorrected) were determined on electrothermal apparatus (Stuart Scientific, England). IR spectra were recorded as KBr disk using Shimadzu IR 400-91527 Spectrophotometer (Shimadzu Corp., Kyoto, Japan). All the ¹H-NMR spectra were recorded on Varian EM-360L NMR Spectrophotometer (60

MHz) (USA) and JEOI-JNM-LA400 (FT-NMR M CDCl₃, *Sppm*): 7.13-8.09 (m, 4H, H2,4-6); 9.16 (s,

Spectrometer (400 MHz) (Japan) in CDCl₃ and DMSO-d₆. Chemical shifts were reported in δ (ppm) with TMS as internal standard for protons and solvent signals. ¹³C-NMR spectra were performed on JEOI-JNM-LA400 FT-NMR Spectrometer (400 MHz) (Japan) in CDCl₃. Elemental analyses were performed on Perkin Elmer 2400 CHN elemental analyzer.

4.2. General method of synthesis of azidobenzoic acids (2a-c) [32]

A solution of sodium nitrite (1.06 g, 15.4 mmol)in cold water (5°C) (3 mL) was added portion wise to a stirred cold mixture of the respective amino benzoic acid **1a-c** (2 g, 14.5 mmol), water (10 mL)and concentrated sulfuric acid (3 mL). To the resultant clear mixture, a solution of sodium azide (1.20 g, 18.45 mol) in water (3 mL) was then added with vigorous stirring. A white product was precipitated; the stirring was continued for further 10 min. The precipitate was washed thoroughly with water, filtered under suction, crystallized from the proper solvents to afford the pure products **2a-c**.

4.2.1. 2-Azidobenzoic acid (2a)

White, crystallized from n-hexane, yield: 83% mp: 141-143 °C; IR (KBr, cm⁻¹): 3670-3060 (OH); 2100 (N₃); 1684 (C=O); ¹H-NMR (60 MHz, CDCl₃, δ ppm, J Hz): 7.09-7.42 (m, 2H, H3,5); 7.42-7.81 (m, 1H, H4); 8.03-8.29 (d, 1H, J = 9, H6); 11.21 (br.s, exchangable, 1H, COOH).

4.2.2. 3-Azidobenzoic acid (2b)

White, crystallized from n-hexane, yield: 89% mp: 163-165 $^{\circ}$ C; IR (KBr, cm⁻¹): 3625-3380 (OH); 2345 (N₃); 1647 (C=O); ¹H-NMR (60 MHz,

exchangable, 1H, COOH).

4.2.3. 4-Azidobenzoic acid (2c)

White, crystallized from water/ethanol, yield: 95% mp: 188-191°C; IR (KBr, cm⁻¹) : 3755-3090 (OH); 2095 (N₃); 1668 (C=O); ¹H-NMR (60 MHz, CDCl₃, δ ppm, J Hz): 7.03-7.33 (d, 2H, J = 8, H3,5); 7.93- 8.29 (d, 2H, J = 8, H2,6); 8.63 (s , exchangable , 1H, COOH).

4.3. General method for synthesis of methyl azidobenzoates (**3a-c**)

A mixture of the respective azidobenzoic acid 2a-c (2g, 0.0122mol), absolute methanol (5mL, 0.125 mol) and concentrated sulfuric acid (0.36 g, 0.2 mL) was refluxed for 4 hours. The solvent was evaporated under reduced pressure and allowed to cool. The product was extracted with chloroform $(2\times50 \text{ mL})$ and the organic layer washed with sodium bicarbonate solution (20%)until effervescence ceases, then with water, and dried over anhydrous magnesium sulfate. The chloroform was evaporated under vacuum and the product was collected and used without further purification.

4.3.1. Methyl 2-azidobenzoate (3a)

Dark red oil Yield: 63%; IR (KBr, cm⁻¹): 2955 (-C-H); 2095 (N₃); 1713 (C=O); ¹H-NMR (60 MHz, CDCl₃, δ ppm): 3.89 (s, 3H, CH₃); 6.93-8.00 (m, 4H, H3-6).

4.3.2. Methyl 3-azidobenzoate (3b)

Dark red oil Yield: 75%; IR (KBr, cm⁻¹): 2985 (-C-H); 2090 (N₃); 1715 (C=O); ¹H-NMR (60 MHz, CDCl₃, δ ppm): 3.86 (s, 3H, CH₃); 6.83-7.73 (m, 4H, H2, 4-6).

4.3.3. Methyl 4-azidobenzoate (3c)

Reddish white crystals, Yield: 80%; mp: P38E°C M Hz): 8.03-8.01(d, 1H, Ar H6); 7.68-7.64 (m, 1H, Ar

IR (KBr, cm⁻¹): 2100 (N₃); 1710 (C=O); ¹H-NMR (60 MHz, DMSO-d₆, δ ppm, J Hz): 3.86 (s, 3H, CH₃); 7.00- 7.33 (d, 2H, J = 8.5, H3, 5); 7.76-8.06 (d, 2H, J = 8.5, H2, 6).

4.4. General method for synthesis of $17-\alpha$ -(1-substituted-1,2,3-triazol-4-yl)-19-nortestosterone acetates (**5a-c**) and (**6a-c**).

