

# Densities, Conductivities, and Aggregation Numbers of Aqueous Solutions of Quaternary Ammonium Surfactants with Hydroxyethyl Substituents in the Headgroups

Zhiguo Zhang,<sup>†</sup> Huanhuan Wang,<sup>†</sup> and Weiguo Shen<sup>\*,†,‡</sup>

<sup>†</sup>School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China <sup>‡</sup>Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China

ABSTRACT: The aggregation behaviors of two cationic surfactants, namely, N-dodecyl-N-2-hydroxyethyl-N,N-dimethyl ammonium bromide (C12HDAB) and N-dodecyl-N,N-2dihydroxyethyl-N-methyl ammonium bromide ( $C_{12}$ DHAB), were studied by measurements of density, conductivity, and steady-state fluorescence quenching. The aggregation number, the volumetric properties, and the standard Gibbs energy ( $\Delta G_{\rm mic}^0$ ) of micellization were obtained, and the surface area  $(A_{mic})$  of the surfactant headgroups and the radius (r) of the micelles were estimated. It was found that substituting the methyl group with the hydroxyethyl group in the head of the surfactant led to the increase of the volume change of micellization and the decreases of the critical micelle concentration, association degree of the counterion, and the value of  $\Delta G^0_{
m mic}$  while the aggregation number of those surfactants in



aqueous solutions was little affected by introducing the hydroxyethyl group. It was also found that the values of  $A_{\rm mic}$  and r increase with the hydroxyethyl group.

### INTRODUCTION

Alkyltrimethylammonium bromide surfactants such as dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB) are widely applied in practical fields as antimicrobial agents, fabric softeners, corrosion inhibitors, and catalysts.<sup>1-4</sup> Recently, it was found that by substituting the methyl group with the hydroxylalkyl group in the head of those surfactants can greatly enhance their efficiency of catalysis, which was attributed to the formation of the hydrogen bonds duo to introduction of the hydroxylalkyl groups.<sup>4,5</sup> The micellization of the hydroethyl group substituted surfactants has been studied using isothermal titration calorimetry (ITC); however more experimental measurements are required for understanding the role of the hydroxylalkyl groups in the physicochemical properties and aggregation behaviors of these surfactants in aqueous solutions.

In this paper, the micellization properties of two DTAB derivatives, namely, N-dodecyl-N-2-hydroxyethyl-N,N-dimethyl ammonium bromide (C12HDAB) and N-dodecyl-N,N-2-dihydroxyethyl-N-methyl ammonium bromide (C<sub>12</sub>DHAB), which have the same tails with DTAB but one or two hydroxyethyl substituent groups in the head, respectively, as shown in Figure 1, are studied by measurements of density, conductivity, and steady-state fluorescence. The critical micelle concentration CMC, the volumetric property, the dissociation degree of the counterions at the micellar state, and the aggregation number of the micelle are determined. The results are analyzed to obtain the Gibbs free energy of the micellization and to investigate the role of the hydroxylethyl group in the self-aggregation of the surfactants.



Figure 1. Chemical structures of the surfactants studied: a: DTAB, b: C<sub>12</sub>HDAB, c: C<sub>12</sub>DHAB.

Received: May 14, 2013 Accepted: July 16, 2013 Published: July 30, 2013

ACS Publications © 2013 American Chemical Society

### Table 1. Sources and Purities of the Chemicals

| chemicals                                                   | source                            | initial mass fraction<br>purity | purification<br>method | final mass fraction<br>purity | analysis<br>method  |
|-------------------------------------------------------------|-----------------------------------|---------------------------------|------------------------|-------------------------------|---------------------|
| dodecyltrimethylammonium bromide                            | J&K Chemical Ltd.                 | 0.99                            | none                   |                               |                     |
| cetylpyridinium bromide                                     | Sinopharm Chemical<br>Reagent Co. | 0.98                            | none                   |                               |                     |
| 1-bromododecane                                             | Sinopharm Chemical<br>Reagent Co. | 0.98                            | none                   |                               |                     |
| N,N-dimethylethanolamine                                    | Aladdin Chemistry Reagent<br>Co.  | 0.98                            | none                   |                               |                     |
| N-methyldiethanolamine                                      | Aladdin Chemistry Reagent<br>Co.  | 0.98                            | none                   |                               |                     |
| N-dodecyl-N-2-hydroxyethyl-N,N-<br>dimethylammonium bromide | synthesis                         |                                 | recrystallization      | 0.998                         | element<br>analysis |
| N-dodecyl-N,N-2-dihydroxyethyl-N-<br>methylammonium bromide | synthesis                         |                                 | recrystallization      | 0.998                         | element<br>analysis |

### EXPERIMENTAL SECTION

**Chemicals.** The chemicals used in this work as well as their purities and suppliers are listed in Table 1, all of which were used without further purification; double-distilled water was used in preparation of all of the surfactant solutions.

Synthesis of *N*-Dodecyl-*N*-2-hydroxyethyl-*N*,*N*-dimethyl Ammonium Bromide ( $C_{12}$ HDAB).  $C_{12}$ HDAB was synthesized using the method reported by Tong et al.<sup>6</sup> A sample of 7.5 g of 1-bromododecane and 3.2 g of *N*,*N*-dimethylethanolamine were refluxed with 60 mL of acetone at 70 °C for 8 h. After the reaction was completed, the mixture was cooled to -20 °C, and a white crystal appeared which was recrystallized in acetone at least four times; the product was then dried in an evacuated desiccator for 24 h. A white solid was obtained in 80 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 0.89 (t, *J* = 6.8 Hz, 3H), 1.27–1.37 (m, 18H), 1.73–1.79 (m, 2H), 3.38 (s, 6H), 3.54 (t, *J* = 8.4 Hz, 2H), 3.71 (t, *J* = 4.6 Hz, 2H), 4.10–4.17 (m, 2H); element analysis (% in mass): calculated C, 56.79; H, 10.72; N, 4.14; found C, 56.70; H, 10.59; N, 4.15.

Synthesis of *N*-Dodecyl-*N*,*N*-2-dihydroxyethyl-*N*methyl Ammonium Bromide ( $C_{12}$ DHAB).  $C_{12}$ DHAB was synthesized by refluxing 10 g of 1-bromododecane and 5.7 g of *N*,*N*-dimethylethanolamine in 60 mL of acetone at 70 °C for 8 h; the purification was the same as that of  $C_{12}$ HDAB which gave a white solid in 78 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 0.90 (t, *J* = 6.8 Hz, 3H), 1.27–1.38 (m, 18H), 1.75–1.78 (m, 2H), 3.35 (s, 3H), 3.55 (t, *J* = 8.4 Hz, 2H), 3.71–3.82 (m, 4H), 4.15–4.22 (m, 4H); element analysis (% in mass): Calculated: C, 55.43; N, 3.80; H, 10.40, found: C, 55.48; N, 3.73; H, 10.42.