Norethindrone acetate (4) (250 mg, 0.73 mmol) and the respective azide **2a-c**, and **3a-c** (2.92 mmol) were suspended in a mixture 1:1 of water and tbutyl alcohol (12 mL). An aqueous solution of sodium ascorbate (14.5 mg, 0.073 mmol, water $300 \ \mu$ L) was added, followed by copper (II) sulfate pentahydrate solution (1.8 mg, 0.0073 mmol, in water 100 μ L). The heterogeneous mixture was stirred vigorously under nitrogen overnight, at which point it cleared and TLC monitoring (hexane/ethyl acetate) indicated complete consumption of the steroid. The reaction mixture was diluted with water (50 mL), extracted with ethyl acetate (3×20mL), dried via filtering over anhydrous magnesium sulfate. The organic layer was evaporated under vacuum, and the residues were purified by column chromatography using gradient elution of (hexane/ethyl acetate) to afford the target products.

4.4.1. 2-[4-(17-Acetoxy-13-methyl-3-oxo 2,3,6,7,8 ,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl] benzoic acid (**5a**)

White, Yield: 45%, mp: 145-148°C; IR (KBr, cm⁻¹): 2590-3695 (OH); 1718 (C=O acetyl); 1651 broad (C=O ketonic overlapped with COOH carbonyl); ¹H-NMR (400 MHz, CDCl₃, δ ppm, J

H4); 7.58-7.52 (m, 3H, Ar H3,5, triazole H5); 5.81 (s,1H,steroidal C4-H); 3.05-0.64 (unresolved multiplets of cycloaliphatic protons of the steroidal nucleus in addition to acetyl and C18 methyl protons); Anal.Calcd for $C_{29}H_{33}N_3O_5$: C, 69.17; H, 6.60; N, 8.34. Found: C, 69.21; H, 6.58; N, 8.49.

4.4.2. 3-[4-(17-Acetoxy-13-methyl-3-oxo-2,3,6,7,8, 9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl]benzoic acid(**5b**)

White, Yield: 70%, mp: 151-153°C; IR (KBr, cm⁻¹): 2530-3435(OH); 1718(C=O acetyl); 1651 broad (C=O ketonic and COOH carbonyl); ¹H-NMR (400 MHz, CDCl₃, δ ppm, J Hz) : 8.34 (s,1H,Ar H2); 8.14-8.12 (m, 2H, Ar H4,6); 7.84 (s,1H, triazole H5); 7.64-7.60 (t,1H, J=8, Ar H5); 5.82 (s,1H,steroidal C4-H); 3.13-0.66 (unresolved multiplets of cycloaliphatic protons of the steroidal nucleus in addition to acetyl and C18 methyl protons); ¹³C-NMR (400 MHz, CDCl₃) : 14.82 (C18); 21.73 (O=C-CH₃); 24.07 (C11); 25.91(C15); 26.37 (C7); 30.70 (C6); 32.90 (C16); 35.47 (C2); 36.33 (C1,C12); 40.72 (C8); 42.41 (C10); 46.36 (C14); 47.61 (C13); 48.65 (C9); 88.11 (C17); 119.39 (Ar C2); 121.15 (Ar C4); 124.50 (Ar C5); 125.33 (C4); 130.02 (triazole C5); 130.11 (Ar C6); 131.15 (triazole C4); 137.12 (Ar C1); 150.58 (Ar C3); 166.86 (C5); 170.51 (OCOCH₃, COOH); 200.37 (C3); Anal. Calcd for C₂₉H₃₃N₃O₅: C, 69.17; H, 6.60; N, 8.34. Found: C, 69.28; H, 6.69; N, 8.57.

4.4.3. 4-[4-(17-Acetoxy-13-methyl-3-oxo-2,3,6,7,8, 9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl]benzoic acid(**5c**) cm⁻¹): 2565-3455 (OH); 1714 (C=O acetyl); 1645 (C=O ketonic); 1615 (C=O carboxyl); ¹H-NMR (400 MHz, CDCl₃, δ ppm, J Hz) : 8.23-8.21 (d, 2H, J = 8.8, Ar H2,6); 7.89-7.86 (d, 2H, J = 8.8, Ar H3,5); 7.82 (s, 1H, triazole H5); 5.81 (s, 1H, steroidal C4-H); 3.75-0.65 (unresolved multiplets of cycloaliphatic protons of the steroidal nucleus in addition to acetyl and C18 methyl protons); Anal.Calcd for C₂₉H₃₃N₃O₅: C, 69.17; H, 6.60; N, 8.34. Found: C, 69.24; H, 6.71; N, 8.62.

4.4.4. Methyl 2-[4-(17-acetoxy-13-methyl-3-oxo 2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradeca hydro-1H-cyclopenta[a] phenanthren -17-yl)-1H-1,2,3-triazol-1-yl] benzoate (**6a**)

White, Yield: 50%, mp: 93-96 $^{\circ}$ C; IR (KBr,cm⁻¹): 1722 strong (acetyl and ester carbonyl group); 1656 (C=O ketonic); ¹H-NMR (400 MHz, CDCl₃, δ ppm, J Hz): 7.98-7.94 (m,1H,Ar H6); 7.64-7.49 (m, 4H, Ar H3,4,5+ triazole H5); 5.77 (s,1H,steroidal C4-H); 3.67-3.60 (s,1H,COOCH₃); 3.01-0.68 (unresolved multiplets of cycloaliphatic protons of the steroidal nucleus in addition to acetyl and C18 methyl protons); ¹³C-NMR (400 MHz, CDCl₃) : δ 14.52 (C18); 21.55 (OCOCH₃); 24.07 (C11); 26.02 (C15); 26.57 (C7); 29.45 (C6); 30.83 (C16); 32.77 (C2); 35.47 (C12); 36.44 (C1); 40.75 (C8); 42.45 (C10); 46.13 (C14); 48.91 (C9,C13); 52.53 (COOCH₃); 88.07 (C17); 118.32 (Ar C3); 123.47 (Ar C1); 124.57 (C4); 126.92 (Ar C6); 129.83 (Ar C5,triazole C5); 131.27 (triazole C4); 132.63(Ar C4); 150.95 (Ar C2); 166.46 (COOCH₃);195.03 $(OCOCH_3),$ 218.26 (C3); Anal.Calcd for C₃₀H₃₅N₃O₅: C, 69.61; H, 6.82; N, 8.12. Found: C, 69.68; H, 6.85; N, 8.27.

2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradeca hydro-1H-cyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl] benzoate(**6b**)

White, Yield: 75%, mp: 97-99 °C; IR (KBr, cm⁻¹): 1719 strong (acetyl and ester carbonyl group); 1657 (C=O ketonic); ¹H-NMR (400 MHz, DMSO-d₆, δ ppm, J Hz) : 8.84 (s,1H,Ar H2); 8.44 (m,1H, triazole H5); 8.24-8.22 (m,1H, Ar H6); 8.03-8.02 (d, J =7.6 ,1H, Ar H4); 7.76-7.71 (m, 1H, Ar H5); 5.67(s, 1H, steroidal C4-H); 3.90 (s, 3H, COOCH₃); 3.40-0.54 (unresolved multiplets of cycloaliphatic protons of the steroidal nucleus in addition to acetyl and C18 methyl protons). Anal.Calcd for C₃₀H₃₅N₃O₅: C, 69.61; H, 6.82; N, 8.12. Found: C, 69.70; H, 6.88; N, 8.32.

4.4.6. Methyl 4-[4-(17-acetoxy-13-methyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradeca hydro-1H-cyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl] benzoate(**6c**)

White, Yield: 60 %, mp: 119-122°C; IR (KBr, cm⁻¹): 1715 strong (acetyl and ester C=O group); 1655 (C=O ketonic); ¹H-NMR (400 MHz, DMSO-d₆, δ ppm, J Hz) : 8.11-8.09 (d, 2H, J = 8.8, Ar H2,6); 8.08-8.05 (d, 2H, J = 8.8, Ar H3,5); 8.78 (s,1H,triazole H5); 5.63(s, 1H, steroidal C4-H); 3.83 (s, 1H, COOCH₃); 3.33-1.03(unresolved multiplets of cycloaliphatic protons of the steroidal nucleus in addition to acetyl and C18 methyl protons).Anal.Calcd for C₃₀H₃₅N₃O₅: C, 69.61; H, 6.82; N, 8.12. Found: C, 69.57; H, 6.95; N, 8.33.

4.5. In vivo progestational activity 4.5.1. Animals

Adult female Wistar rats (weighing 200 -215g) were housed into 8 groups 6 per cage at 20-22 °C

under controlled conditions of light, With Tfree MANRelative Forgan weight (kg) = [organ weight

access to rat chow and tap water. Rats showing regular estrous cycle length (4–5 days). The phases of estrous cycle were determined by observing the vaginal smear in the morning. Only those rats showing at least two consecutive 4-days estrous cycles were used. For all experiments the treatment was started when the animals were in estrus phase.

4.5.2. Reference standard

Norethindrone acetate was obtained as a gift from Hi pharm pharmaceutical company, El Obour City, Egypt.

4.5.3. Morphometric measurements

Calculations were carried out using Lieca Qwin 500 Image Analyzer in Pathology Department, National Research Centre, Cairo, Egypt. All the *in vivo* investigational studies were carried out in Pharmacology and Pathology Departments, National Research Centre, Cairo, Egypt.

4.5.4. Methodology

Initial body weight before treatment and final body weight at the time of sacrifice were recorded. Then 1ml solution of the tested compounds 5a-c, **6a-c** or reference standard (Norethindrone acetate) in DMSO (0.018 mg/mL)was injected subcutaneously daily for 8 days to rat groups, while the control group received an equivalent amount of the vehicle. Twenty-four hours after the final dose, rats were killed, and their uteri were carefully excised, trimmed of extraneous tissue, blotted filter paper to remove excess fluid, weighed to calculate the uterus weight as the following:

(g)/body weight (g)] \times 1000

The uteri were fixed and stained, paraffin sections were evaluated for histological changes. The thickness endometrium, myometrium and the uterine epithelial cell heights were measured using an objective lens of magnification 10, and eye lens 10, the total magnification was 100 times. Ten fields were chosen in each specimen and the mean values were taken.