**Density Measurement.** The measurements of the densities were carried out using a DMA 5000 M vibrating tube densimeter from Anton Paar.<sup>7</sup> The apparatus consists of a U-shaped borosilicate glass tube with a platinum resistance thermometer inside the thermostatic jacket. The precisions in measurements of the density and the temperature given by the manufacturer were  $\pm 10^{-6}$  g·cm<sup>-3</sup> and  $\pm 0.001$  K, respectively. At the beginning of every set of experiments the apparatus was calibrated using dry air and double-distilled water. The accuracy in the density measurements was stated by the manufacturer to be  $\pm 5 \cdot 10^{-6}$  g·cm<sup>-3</sup>. Surfactant solutions with the concentration being about 60 mmol·kg<sup>1-</sup> were prepared by weighing and then diluted to a series of dilute solutions for density measurements. The uncertainties of the concentrations were estimated to be about 0.05 % of the values.

**Conductivity Measurement.** Conductivity measurements were performed with a CON500 type conductometer from First Clean Co. using a dip-type cell with a cell constant of 0.893

cm<sup>-1.8</sup> The conductivities of surfactant solutions at various concentrations were determined using a titration method. A certain amount of water was weighed into the dip-type cell, which was placed in a water bath where the temperature was controlled within  $\pm$  0.1 K. A surfactant solution with the concentration being about 210.0 mmol·kg<sup>1-</sup> was prepared by weighing and titrated into cell using a microsyringe; after each titration, the cell was shaken and then kept undisturbed for thermal equilibrium before the conductivity measurement. The relative standard uncertainties in determinations of the conductivity and the concentration were about  $\pm$  0.5 % and 2 %, respectively.

Steady-State Fluorescence Quenching. The steady-state fluorescence measurements were taken using a fluorimetry (model FLS 920) supplied by Edinburge Instrument. The fluorimetry was equipped with a 450 mW Xe arc lamp and a R928P Hamamatsu PMT detector. The temperature of the sample for the fluorescence measurement was controlled within  $\pm$  0.2 K using a water circulating bath which pumped water into the sample hold in the fluoremeter. The aggregation number of the micelle was determined by fluorescence measurement using pyrene as the probe and cetylpyridinium bromide (CPB) as the quencher.<sup>9</sup> The samples for steady-state quenching were prepared as follows: a surfactant/pyrene aqueous solution with the concentrations of the surfactant and the pyrene being 50.0  $mmol \cdot kg^{-1}$  and  $6 \cdot 10^{-7} mol \cdot kg^{-1}$  respectively was prepared first. A proper amount of CPB/ethanol solution with the concentration of CPB being 20 mmol·kg<sup>-1</sup> was then transferred into a flask; after removing the solvent ethanol, it was dissolved by the surfactant/pyrene aqeuous solution to obtain a surfactant/ pyrene/CPB solution with the required concentration of CPB. In this way, a series of aqueous solutions with the concentrations of the quencher being from  $(1.0 \times 10^{-5} \text{ to } 4.5 \times 10^{-4}) \text{ mol·kg}^{-1}$ were prepared for steady-state fluorescence measurements. During the fluorescence measurements the excitation wavelength was set at 337 nm, and the emission spectra were scanned from 360 to 480 nm with a step of 1 nm. The intensities at the first peak (373 nm) in the absence and presence of the quencher were measured and used to calculate the aggregation number.

### RESULTS AND DISCUSSION

**Volumetric Properties.** The densities of series of the DTAB,  $C_{12}$ HDAB, and  $C_{12}$ DHAB aqueous solutions at temperatures between 293.15 K and 318.15 K in a 5 K interval were measured, and their values are listed in column 2 of Table 2 for DTAB, Table 3 for  $C_{12}$ HDAB, and Table 4 for  $C_{12}$ DHAB, respectively. The values of the density measured for DTAB solutions in this work were in good agreement with that reported Table 2. Density  $\rho$ , Apparent Molar Volume  $V_{\Phi}$ , Partial Molar Volume  $\overline{V}$ , and Isobaric Thermal Expansion Coefficient  $\alpha_p$  for DTAB at Different Molalities *m* under Temperature T = (293.15 to 318.15) K and Pressure  $p = 0.1 \text{ MPa}^a$ 