4.5.5. Statistical analysis

The data were expressed as mean \pm **SEM** and analyzed using SPSS statistical software. One way analysis of variance (ANOVA) was used to assess the variation of the means among the treatments. If the variation was greater than expected by chance alone, Tukey multiple comparison tests were performed to compare each treatment group with the control and standard groups. Significance was established when the p value was less than 0.05.

4.5.6. Evaluation of the acute toxicity and lethality (LD₅₀) for **5b** and **6c**

Test solutions: aliquots of the tested compounds were dissolved separately in DMSO and diluted with water to the required concentration to give 10% final dilution of DMSO.

Doses: the animals were injected subcutaneously with a dose of 5, 10, 15, 30, 40 mg / kg mice.

Control animals: received the vehicle (10 % DMSO).

Procedure: Groups of adult albino mice (25-30 g) of either sex, each of three animals (six in case of 40 mg/kg dose) were injected with graded doses

of the tested compounds solutions and the vehicle M norethindrone (PDB ID: 1SQN) was obtained from

as control. Animals were observed per dose for 24h and signs of toxicity and number of deaths were recorded.

4.6. In vitro anticancer activity4.6.1. Screening for anticancer activity

Newly synthesized 17α -(1-substituted-1, 2, 3-triazol- 4-yl)-19-nortestosterone acetates **5a-c** and **6a-c** (conc. 10^{-5} M) were screened for their anticancer activity according to NCI *in vitro* protocols, against a panel consisting of 60 human tumor cell lines.

4.6.2. Cell cycle analysis for compound **6b**

Prostate cancer cells PC-3 from the treated (10^{-5}) M of **6b**) and control cells were collected after 48 hours. Cell cycle distribution of the cell population was analyzed using Cycle TEST TMPLUS DNA Reagent kit (BD Biosciences, USA). Cells were fixed with 70% ice-cold ethanol, washed and the pellet was suspended in trypsin buffer and left for 10 min at room temperature. 1% RNAase buffer was added after addition of trypsin inhibitor and incubated for 10 min, followed by the addition of 100 µg/ml propidium iodide. Samples were incubated in the dark for 30 min at 4 °C. Distribution of cell-cycle phases with different DNA contents was determined using a FACScan flow cytometer (Becton-Dickinson, San Jose, CA, USA). This study was carried out at Cancer biology department, National Cancer Institute, Cairo, Egypt.

4.7. Docking simulations

The X-ray crystallographic structures of progesterone receptor complexed with

the Protein Data Bank through the internet (http://www.rcsb.org). All the molecular modeling calculations and docking simulation studies were performed using Molecular Operating Environment (MOE[®]) version **10.2010**, Chemical Computing Group (CCG) Inc., Montreal, Canada.

Acknowledgment

We would like to acknowledge The National Cancer Institute (NCI) for the *in vitro* anticancer activity screening.

References and notes

- Iványi, Z.; Szabó, N.; Huber, J.; Wölfling, J.; Zupkó, I.; Szécsi, M.; Wittmann, T.; Schneider, G., Steroids, 2012, 77, 566–574.
- Togashia, M.; Borngraeberb, S.; Sandlerb, B.; Fletterickb, R. J.; Webba, P.; Baxter, J. D. J. Steroid Biochem. Mol. Biol. 2005, 93, 127-137.
- Madauss, K. P.; Deng, S.; Austin, R. J. H.; Lambert, M. H.; McLay, I.; Pritchard, J.; Short, S. A.; Stewart, E. L.; Uings, I. J.; Williams, S. P. J. Med. Chem. 2004, 47, 3381-3387.
- Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J. 2011, 6, 2696 – 2718.
- Pagliai, F.; Pirali, T.; Grosso, E. D.; Brisco, R. D.; Tron, G. C.; Sorba, G.; Genazzani, A. A. J. Med. Chem. **2006**, 49, 467-470.
- Peterson, L. B.; Blagg, B. S. J. Bioorg. Med. Chem. Lett. 2010, 20, 3957-3960.
- Kumar, D.; Reddy, V. B.; Kumar, A.; Mandal, D.; Tiwari, R.; Parang, K. Bioorg. Med. Chem. Lett. 2011, 21, 449–452.
- Banday, A. H.; Shameem, S. A.; Gupta, B. D.; Kumar, H. M. S. Steroids, 2010, 75, 801-804.
- Whiting, M.; Tripp, J. C.; Lin, Y.; Lindstrom, W.; Olson, A. J.; Elder, J. H.; Sharpless, K. B.; Fokin, V. V. J. Med. Chem. 2006, 49, 7697-7710.
- Somu, R. V.; Boshoff, H.; Qiao, C.; Bennett, E. M.; Barry, C. E.; Aldrich, C. C. J. Med. Chem. 2006, 49, 31-34.
- Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D.; Shiradkar, M. Bioorg. Med. Chem. Lett. **2008**, 18, 6244-6247.
- Porea, V. S.; Ahera, N. G.; Kumarb, M.; Shuklab, P. K. Tetrahedron, 2006, 62, 11178-11186.
- Aher, N. G.; Pore, V. S.; Mishra, N. N.; Kumar, A.; Shukla, P. K.; Sharma, A.; Bhat, M. K. Bioorg. Med. Chem. Lett. **2009**, 19, 759-763.