|        |                                    | 2 .                                 | -                                                | -                                                  |                                         |
|--------|------------------------------------|-------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------|
| T/K    | $m/\text{mmol}\cdot\text{kg}^{-1}$ | $ ho/	extrm{g}\cdot	extrm{cm}^{-3}$ | $V_{\Phi}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\overline{V}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$ | $\alpha_P \cdot 10^3 / \mathrm{K}^{-1}$ |
| 293.15 | 0                                  | 0.998208                            |                                                  |                                                    |                                         |
|        | 6.08                               | 0.998345                            | $286.3 \pm 0.3$                                  | $286.4 \pm 0.3$                                    | 0.2173                                  |
|        | 7.07                               | 0.998368                            | $286.2 \pm 0.2$                                  | $286.3 \pm 0.2$                                    | 0.2176                                  |
|        | 7.96                               | 0.998388                            | $286.2 \pm 0.2$                                  | $286.4 \pm 0.2$                                    | 0.2179                                  |
|        | 8.97                               | 0.998411                            | $286.1 \pm 0.2$                                  | $286.4 \pm 0.2$                                    | 0.2182                                  |
|        | 9.99                               | 0.998434                            | $286.1 \pm 0.2$                                  | $286.6 \pm 0.2$                                    | 0.2185                                  |
|        | 10.96                              | 0.998456                            | $286.1 \pm 0.2$                                  | $286.9 \pm 0.2$                                    | 0.2188                                  |
|        | 11.99                              | 0.998480                            | $286.1 \pm 0.2$                                  | $287.2 \pm 0.2$                                    | 0.2193                                  |
|        | 12.99                              | 0.998503                            | $286.0 \pm 0.2$                                  | $287.6 \pm 0.2$                                    | 0.2197                                  |
|        | 13.98                              | 0.998524                            | $286.1 \pm 0.1$                                  | $288.3 \pm 0.1$                                    | 0.2199                                  |
|        | 15.03                              | 0.998543                            | $286.4 \pm 0.1$                                  | $289.2 \pm 0.1$                                    | 0.2198                                  |
|        | 15.96                              | 0.998556                            | $286.9 \pm 0.1$                                  | $290.1 \pm 0.1$                                    | 0.2195                                  |
|        | 18.02                              | 0.998592                            | $28/.4 \pm 0.1$                                  | $291.6 \pm 0.1$                                    | 0.2205                                  |
|        | 20.01                              | 0.998622                            | $288.0 \pm 0.1$                                  | $292.8 \pm 0.1$                                    | 0.2208                                  |
|        | 24.94                              | 0.998695                            | $289.2 \pm 0.1$                                  | $294.2 \pm 0.1$                                    | 0.2218                                  |
|        | 29.94                              | 0.998773                            | $269.7 \pm 0.1$                                  | $294.1 \pm 0.1$                                    | 0.2229                                  |
|        | 33.01                              | 0.998830                            | $290.5 \pm 0.1$                                  | $294.1 \pm 0.1$                                    | 0.2241                                  |
|        | 39.95                              | 0.998918                            | $290.9 \pm 0.1$<br>291.2 $\pm 0.1$               | $294.1 \pm 0.1$<br>293.8 ± 0.1                     | 0.2249                                  |
|        | 49.73                              | 0.998991                            | $291.2 \pm 0.1$<br>291.4 ± 0.1                   | $293.3 \pm 0.1$                                    | 0.2257                                  |
|        | 54.98                              | 0.999145                            | $291.4 \pm 0.1$<br>291.5 ± 0.1                   | $293.5 \pm 0.1$<br>293.1 ± 0.1                     | 0.2200                                  |
|        | 60.01                              | 0.999217                            | $291.5 \pm 0.1$<br>291.7 ± 0.1                   | $293.5 \pm 0.1$                                    | 0.2277                                  |
| 298.15 | 0                                  | 0.997047                            | 2)1./ <u>+</u> 0.1                               | 275.5 <u>+</u> 0.1                                 | 0.2200                                  |
| 2,0110 | 6.08                               | 0.997176                            | 287.9 + 0.3                                      | 288.0 + 0.3                                        | 0.2598                                  |
|        | 7.07                               | 0.997197                            | 287.9 + 0.2                                      | 288.1 + 0.2                                        | 0.2601                                  |
|        | 7.96                               | 0.997216                            | $287.9 \pm 0.2$                                  | $288.1 \pm 0.2$                                    | 0.2604                                  |
|        | 8.97                               | 0.997237                            | $287.9 \pm 0.2$                                  | $288.2 \pm 0.2$                                    | 0.2607                                  |
|        | 9.99                               | 0.997259                            | $287.9 \pm 0.2$                                  | $288.3 \pm 0.2$                                    | 0.2610                                  |
|        | 10.96                              | 0.997280                            | $287.8 \pm 0.2$                                  | $288.5 \pm 0.2$                                    | 0.2613                                  |
|        | 11.99                              | 0.997302                            | $287.8 \pm 0.2$                                  | $288.8 \pm 0.2$                                    | 0.2617                                  |
|        | 12.99                              | 0.997324                            | $287.7 \pm 0.2$                                  | $289.1 \pm 0.2$                                    | 0.2621                                  |
|        | 13.98                              | 0.997343                            | $287.9 \pm 0.1$                                  | $289.8 \pm 0.1$                                    | 0.2623                                  |
|        | 15.03                              | 0.997363                            | $288.0 \pm 0.1$                                  | $290.5 \pm 0.1$                                    | 0.2623                                  |
|        | 15.96                              | 0.997376                            | $288.4 \pm 0.1$                                  | $291.4 \pm 0.1$                                    | 0.2621                                  |
|        | 18.02                              | 0.997408                            | $289.0 \pm 0.1$                                  | $292.9 \pm 0.1$                                    | 0.2629                                  |
|        | 20.01                              | 0.997435                            | $289.6 \pm 0.1$                                  | $294.1 \pm 0.1$                                    | 0.2632                                  |
|        | 24.94                              | 0.997505                            | $290.7 \pm 0.1$                                  | $295.5 \pm 0.1$                                    | 0.2640                                  |
|        | 29.94                              | 0.997580                            | $291.2 \pm 0.1$                                  | $295.5 \pm 0.1$                                    | 0.2650                                  |
|        | 35.01                              | 0.997647                            | $291.9 \pm 0.1$                                  | $295.6 \pm 0.1$                                    | 0.2661                                  |
|        | 39.95                              | 0.997712                            | $292.3 \pm 0.1$                                  | $295.5 \pm 0.1$                                    | 0.2668                                  |
|        | 45.05                              | 0.997780                            | $292.7 \pm 0.1$                                  | $295.1 \pm 0.1$                                    | 0.2676                                  |
|        | 49.73                              | 0.997845                            | $292.9 \pm 0.1$                                  | $294.6 \pm 0.1$                                    | 0.2685                                  |
|        | 54.98                              | 0.997923                            | $293.0 \pm 0.1$                                  | $294.4 \pm 0.1$                                    | 0.2695                                  |
| 202.15 | 60.01                              | 0.997992                            | $293.1 \pm 0.1$                                  | $294.7 \pm 0.1$                                    | 0.2703                                  |
| 303.15 | 0                                  | 0.995649                            | 200.1 + 0.2                                      | 200.2 + 0.2                                        | 0.3025                                  |
|        | 6.08                               | 0.995770                            | $290.1 \pm 0.3$                                  | $290.2 \pm 0.3$                                    | 0.3028                                  |
|        | 7.07                               | 0.995790                            | $290.0 \pm 0.2$                                  | $290.1 \pm 0.2$                                    | 0.3031                                  |
|        | /.90                               | 0.995807                            | $290.0 \pm 0.2$                                  | $290.2 \pm 0.2$                                    | 0.3034                                  |
|        | 0.97                               | 0.993827                            | $290.0 \pm 0.2$                                  | $290.2 \pm 0.2$                                    | 0.3037                                  |
|        | 9.99                               | 0.993847                            | $289.9 \pm 0.2$                                  | $290.3 \pm 0.2$                                    | 0.3040                                  |
|        | 11.90                              | 0.995886                            | $289.9 \pm 0.2$                                  | $290.3 \pm 0.2$                                    | 0.3047                                  |
|        | 12.99                              | 0.995905                            | $239.9 \pm 0.2$<br>290.0 ± 0.2                   | $290.3 \pm 0.2$<br>291.1 ± 0.2                     | 0.3049                                  |
|        | 13.98                              | 0.995923                            | $290.0 \pm 0.2$<br>290.1 ± 0.1                   | $291.6 \pm 0.2$                                    | 0.3050                                  |
|        | 15.03                              | 0.995942                            | $290.1 \pm 0.1$                                  | 292.2 + 0.1                                        | 0.3049                                  |
|        | 15.96                              | 0.995956                            | 290.4 + 0.1                                      | 292.8 + 0.1                                        | 0.3054                                  |
|        | 18.02                              | 0.995986                            | $290.9 \pm 0.1$                                  | $294.1 \pm 0.1$                                    | 0.3057                                  |
|        | 20.01                              | 0.996013                            | $291.4 \pm 0.1$                                  | $295.2 \pm 0.1$                                    | 0.3065                                  |
|        | 24.94                              | 0.996077                            | $292.4 \pm 0.1$                                  | $296.6 \pm 0.1$                                    | 0.3074                                  |
|        | 29.94                              | 0.996147                            | $292.9 \pm 0.1$                                  | $296.7 \pm 0.1$                                    | 0.3082                                  |
|        |                                    |                                     |                                                  |                                                    |                                         |

2328

## Table 2. continued

| T/K    | $m/mmol \cdot kg^{-1}$ | $ ho/ m g\cdot cm^{-3}$ | $V_{\Phi}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\overline{V}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$ | $\alpha_p \cdot 10^3 / \mathrm{K}^{-1}$ |
|--------|------------------------|-------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------|
|        | 35.01                  | 0.996212                | $293.4 \pm 0.1$                                  | 296.8 ± 0.1                                        | 0.3089                                  |
|        | 39.95                  | 0.996271                | $293.9 \pm 0.1$                                  | 296.8 ± 0.1                                        | 0.3097                                  |
|        | 45.05                  | 0.996336                | $294.2 \pm 0.1$                                  | $296.4 \pm 0.1$                                    | 0.3105                                  |
|        | 49.73                  | 0.996396                | $294.4 \pm 0.1$                                  | $295.9 \pm 0.1$                                    | 0.3115                                  |
|        | 54.98                  | 0.996470                | $294.4 \pm 0.1$                                  | $295.7 \pm 0.1$                                    | 0.3122                                  |
|        | 60.01                  | 0.996535                | 294.6 ± 0.1                                      | $295.9 \pm 0.1$                                    | 0.3025                                  |
| 308.15 | 0                      | 0.994034                |                                                  |                                                    |                                         |
|        | 6.08                   | 0.994144                | $292.2 \pm 0.3$                                  | $292.2 \pm 0.3$                                    | 0.3453                                  |
|        | 7.07                   | 0.994162                | $292.1 \pm 0.2$                                  | $292.1 \pm 0.2$                                    | 0.3456                                  |
|        | 7.96                   | 0.994178                | $292.1 \pm 0.2$                                  | $292.1 \pm 0.2$                                    | 0.3459                                  |
|        | 8.97                   | 0.994196                | $292.1 \pm 0.2$                                  | $292.1 \pm 0.2$                                    | 0.3462                                  |
|        | 9.99                   | 0.994214                | $292.1 \pm 0.2$                                  | $292.2 \pm 0.2$                                    | 0.3466                                  |
|        | 10.96                  | 0.994232                | $292.0 \pm 0.2$                                  | $292.3 \pm 0.2$                                    | 0.3468                                  |
|        | 11.99                  | 0.994250                | $292.1 \pm 0.2$                                  | $292.5 \pm 0.2$                                    | 0.3472                                  |
|        | 12.99                  | 0.994268                | $292.1 \pm 0.2$                                  | $292.8 \pm 0.2$                                    | 0.3475                                  |
|        | 13.98                  | 0.994286                | $292.0 \pm 0.1$                                  | $293.1 \pm 0.1$                                    | 0.3477                                  |
|        | 15.03                  | 0.994304                | $292.1 \pm 0.1$                                  | $293.6 \pm 0.1$                                    | 0.3479                                  |
|        | 15.96                  | 0.994320                | $292.1 \pm 0.1$                                  | $294.0 \pm 0.1$                                    | 0.3478                                  |
|        | 18.02                  | 0.994345                | $292.8 \pm 0.1$                                  | $295.5 \pm 0.1$                                    | 0.3481                                  |
|        | 20.01                  | 0.994370                | $293.2 \pm 0.1$                                  | $296.5 \pm 0.1$                                    | 0.3484                                  |
|        | 24.94                  | 0.994432                | $294.0 \pm 0.1$                                  | $297.8 \pm 0.1$                                    | 0.3491                                  |
|        | 29.94                  | 0.994498                | $294.4 \pm 0.1$                                  | $298.0 \pm 0.1$                                    | 0.3499                                  |
|        | 35.01                  | 0.994557                | $295.0 \pm 0.1$                                  | $298.1 \pm 0.1$                                    | 0.3506                                  |
|        | 39.95                  | 0.994615                | $295.4 \pm 0.1$                                  | $297.9 \pm 0.1$                                    | 0.3512                                  |
|        | 45.05                  | 0.994675                | $295.7 \pm 0.1$                                  | $297.6 \pm 0.1$                                    | 0.3520                                  |
|        | 49.73                  | 0.994733                | $295.8 \pm 0.1$                                  | $297.3 \pm 0.1$                                    | 0.3527                                  |
|        | 54.98                  | 0.994801                | $295.9 \pm 0.1$                                  | $297.2 \pm 0.1$                                    | 0.3537                                  |
| 212.15 | 60.01                  | 0.994860                | $296.1 \pm 0.1$                                  | $297.5 \pm 0.1$                                    | 0.3543                                  |
| 313.15 | 0                      | 0.992216                | 201.1 + 0.2                                      | 2012 . 02                                          | 0.2004                                  |
|        | 6.08                   | 0.992319                | $294.4 \pm 0.3$                                  | $294.3 \pm 0.3$                                    | 0.3884                                  |
|        | 7.07                   | 0.992336                | $294.2 \pm 0.2$                                  | $294.1 \pm 0.2$                                    | 0.3887                                  |
|        | /.96                   | 0.992350                | $294.3 \pm 0.2$                                  | $294.2 \pm 0.2$                                    | 0.3890                                  |
|        | 8.97                   | 0.992307                | $294.2 \pm 0.2$                                  | $294.1 \pm 0.2$                                    | 0.3893                                  |
|        | 9.99                   | 0.992303                | $294.5 \pm 0.2$                                  | $294.5 \pm 0.2$                                    | 0.3890                                  |
|        | 10.90                  | 0.992399                | $294.2 \pm 0.2$                                  | $294.3 \pm 0.2$                                    | 0.3899                                  |
|        | 12.99                  | 0.992410                | $294.2 \pm 0.2$                                  | $294.4 \pm 0.2$                                    | 0.3902                                  |
|        | 12.99                  | 0.992432                | $294.2 \pm 0.2$                                  | $294.0 \pm 0.2$                                    | 0.3903                                  |
|        | 15.03                  | 0.992466                | $294.1 \pm 0.1$                                  | $295.1 \pm 0.1$                                    | 0.3910                                  |
|        | 15.96                  | 0.992480                | $2942 \pm 01$                                    | $295.5 \pm 0.1$                                    | 0.3910                                  |
|        | 18.02                  | 0.992506                | $294.6 \pm 0.1$                                  | $296.6 \pm 0.1$                                    | 0.3911                                  |
|        | 20.01                  | 0.992532                | $294.9 \pm 0.1$                                  | $297.5 \pm 0.1$                                    | 0.3913                                  |
|        | 24.94                  | 0.992587                | $295.8 \pm 0.1$                                  | 299.1 + 0.1                                        | 0.3919                                  |
|        | 29.94                  | 0.992647                | $296.2 \pm 0.1$                                  | $299.3 \pm 0.1$                                    | 0.3927                                  |
|        | 35.01                  | 0.992706                | $296.6 \pm 0.1$                                  | $299.2 \pm 0.1$                                    | 0.3931                                  |
|        | 39.95                  | 0.992760                | $296.9 \pm 0.1$                                  | $299.1 \pm 0.1$                                    | 0.3938                                  |
|        | 45.05                  | 0.992817                | $297.1 \pm 0.1$                                  | $298.9 \pm 0.1$                                    | 0.3945                                  |
|        | 49.73                  | 0.992871                | $297.3 \pm 0.1$                                  | $298.5 \pm 0.1$                                    | 0.3951                                  |
|        | 54.98                  | 0.992935                | $297.4 \pm 0.1$                                  | $298.3 \pm 0.1$                                    | 0.3961                                  |
|        | 60.01                  | 0.992993                | $297.5 \pm 0.1$                                  | $298.5 \pm 0.1$                                    | 0.3966                                  |
| 318.15 | 0                      | 0.990212                |                                                  |                                                    |                                         |
|        | 6.08                   | 0.990306                | $296.1 \pm 0.3$                                  | $296.1 \pm 0.3$                                    | 0.4317                                  |
|        | 7.07                   | 0.990321                | $296.1 \pm 0.2$                                  | $296.1 \pm 0.2$                                    | 0.4320                                  |
|        | 7.96                   | 0.990334                | $296.1 \pm 0.2$                                  | $296.1 \pm 0.2$                                    | 0.4323                                  |
|        | 8.97                   | 0.990349                | $296.1 \pm 0.2$                                  | $296.1 \pm 0.2$                                    | 0.4326                                  |
|        | 9.99                   | 0.990364                | $296.1 \pm 0.2$                                  | $296.2 \pm 0.2$                                    | 0.4329                                  |
|        | 10.96                  | 0.990379                | $296.1 \pm 0.2$                                  | $296.2 \pm 0.2$                                    | 0.4332                                  |
|        | 11.99                  | 0.990394                | $296.1 \pm 0.2$                                  | $296.3 \pm 0.2$                                    | 0.4335                                  |
|        | 12.99                  | 0.990409                | $296.1 \pm 0.2$                                  | $296.4 \pm 0.2$                                    | 0.4338                                  |
|        | 13.98                  | 0.990424                | $296.1 \pm 0.1$                                  | $296.6 \pm 0.1$                                    | 0.4340                                  |
|        | 15.03                  | 0.990440                | $296.1 \pm 0.1$                                  | $296.8 \pm 0.1$                                    | 0.4343                                  |