- 14. Chaudhary, P. M.; Chavan, S. R.; Shirazi, F.; Razdan, M A N 23. (Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.;, M.; Nimkar, P.; Maybhate, S. P.; Likhite, A. P.; Gonnade, R.; Hazara, B. G.; Deshpande, M. V.; Deshpande, S. R. Bioorg. Med. Chem. 2009, 17, 2433-2440.
- 15. Sumangala, V.; Poojary, B.; Chidananda, N.; Fernandes, J.; Kumari, N. S. Arch. Pharm. Res. 2010, 33, 1911-1918.
- 16. Phillips, O. A.; Udo, E. E.; Abdel-Hamid, M. E.; Varghese, R. Eur J Med Chem. 2009, 44, 3217-3227.
- 17. Phillips, O. A.; Udo, E. E.; Abdel-Hamid, M. E.; Varghese, R. Eur. J. Med. Chem. 2013, 66, 246-257.
- 18. Ismail, M. M. F.; Soliman, D. H.; Eldydamony, N. M. Abdel Jaleel, G. A.; Youssef, A. F., Int. J. Pharm. Med. & Bio. Sc. 2014, Vol. 3, No. 3, 1-22.
- 19. Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V., Angew. Chem . Int. Ed, 2005, 5188-5240.)
- 20. Xiong, Y.; Bernardi, D.; Bratton, S.; Ward, M. D.; Battaglia, E.; Finel, M.; Drake, R. R.; Radominska-Pandya, A. Biochemistry, 2006, 2322-2332.
- 21. Nagy, L.; Schwabe, J. W.R., TRENDS in Biochemical Sciences, 2004, 29, No.6, 317-324.
- 22. Cunhaa, S.; Ganoa, L.; Moraisa, G. R.; Thiemannb, T.; Oliveira, M. C. J., Steroid Biochem. Mol. Biol., 2013, 137, 223-241.

- Nikatiani D.; Lien E.J., J. Med. Chem., 1973, 16 (11), 1207-1216
- 24. Buck, W. B.; Osweiter, G. D.; Van Gelder, A. G. 'Clinical and Diagnostic Veterinary Toxicology', 2nd ed., Kendall/Hunt Publishing Co., Iowa, 1976, pp: 5211.
- 25. http://dtp.nci.nih.gov/branches/btb/ivclsp.html
- 26. Krämer, E.A.; Seeger, H.; Krämer, B.; Wallwiener, D.; Mueck, A.O., Eur J of Obestetrics& Gynecology and Reproductive Biology, 2006, 129, 77-83.
- 27. Xu, B.; Kitawaki, J.; Kshiba, H.; Ishihara, H.; Kiyomiza, M.; Tiramoto, ; Kitaoka, M. Y.; Hongo. H., Maturitas, 2007, 56, 142–152.
- 28. Fan, N-J.; Tang, J-J.; Li, H.; Li, X-J.; Luo, B.; Gao, J-M., Eur. J. Med. Chem. 2013, 69, 182-190.
- 29. Molecular operating Environment (MOE), version 2010, Chemical Computing group Inc., Montreal, Quebec, Canada, http://www.chemcomp.com.
- 30. S. G. Molinspiration Cheminformatics, Slovak Republic, http://www.molinspiration.com.
- 31. Kelder, J.; Grootenhuis, P. D. J.; Bayada, D. M.; Delbressine, L. P. C.; Ploemen, J.-P. Pharm. Res. 1999, 16, 1514-1519.
- 32. Bhat, V. T.; James, N. R.; Jayakrishnan, A.; Polym. Int., 2008, 57, 124–132.

Figure captions: ACCEPTED MANUSCRIPT

Fig. 1. Effect of compounds 5a-c, 6a-c and NEA on rat's uterus.

Fig. 2. (**A**) & (**B**) 2D & 3D representation of the binding mode of compound **6b** in the PR binding site. (**C**) 2D representation of the binding mode of NEA in the PR binding site. (**D**) 2D representation of the binding mode of compound **6a** in the PR binding site.

Fig. 3. Previously prepared Norethindrone enenthate (NET-EN) derivatives cited in Reference [18].

Fig. 4. Effect of compound **6b** on cell cycle distribution in PC-3 cell line compared with untreated cells.

Tables

ACCEPTED MANUSCRIPT

Table 1. Impact of the electronic character, positional isomerism and type of phenyl substituents on the *in vivo* progestational activity of **5a-c**, **6a-c** and compounds cited in Reference [18].