#### Table 2. continued

| T/K | $m/\text{mmol·kg}^{-1}$ | $ ho/{ m g\cdot cm^{-3}}$ | $V_{\Phi}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\overline{V}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$ | $\alpha_{P} \cdot 10^{3}/\mathrm{K}^{-1}$ |
|-----|-------------------------|---------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------|
|     | 15.96                   | 0.990454                  | 296.1 ± 0.1                                      | $297.0 \pm 0.1$                                    | 0.4344                                    |
|     | 18.02                   | 0.990480                  | $296.3 \pm 0.1$                                  | $297.8 \pm 0.1$                                    | 0.4343                                    |
|     | 20.01                   | 0.990503                  | $296.6 \pm 0.1$                                  | $298.6 \pm 0.1$                                    | 0.4344                                    |
|     | 24.94                   | 0.990558                  | $297.3 \pm 0.1$                                  | $299.9 \pm 0.1$                                    | 0.4350                                    |
|     | 29.94                   | 0.990616                  | $297.6 \pm 0.1$                                  | $300.3 \pm 0.1$                                    | 0.4357                                    |
|     | 35.01                   | 0.990671                  | $298.0 \pm 0.1$                                  | $300.5 \pm 0.1$                                    | 0.4359                                    |
|     | 39.95                   | 0.990721                  | $298.3 \pm 0.1$                                  | $300.6 \pm 0.1$                                    | 0.4366                                    |
|     | 45.05                   | 0.990774                  | 298.6 ± 0.1                                      | $300.4 \pm 0.1$                                    | 0.4372                                    |
|     | 49.73                   | 0.990824                  | $298.7 \pm 0.1$                                  | $300.0 \pm 0.1$                                    | 0.4378                                    |
|     | 54.98                   | 0.990883                  | $298.8 \pm 0.1$                                  | $299.8 \pm 0.1$                                    | 0.4387                                    |
|     | 60.01                   | 0.990938                  | $298.9 \pm 0.1$                                  | $299.9 \pm 0.1$                                    | 0.4392                                    |

<sup>*a*</sup>The relative standard uncertainty  $u_r$  of *m* is  $u_r(m) = 0.0006$ ; the standard uncertainties *u* are  $u(\rho) = 5 \cdot 10^{-6} \text{ g} \cdot \text{cm}^{-3}$ , u(T) = 0.01 K,  $u(\alpha_p) = 5 \cdot 10^{-7} \text{ K}^{-1}$ , and u(p) = 10 kPa.

in the literature.<sup>10</sup> The measured density data were used to calculate the apparent molar volumes  $(V_{\Phi})$  by:<sup>11</sup>

$$V_{\Phi} = \frac{M}{\rho} + \frac{10^{3}(\rho_{0} - \rho)}{m\rho_{0}\rho}$$
(1)

where *M* and *m* are the molar mass and the molality of the surfactant with the units being  $g \cdot mol^{-1}$  and  $mol \cdot kg^{-1}$ , respectively;  $\rho_0$  and  $\rho$  are the densities of the pure water and the surfactant solution with the unit being  $g \cdot cm^{-3}$ . The values of  $V_{\Phi}$  are listed in column 3 of Table 2, Table 3, and Table 4, respectively, and they are plotted against the reciprocal molality in Figure 2a for DTAB, b for C<sub>12</sub>HDAB, and c for C<sub>12</sub>DHAB. From each of the figures one can see that, in the low surfactant concentration region, the value of  $V_{\Phi}$  remains almost constant; when the surfactant concentration reaches a certain value it increases rapidly with the surfactant concentration.

According to the pseudophase separation mode, below the CMC, all of the surfactant molecules exist in the monomer state, and thus the apparent molar volume of the surfactant is that of the monomer

$$V_{\Phi} = V_{\Phi}^{\text{mon}} \qquad m \le \text{CMC}$$
 (2a)

while above the CMC, the total volume occupied by the surfactant is the sum of the contributions of the monomer and the micelle; hence the apparent molar volume  $V_{\Phi}$  can be expressed as:

$$V_{\Phi} = V_{\Phi}^{\text{mic}} + \frac{\text{CMC}}{m} (V_{\Phi}^{\text{mon}} - V_{\Phi}^{\text{mic}}) \qquad m > \text{CMC}$$
(2b)

where  $V_{\Phi}^{\text{mon}}$  and  $V_{\Phi}^{\text{mic}}$  are the apparent molar volumes at the monomer and micellar states, respectively. As can be seen in Figure 2, the experimental apparent molar volumes for each of the systems at each of the temperatures are well fitted by two straight lines; the right horizontal one represents eq 2a, and the left is described by eq 2b. By least-squares fitting the experimental data, the slopes and the intercepts of the two straight lines were obtained, and their intersection was determined as the CMC. The values of CMC are listed and compared with the reference values<sup>10,12</sup> in Table 5, which are in good agreement within the experimental uncertainties. The values of the slope CMC ( $V_{\Phi}^{\text{mon}} - V_{\Phi}^{\text{mic}}$ ), the intercept  $V_{\Phi}^{\text{mic}}$ , and the CMC allowed us to calculate  $V_{\Phi}^{\text{mon}}$  for each of the systems at various temperatures; the values of  $V_{\Phi}^{\text{mic}}$  and  $V_{\Phi}^{\text{mon}}$  are listed in Table 6.

As can be seen from Table 6, the apparent molar volumes at the micelle state are larger than those at the monomer state for surfactants at all temperatures studied, which can be attributed to the release of the structured water molecules around the surfactants to the less ordered bulk water during the micellization processes, since the structured water molecules pack more tightly than the bulk ones.

The volume change  $\Delta V$  of the micellization at a certain temperature  $(\Delta V = \Delta V_{\Phi}^{\text{mic}} - \Delta V_{\Phi}^{\text{mon}})$  follows the order of DTAB  $< C_{12}HDAB < C_{12}DHAB$ . It may be attributed to the different extent of the hydrogen bond formation between hydroxylethyl groups of the nearby heads at the micellar state which causes the release of water molecules from the hydration shell of the head groups to the bulk water. This is different from what was observed in the comparative studies of the micellizations of dodecyldimethylethylammonium bromide (DTEAB) and DTAB, where one of the methyl group is substituted by an ethyl group in the head of DTEAB and there is no hydrogen bond formation during micellization; hence the volume changes of the micellization are almost the same for both surfactants.<sup>13</sup> It can also be seen from Table 6 that the values of  $\Delta V$  for all surfactants decrease with temperature increasing, which may be attributed to the fact that the increase of temperature loosens the hydration shell of surfactants; thus the volume difference occupied by the structured water and the bulk water becomes smaller.

The partial molar volume  $(\overline{V})$  was calculated by<sup>14</sup>

$$\overline{V} = V_{\Phi} + m \left(\frac{\partial V_{\Phi}}{\partial m}\right)_{T,P}$$
(3)

The values of  $(\partial V_{\Phi}/\partial m)_{T,P}$  in eq 3 can be obtained by the numeric differential of the dependence of  $V_{\Phi}$  on *m* determined by the experiment. The values of the partial molar volumes of DTAB, C<sub>12</sub>HDAB, and C<sub>12</sub>DHAB at different temperatures are listed in column 4 of Table 2, Table 3, and Table 4, respectively. The variation of the partial volume with the molality also showed the turning points, and the corresponding CMC values were in consistency with that obtained from the plots of the apparent molar volume against the reciprocal molarity.

**Isobaric Thermal Expansion Coefficient.** The isobaric thermal expansion coefficient  $(\alpha_p)$  was defined as:

$$\alpha_p = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p \tag{4}$$

Table 3. Density  $\rho$ , Apparent Molar Volume  $V_{\Phi}$ , Partial Molar Volume  $\overline{V}$ , and Isobaric Thermal Expansion Coefficient  $\alpha_p$  for  $C_{12}$ HDAB at Different Molalities *m* under Temperature T = (293.15 to 318.15) K and Pressure  $p = 0.1 \text{ MPa}^a$ 

| T/K    | $m/mmol \cdot kg^{-1}$ | $ ho/{ m g}{\cdot}{ m cm}^{-3}$ | $V_{\Phi}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\overline{V}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$ | $\alpha_P \cdot 10^3 / \mathrm{K}^{-1}$ |
|--------|------------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------|
| 293.15 | 7.98                   | 0.998500                        | $302.2 \pm 0.2$                                  | $302.0 \pm 0.2$                                    | 0.2177                                  |
|        | 9.00                   | 0.998537                        | $302.2 \pm 0.2$                                  | $302.0 \pm 0.2$                                    | 0.2180                                  |
|        | 10.03                  | 0.998574                        | $302.2 \pm 0.2$                                  | $302.0 \pm 0.2$                                    | 0.2183                                  |
|        | 10.99                  | 0.998610                        | $302.1 \pm 0.2$                                  | $302.1 \pm 0.2$                                    | 0.2188                                  |
|        | 11.95                  | 0.998646                        | $302.1 \pm 0.2$                                  | $302.7 \pm 0.2$                                    | 0.2191                                  |
|        | 13.00                  | 0.998684                        | $302.1 \pm 0.2$                                  | $304.1 \pm 0.2$                                    | 0.2195                                  |
|        | 13.95                  | 0.998716                        | $302.3 \pm 0.2$                                  | $305.9 \pm 0.2$                                    | 0.2197                                  |
|        | 14.98                  | 0.998747                        | $302.7 \pm 0.1$                                  | $307.8 \pm 0.1$                                    | 0.2196                                  |
|        | 15.95                  | 0.998774                        | $303.2 \pm 0.1$                                  | $309.3 \pm 0.1$                                    | 0.2199                                  |
|        | 17.93                  | 0.998831                        | $303.9 \pm 0.1$                                  | $310.7 \pm 0.1$                                    | 0.2204                                  |
|        | 19.91                  | 0.998886                        | $304.6 \pm 0.1$                                  | $310.9 \pm 0.1$                                    | 0.2209                                  |
|        | 24.89                  | 0.999025                        | $305.8 \pm 0.1$                                  | $311.2 \pm 0.1$                                    | 0.2215                                  |
|        | 29.94                  | 0.999159                        | $306.8 \pm 0.1$                                  | 311.2 + 0.1                                        | 0.2224                                  |
|        | 34.93                  | 0.999299                        | $307.3 \pm 0.1$                                  | $310.0 \pm 0.1$                                    | 0.2231                                  |
|        | 39.90                  | 0.999439                        | $307.6 \pm 0.1$                                  | $309.8 \pm 0.1$                                    | 0.2245                                  |
|        | 44.93                  | 0.999582                        | $307.9 \pm 0.1$                                  | $310.3 \pm 0.1$                                    | 0.2252                                  |
|        | 49.82                  | 0.999714                        | $308.2 \pm 0.1$                                  | $310.6 \pm 0.1$                                    | 0.2257                                  |
|        | 54.88                  | 0.999856                        | $308.3 \pm 0.1$                                  | $309.9 \pm 0.1$                                    | 0.2272                                  |
| 298.15 | 7.98                   | 0.997328                        | $303.9 \pm 0.2$                                  | 303.7 + 0.2                                        | 0.2603                                  |
|        | 9.00                   | 0.997364                        | $303.8 \pm 0.2$                                  | $303.7 \pm 0.2$                                    | 0.2605                                  |
|        | 10.03                  | 0.997400                        | $303.8 \pm 0.2$                                  | $303.7 \pm 0.2$                                    | 0.2608                                  |
|        | 10.99                  | 0.997434                        | $303.8 \pm 0.2$                                  | $303.8 \pm 0.2$                                    | 0.2612                                  |
|        | 11.95                  | 0.997468                        | $303.8 \pm 0.2$                                  | $304.4 \pm 0.2$                                    | 0.2615                                  |
|        | 13.00                  | 0.997503                        | $304.0 \pm 0.2$                                  | $305.8 \pm 0.2$                                    | 0.2619                                  |
|        | 13.95                  | 0.997536                        | $304.0 \pm 0.2$                                  | $3074 \pm 0.2$                                     | 0.2621                                  |
|        | 14.98                  | 0.997566                        | $304.4 \pm 0.1$                                  | $309.6 \pm 0.1$                                    | 0.2621                                  |