	Substituent	Hansh	Endometrial	Myometrial thickness	Epithelial
Entry	Entry phenyl ring		(µm)	(µm)	(µm)
Vehicle 20% DMSO	-	-	154.47±1.19	122.40±2.37	57.80±0.92
NEA	-	-	302.35±2.2*	228.60±2.86*	68.22±0.71*
5a	o-COOH	NA	452±12.67***	170.80±8.87***	45.50±1.063***
5b	т-СООН	-0.1 ^b	375.5±13.99* [,] **	176±10.27***	43.60±0.89***
5c	р-СООН	0.00 ^b	277.5±10.42*	113.60±3.78**	39.60±1.27*'**
6a	o-COOMe	NA	343.7±1.86*'**	197.70±7.92* ^{,**}	64.60±1.31*
6b	т-СООМе	0.37	214.04±2.21***	319.80±7.91* ^{,**}	59.10±0.75*'**
6с	<i>p</i> -COOMe	0.45	417.6±7.17***	221.80±2.56*	29.60±0.49***
NET-EN ^a		×	300±2*	225 ±7*	67± 1*
7 ^a	<i>p</i> - CH ₂ COOH	-0.16 ^b	316±1.5*	239±4*	71± 2*
8 ^a	<i>m</i> -NO ₂	0.71	310±4*	229±1*	69 ±0.8*
9 ^a	p-NO ₂	0.78	347±24*	241±3*	78 ±1**

^a Results cited in Reference [18] ^b Values of the ionized functions NA : not available * Significantly different from control group at P < 0.05.

** Significantly different from reference drug group at P < 0.05.

Table 2. Docked Ligands /	PR	interactions
---------------------------	----	--------------

Comp		Ligand binding groups / PR amino acids						
No.	∆G (Kcal/mole)	Oxygen of C-3 carbonyl (Distance A°)	Oxygen of carboxyl carbonyl (Distance A°)	Oxygen of carboxyl hydroxy (Distance A°)				
NEA	-10.5131	Gln725 (2.73) Arg766 (2.67)	-	-				
5a	-12.6971	Asn719 (2.82)	Arg766 (2.49)	Gln725 (2.77) Arg766 (2.56)				
5b	-11.1299	Asn719 (2.69)	Arg766 (2.72)	Gln725 (2.72) Arg766 (2.41)				
5c	-8.8336	Asn719 (2.65)	Arg766 (2.31)	-				
6a	-9.7881	Gln725 (2.78) Arg766 (2.46)	-	-				
6b	-8.0234	Asn719 (2.43)	Arg766 (2.31)	-				
6с	-11.3694	Gln725 (2.52) Arg766 (3.24)	Asn719 (2.63)	-				

	Growth Percentage (%)								
Cell line		(10 ⁻⁵ M)							
	5a	5b	5c	6a	6b	60			
Leukemia	RPMI-8226	94.11	91.60	83.16	77.11	70.41	90.00		
	SR	102.31	102.35	103.61	92.69	72.24	87.71		
Non-Small Cell Lung	A549/ATCC	95.55	95.73	84.99	92.02	68.57	87.89		
cancer	NCI-H522	90.41	117.20	66.54	72.64	75.69	87.48		
Colon cancer (HT29)		102.06	110.02	93.50	97.72	79.16	100.28		
CNS Cancer	SNB-75	76.79	72.11	68.32	66.46	53.60	73.88		
	SF-295	104.44	103.90	92.85	89.47	74.94	93.66		
	SNB-19	91.28	98.03	96.41	90.77	74.93	82.72		
ovarian (OVC)	cancer AR-4)	98.07	95.43	77.20	92.60	69.60	78.59		
	A498	94.79	77.5	156.59	72.61	43.93	82.76		
	UO-31	82.69	80.60	83.16	62.22	62.09	73.58		
Renal cancer	CAKI-1	93.74	96.31	96.25	86.45	67.79	92.57		
	RXF393	100.35	122.63	107.34	96.84	69.13	114.66		
Prostate cancer (PC-3)		94.83	83.89	79.39	65.99	43.30	73.54		
Breast cancer	MCF7	109.54	88.82	99.69	97.48	76.87	96.84		
	MDA-MB- 468	95.48	108.97	90.65	82.67	73.27	88.15		

Compound	M.wt.	cLog P(O/W)	Lip-don	Lip-acc	Volume	TPSA	LogS
NEA	340.4630	3.7070	0	3	333.749	43.376	-5.4856
5a	503.5990	3.7990	1	8	458.363	111.393	-6.1313
5b	503.5990	3.8380	1	8	458.363	111.393	-6.1313
5c	503.5990	3.8010	1	8	458.363	111.393	-6.1313
ба	517.6260	4.0630	0	8	475.891	100.399	-6.5436
6b	517.6260	4.1020	0	8	475.891	100.399	-6.5436
бс	517.6260	4.0650	0	8	475.891	100.399	-6.5436

M.wt.: Molecular weight, **Lip-don**: Number of Lipinski hydrogen bond donors, **Lip-acc** : Number of Lipinski hydrogen bond acceptors, **Volume**: Molecular volume, **TPSA**: Total polar surface area, **Log S**: Aqueous solubility

Figures

-

Fig. 1. Effect of compounds 5a-c, 6a-c and NEA on rat's uterus.

Fig. 2. (A)&(B) 2D & 3D representation of the binding mode of compound 6b in the PR binding site. (C) 2D representation of the binding mode of NEA in the PR binding site. (D) 2D representation of the binding mode of compound 6a in the PR binding site.