|        | 15.95                  | 0.997591                        | $304.9 \pm 0.1$                                  | $3110 \pm 0.1$                                     | 0.2622                                  |
|        | 17.93                  | 0.997647                        | $305.5 \pm 0.1$                                  | $311.0 \pm 0.1$<br>$311.9 \pm 0.1$                 | 0.2622                                  |
|        | 19.91                  | 0.997700                        | $306.2 \pm 0.1$                                  | $311.9 \pm 0.1$<br>$311.9 \pm 0.1$                 | 0.2630                                  |
|        | 24.89                  | 0.997835                        | $307.3 \pm 0.1$                                  | $312.6 \pm 0.1$                                    | 0.2638                                  |
|        | 29.94                  | 0.997963                        | $308.3 \pm 0.1$                                  | $312.5 \pm 0.1$<br>$312.5 \pm 0.1$                 | 0.2645                                  |
|        | 34.93                  | 0.998101                        | $308.5 \pm 0.1$<br>$308.7 \pm 0.1$               | $312.9 \pm 0.1$<br>$310.9 \pm 0.1$                 | 0.2652                                  |
|        | 39.90                  | 0.998235                        | $309.1 \pm 0.1$                                  | $311.4 \pm 0.1$                                    | 0.2663                                  |
|        | 44.93                  | 0.998372                        | $309.3 \pm 0.1$                                  | $311.7 \pm 0.1$                                    | 0.2670                                  |
|        | 49.82                  | 0.998500                        | $309.6 \pm 0.1$                                  | $311.9 \pm 0.1$                                    | 0.2676                                  |
|        | 54.88                  | 0.998637                        | $309.7 \pm 0.1$                                  | $311.0 \pm 0.1$<br>$311.1 \pm 0.1$                 | 0.2688                                  |
| 303 15 | 7 98                   | 0.995920                        | $305.9 \pm 0.2$                                  | $305.8 \pm 0.2$                                    | 0.3030                                  |
| 000110 | 9.00                   | 0.995954                        | $305.9 \pm 0.2$                                  | $305.9 \pm 0.2$                                    | 0.3033                                  |
|        | 10.03                  | 0.995989                        | $305.8 \pm 0.2$                                  | $305.9 \pm 0.2$                                    | 0.3035                                  |
|        | 10.99                  | 0.996020                        | $305.9 \pm 0.2$                                  | $306.2 \pm 0.2$                                    | 0.3039                                  |
|        | 11.95                  | 0.996053                        | $305.9 \pm 0.2$                                  | 306.6 + 0.2                                        | 0.3042                                  |
|        | 13.00                  | 0.996087                        | 306.0 + 0.2                                      | 307.6 + 0.2                                        | 0.3045                                  |
|        | 13.95                  | 0.996117                        | 306.1 + 0.2                                      | $308.8 \pm 0.2$                                    | 0.3047                                  |
|        | 14.98                  | 0.996147                        | 306.4 + 0.1                                      | 310.2 + 0.1                                        | 0.3047                                  |
|        | 15.95                  | 0.996174                        | $306.7 \pm 0.1$                                  | 311.5 + 0.1                                        | 0.3047                                  |
|        | 17.93                  | 0.996226                        | $307.4 \pm 0.1$                                  | $313.1 \pm 0.1$                                    | 0.3051                                  |
|        | 19.91                  | 0.996278                        | $307.9 \pm 0.1$                                  | $313.4 \pm 0.1$                                    | 0.3053                                  |
|        | 24.89                  | 0.996408                        | $309.0 \pm 0.1$                                  | $313.6 \pm 0.1$                                    | 0.3061                                  |
|        | 29.94                  | 0.996535                        | $309.8 \pm 0.1$                                  | 313.4 + 0.1                                        | 0.3067                                  |
|        | 34.93                  | 0.996667                        | $310.2 \pm 0.1$                                  | $312.8 \pm 0.1$                                    | 0.3074                                  |
|        | 39.90                  | 0.996795                        | $310.6 \pm 0.1$                                  | $312.6 \pm 0.1$                                    | 0.3083                                  |
|        | 44.93                  | 0.996930                        | $310.8 \pm 0.1$                                  | $312.5 \pm 0.1$                                    | 0.3090                                  |
|        | 49.82                  | 0.997055                        | 311.0 + 0.1                                      | 313.1 + 0.1                                        | 0.3097                                  |
|        | 54.88                  | 0.997186                        | $311.2 \pm 0.1$                                  | $313.0 \pm 0.1$                                    | 0.3106                                  |
| 308.15 | 7.98                   | 0.994291                        | 308.0 + 0.2                                      | $307.9 \pm 0.2$                                    | 0.3459                                  |
|        | 9.00                   | 0.994324                        | $307.9 \pm 0.2$                                  | $307.8 \pm 0.2$                                    | 0.3462                                  |
|        | 10.03                  | 0.994356                        | $308.0 \pm 0.2$                                  | $307.9 \pm 0.2$                                    | 0.3465                                  |
|        | 10.99                  | 0.994387                        | $308.0 \pm 0.2$                                  | $307.9 \pm 0.2$                                    | 0.3467                                  |
|        | 11.95                  | 0.994418                        | $307.9 \pm 0.2$                                  | $308.2 \pm 0.2$                                    | 0.3470                                  |
|        | 13.00                  | 0.994451                        | $308.0 \pm 0.2$                                  | $308.9 \pm 0.2$                                    | 0.3472                                  |