Fig. 3. Previously prepared Norethindrone enanthate (NET-EN) derivatives cited in Reference [18].

Fig. 4. Effect of compound **6b** on cell cycle distribution in PC-3 cell line compared with untreated cells.

20

 $\label{eq:scheme 1. Reagents and conditions: (i) H_2SO_4, $NaNO_2$ then NaN_3 (ii) CH_3OH, H_2SO_4, $Reflux,4h$; (iii) $CuSO_4.5H_2O$, $Sodium ascorbate H_2O/t-BuOH$ (1:1), $r.t.,N_2,8hr$.}$

Highlights

- A series of 17α-1,2,3-triazolo-19-nortestosterone acetate were designed.
- The designed compounds were synthesized using click chemistry.
- These compounds were screened for their biological activities.
- The synthesized compounds revealed varied progestational and anticancer activities.

¹H NMR spectrum for **5a**

¹H NMR spectrum for **5b**

ACCEPTED MANUSCRIPT

DEPT spectrum for 5b

¹H NMR spectrum for **5c**

¹H NMR spectrum for **6a**

¹H NMR spectrum for **6b**

¹H NMR spectrum for **6c**

Anticancer activity of 5a

Developmental Therapeutics Program		NSC: 766283 / 1	Conc: 1.00E-5 Molar	Test Date: Jul 30, 2012
One Dose Mea	an Graph	Experiment ID: 1207OS20		Report Date: Sep 02, 2012
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 NCI-H23 NCI-H226 NCI-H23 NCI-H227 NCI-H228 NCI-H322M NCI-H322M NCI-H322M NCI-H322 Colon Cancer COLO 205 HCT-115 HT29 SW-620 CNS Cancer SF-268 SF-278 SF-539 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES <t< th=""><th>Growth Percent</th><th>Mean Growth</th><th>Percent - Growth Per</th><th>cent</th></t<>	Growth Percent	Mean Growth	Percent - Growth Per	cent
DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	107.45 109.54 100.49 107.13 101.50 91.40 95.48			
Mean Delta Range	100.46 23.67 43.38 150	100 50	0 -50	0 -100 -150

Anticancer activity of **5b**

Developmental Therapeutics Program		NSC: 766281/1	Conc: 1.00E-5 Molar	Test Date: Jul 30, 2012	
One Dose Mea	an Graph	Experiment ID: 1207OS20		Report Date: Sep 02, 2012	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 NCI-H226 NCI-H226 NCI-H226 NCI-H226 NCI-H222 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-3 UACC-42 OVCAR-4 OVCAR-4 OVCAR-4 OVCAR-5 OVCAR-4 OVCAR-5 OVCAR-4 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A498 ACHN CAKH1 CAKH1 CAKH1 CAKH1 CAKH1 CAKH2 Breast Cancer PC-3 DU-145 Breast Cancer PC-3 DU-145 Breast Cancer PC-3 DU-145 Breast Cancer PC-3 DU-145 Breast Cancer MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	Growth Percent 98.26 113.11 97.46 103.90 91.60 102.35 95.73 101.98 101.30 111.59 103.55 107.20 121.71 118.06 100.260 90.65 100.02 99.89 128.40 103.90 91.72 90.65 100.02 99.89 128.40 103.90 91.72 96.03 72.11 92.36 103.38 101.72 104.84 115.51 131.29 95.34 96.31 92.89 95.34 97.60 111.15 116.19 106.17 77.57 87.81 96.31 92.61	Mean Growth	Percent - Growth Per	cent	
Delta Range	31.14 59.18				
	150	100 50	0 -50) -100 -150	

Anticancer activity of 5c

Developmental Therapeutics Program		NSC: 766279/1	Conc: 1.00E-5 Molar	Test Date: Jul 30, 2012	
One Dose Me	an Graph	Experiment ID: 1207OS20		Report Date: Sep 02, 2012	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Smail Cell Lung Cancer A549/ATCC HOP-62 NCI-H226 NCI-H23 NCI-H226 NCI-H226 NCI-H23 NCI-H29 SW000 SW000 NC Cancer SF-295 SF-268 SF-295 SF-268 SF-295 SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435	Growth Percent 96.86 111.89 101.91 100.68 83.16 103.61 84.99 103.10 94.03 106.51 105.47 103.68 66.54 121.18 123.48 97.94 103.04 93.50 103.21 114.53 92.85 96.84 96.41 66.32 85.57 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.91 95.18 90.42 96.55 90.42 96.56 90.41	Mean Growth	Percent - Growth Per	cent	
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549	99.69 94.94 141.36 116.51		in a second		
T-47D MDA-MB-468	103.95 90.65				
Mean Delta Range	100.88 34.34 90.05				
	150	100 50	0 -50	-100 -150	

Anticancer activity of 6a

Developmental Therapeutics Program		NSC: 766284 / 1	Conc: 1.00E-5 Molar	Test Date: Jul 30, 2012	
One Dose Mea	an Graph	Experiment ID: 1207OS20		Report Date: Sep 02, 2012	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Leukemia CCRE-CEM	86.65				
HL-60(TB)	98.64				
K-562	101.23		-		
MOL1-4 RPML8226	90.41				
SR	92.69				
Non-Small Cell Lung Cancer	00.00				
A549/ATCC HOP-62	92.02				
NCI-H226	92.90				
NCI-H23	98.32				
NCI-H322M NCI-H460	86.29				
NCI-H522	72.64				
Colon Cancer					
COLO 205	104.60				
HCT-116	95.15				
HCT-15	94.17				
HT29 SW-620	97.72				
CNS Cancer	100.10				
SF-268	92.65				
SF-295	89.47		1 I		
SNB-19	90.77				
SNB-75	66.46				
U251 Molonomo	96.37				
LOX IMVI	97.36				
MALME-3M	87.20				
M14 MDA MP 425	96.05				
SK-MEL-2	93.79				
SK-MEL-28	103.54		2000		
SK-MEL-5	89.57				
UACC-62	85.90				
Ovarian Cancer					
IGROV1	85.94				
OVCAR-4	92.60				
OVCAR-5	119.90				
OVCAR-8	87.14				
SK-OV-3	109.65				
Renal Cancer	11.050.471.00				
786-0	100.64				
ACHN	91.98				
CAKI-1	86.45				
RXF 393	96.84				
TK-10	115.86				
UO-31	62.22				
Prostate Cancer PC-3	65.99				
DU-145	103.63		-		
Breast Cancer	07.40				
MDA-MB-231/ATCC	97.48				
HS 578T	87.51				
BT-549	110.75				
1-47D MDA-MB-468	82.76				
1975)					
Mean	93.37				
Range	57.68				
	450	100 50	0 50	100 450	
	150	100 50	0 -50	-100 -150	

Anticancer activity of **6b**

Developmental Therapeutics Program		NSC: 766282 / 1 Conc: 1.00E-5 Molar Test Date: Jul 30, 2		Test Date: Jul 30, 2012	
One Dose Mea	an Graph	Experiment ID: 1207OS20		Report Date: Sep 02, 2012	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Leukemia	06.40				
HL-60(TB)	124.75				
K-562	90.72				
MOLT-4 RPML9226	79.94				
SR	72.24				
Non-Small Cell Lung Cancer					
HOP-62	99.92				
NCI-H226	92.90				
NCI-H23	97.36				
NCI-H322M	95.22				
NCI-H522	75.69				
Colon Cancer COLO 205	115.06				
HCC-2998	94.05		-		
HCT-116	86.74				
HT29	79.16		-		
SW-620	97.91				
SE-268	87.06				
SF-295	74.94				
SF-539	100.46				
SNB-75	53.60		a/		
U251	82.27		-		
LOX IMVI	82.99				
MALME-3M	125.55				
M14 MDA-MB-435	106.98				
SK-MEL-2	99.78				
SK-MEL-28	107.81				
UACC-257	88.33				
UACC-62	89.39				
Ovarian Cancer IGROV1	96.23		-		
OVCAR-3	99.81				
OVCAR-4 OVCAR-5	69.60				
OVCAR-8	87.82				
NCI/ADR-RES	96.34				
Renal Cancer	112.07				
786-0	95.82				
ACHN	79.46				
CAKI-1	67.79				
RXF 393 SN12C	69.13				
TK-10	117.35				
UO-31 Prostate Cancer	62.09				
PC-3	43.30		6 Y		
DU-145	110.70				
MCF7	76.87		and a second		
MDA-MB-231/ATCC	83.28		an .		
HS 5781 BT-549	93.61				
T-47D	94.71				
MDA-MB-468	73.27				
Mean	88.26				
Delta	44.96				
Kange	02.20		in and		
		100			
	150	100 50	0 -50	-100 -150	
~ ~ ~					

Anticancer activity of 6c

Developmental Therapeutics Program		NSC: 766280 / 1	Conc: 1.00E-5 Molar	Test Date: Jul 30, 2012	
One Dose Mea	an Graph	Experiment ID: 1207OS20		Report Date: Sep 02, 2012	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 NCI-H226 NCI-H226 NCI-H220 NCI-H220 NCI-H322M NCI-H322M NCI-H322 Non-Small Cell Lung Cancer COLO 205 HCC-2998 HCT-116 HCT-115 HT29 SW-620 CNS Cancer SF-268 SF-288 SF-285 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL	Growth Percent 104.13 124.48 88.35 94.15 90.00 87.71 87.89 106.07 97.53 103.69 79.29 95.10 87.48 118.36 126.26 89.25 89.45 102.88 108.10 105.65 93.66 94.51 82.72 73.88 87.52 91.98 142.00 108.70 100.19 102.62 111.18 93.95 94.62 91.71 100.36 107.53 78.59 96.88 89.68 89.65 118.81 109.80 108.69 82.77 114.66 92.59 116.91 73.58 73.54 118.39 96.84 79.88 116.77 106.85 108.10 108.69 82.79 114.67 106.85 108.10 108.69 82.79 114.66 92.59 116.91 73.58 73.54 118.39 96.84 79.88 815 28.75 29.25 20.0	Mean Growth	Percent - Growth Per	cent	
Delta Range	24.73 52.72				
	150	100 50	0 -50	-100 -150	