### Table 3. continued

| T/K                             | $m/mmol \cdot kg^{-1}$                            | $\rho/g \cdot cm^{-3}$ | $V_{\Phi}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\overline{V}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$             | $\alpha_{\rm p} \cdot 10^3 / {\rm K}^{-1}$ |
|---------------------------------|---------------------------------------------------|------------------------|--------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|
| ,                               | 13.05                                             | 0.004/81               | $308.0 \pm 0.2$                                  | $309.8 \pm 0.2$                                                | 0 3474                                     |
|                                 | 13.95                                             | 0.994481               | $308.0 \pm 0.2$<br>$308.2 \pm 0.1$               | $309.8 \pm 0.2$                                                | 0.3475                                     |
|                                 | 15.05                                             | 0.994511               | $308.2 \pm 0.1$<br>$308.4 \pm 0.1$               | $312.5 \pm 0.1$                                                | 0.3473                                     |
|                                 | 13.95                                             | 0.994537               | $308.4 \pm 0.1$                                  | $312.3 \pm 0.1$                                                | 0.3473                                     |
|                                 | 17.95                                             | 0.004627               | $309.1 \pm 0.1$                                  | $314.5 \pm 0.1$                                                | 0.3479                                     |
|                                 | 19.91                                             | 0.994037               | $309.7 \pm 0.1$                                  | $314.7 \pm 0.1$                                                | 0.3478                                     |
|                                 | 24.89                                             | 0.994/00               | $310.3 \pm 0.1$                                  | $314.0 \pm 0.1$                                                | 0.3487                                     |
|                                 | 27.74                                             | 0.994000               | $311.5 \pm 0.1$                                  | $314.7 \pm 0.1$                                                | 0.3491                                     |
|                                 | 20.00                                             | 0.995018               | $311.0 \pm 0.1$                                  | $313.9 \pm 0.1$                                                | 0.3498                                     |
|                                 | 39.90                                             | 0.995142               | $512.0 \pm 0.1$                                  | $313.9 \pm 0.1$                                                | 0.5505                                     |
|                                 | 44.93                                             | 0.9952/4               | $312.1 \pm 0.1$                                  | $313.7 \pm 0.1$                                                | 0.3512                                     |
|                                 | 49.82                                             | 0.995395               | $312.4 \pm 0.1$                                  | $314.6 \pm 0.1$                                                | 0.3519                                     |
| 212.15                          | 54.88                                             | 0.995520               | $312.6 \pm 0.1$                                  | $314.8 \pm 0.1$                                                | 0.3526                                     |
| 313.15                          | /.98                                              | 0.992462               | $310.3 \pm 0.2$                                  | $309.8 \pm 0.2$                                                | 0.3890                                     |
|                                 | 9.00                                              | 0.992494               | $310.1 \pm 0.2$                                  | $309.6 \pm 0.2$                                                | 0.3893                                     |
|                                 | 10.03                                             | 0.992525               | $310.1 \pm 0.2$                                  | $309.7 \pm 0.2$                                                | 0.3896                                     |
|                                 | 10.99                                             | 0.992554               | $310.1 \pm 0.2$                                  | $309.7 \pm 0.2$                                                | 0.3898                                     |
|                                 | 11.95                                             | 0.992584               | $310.0 \pm 0.2$                                  | $309.8 \pm \pm 0.2$                                            | 0.3901                                     |
|                                 | 13.00                                             | 0.992616               | $310.0 \pm 0.2$                                  | $310.3 \pm 0.2$                                                | 0.3902                                     |
|                                 | 13.95                                             | 0.992644               | $310.1 \pm 0.2$                                  | $311.0 \pm 0.2$                                                | 0.3904                                     |
|                                 | 14.98                                             | 0.992676               | $310.0 \pm 0.1$                                  | $312.0 \pm 0.1$                                                | 0.3905                                     |
|                                 | 15.95                                             | 0.992701               | $310.3 \pm 0.1$                                  | $313.4 \pm 0.1$                                                | 0.3902                                     |
|                                 | 17.93                                             | 0.992750               | $310.9 \pm 0.1$                                  | $315.4 \pm 0.1$                                                | 0.3905                                     |
|                                 | 19.91                                             | 0.992800               | $311.3 \pm 0.1$                                  | $316.0 \pm 0.1$                                                | 0.3906                                     |
|                                 | 24.89                                             | 0.992920               | $312.3 \pm 0.1$                                  | $316.2 \pm 0.1$                                                | 0.3916                                     |
|                                 | 29.94                                             | 0.993043               | $312.9 \pm 0.1$                                  | $315.2 \pm 0.1$                                                | 0.3918                                     |
|                                 | 34.93                                             | 0.993170               | $313.1 \pm 0.1$                                  | $315.0 \pm 0.1$                                                | 0.3924                                     |
|                                 | 39.90                                             | 0.993291               | $313.4 \pm 0.1$                                  | $315.1 \pm 0.1$                                                | 0.3929                                     |
|                                 | 44.93                                             | 0.993419               | $313.6 \pm 0.1$                                  | $315.0 \pm 0.1$                                                | 0.3936                                     |
|                                 | 49.82                                             | 0.993537               | $313.8 \pm 0.1$                                  | $315.7 \pm 0.1$                                                | 0.3944                                     |
|                                 | 54.88                                             | 0.993660               | $313.9 \pm 0.1$                                  | $315.6 \pm 0.1$                                                | 0.3947                                     |
| 318.15                          | 7.98                                              | 0.990446               | $312.1 \pm 0.2$                                  | $311.8 \pm 0.2$                                                | 0.4324                                     |
|                                 | 9.00                                              | 0.990476               | $312.1 \pm 0.2$                                  | $311.7 \pm 0.2$                                                | 0.4327                                     |
|                                 | 10.03                                             | 0.990506               | $312.0 \pm 0.2$                                  | $311.6 \pm 0.2$                                                | 0.4330                                     |
|                                 | 10.99                                             | 0.990534               | $312.0 \pm 0.2$                                  | $311.6 \pm 0.2$                                                | 0.4331                                     |
|                                 | 11.95                                             | 0.990562               | $312.0 \pm 0.2$                                  | $311.6 \pm 0.2$                                                | 0.4334                                     |
|                                 | 13.00                                             | 0.990593               | $311.9 \pm 0.2$                                  | $311.8 \pm 0.2$                                                | 0.4335                                     |
|                                 | 13.95                                             | 0.990621               | $311.9 \pm 0.2$                                  | $312.1 \pm 0.2$                                                | 0.4337                                     |
|                                 | 14.98                                             | 0.990650               | $312.0 \pm 0.1$                                  | $312.9 \pm 0.1$                                                | 0.4337                                     |
|                                 | 15.95                                             | 0.990679               | $311.9 \pm 0.1$                                  | $313.7 \pm 0.1$                                                | 0.4333                                     |
|                                 | 17.93                                             | 0.990727               | $312.4 \pm 0.1$                                  | $315.9 \pm 0.1$                                                | 0.4336                                     |
|                                 | 19.91                                             | 0.990776               | $312.8 \pm 0.1$                                  | $316.9 \pm 0.1$                                                | 0.4336                                     |
|                                 | 24.89                                             | 0.990893               | $313.7 \pm 0.1$                                  | $317.5 \pm 0.1$                                                | 0.4346                                     |
|                                 | 29.94                                             | 0.991013               | $314.3 \pm 0.1$                                  | $316.5 \pm 0.1$                                                | 0.4347                                     |
|                                 | 34.93                                             | 0.991136               | $314.5 \pm 0.1$                                  | $316.4 \pm 0.1$                                                | 0.4353                                     |
|                                 | 39.90                                             | 0.991254               | $314.8 \pm 0.1$                                  | $316.4 \pm 0.1$                                                | 0.4356                                     |
|                                 | 44.93                                             | 0.991378               | $314.9 \pm 0.1$                                  | $316.7 \pm 0.1$                                                | 0.4362                                     |
|                                 | 49.82                                             | 0.991490               | $315.2 \pm 0.1$                                  | $317.0 \pm 0.1$                                                | 0.4371                                     |
|                                 | 54.88                                             | 0.991613               | $315.3 \pm 0.1$                                  | $316.1 \pm 0.1$                                                | 0.4372                                     |
| <sup>a</sup> The relative stand | ard uncertainty $u_{\rm r}$ of $m$ is $u_{\rm r}$ | (m) = 0.0006; the stan | dard uncertainties $u$ are $u(\rho$              | $(v) = 5 \cdot 10^{-6} \text{ g} \cdot \text{cm}^{-3}, u(T) =$ | 0.01 K, $u(\alpha_p) = 5 \cdot 10^{-7}$    |

 $K^{-1}$ , and u(p) = 10 kPa.

where *V* is the volume of the sample. Equation 4 can be rewritten as:

$$\alpha_{\rm p} = -\frac{1}{\rho} \left( \frac{\partial \rho}{\partial T} \right)_{\rm p} \tag{5}$$

The values of  $(\partial \rho / \partial T)_p$  in eq 5 can be obtained by differential of the dependence of  $\rho$  on *T*, which was well-expressed by a quadratic form. The values of isobaric thermal expansion coefficients calculated by eq 5 for aqueous solutions of DTAB,

C<sub>12</sub>HDAB, and C<sub>12</sub>DHAB at six different temperatures are listed in column 5 of Table 2, Table 3, and Table 4, respectively; the uncertainty in determination of  $\alpha_p$  was estimated to be about  $\pm$  $5 \cdot 10^{-7}$  K<sup>-1</sup>. As an example, a typical plot of the isobaric thermal expansion coefficient against the molality of DTAB at 303.15 K is illustrated in Figure 3. It can be observed that  $\alpha_p$  increases with the concentration of the surfactant, which may be interpreted by that increase of the amount of the surfactant in an aqueous solution results in the increase of the structured water molecules around the surfactant, hence in the increase of the amount of the Table 4. Density  $\rho$ , Apparent Molar Volume  $V_{\Phi}$ , Partial Molar Volume  $\overline{V}$ , and Isobaric Thermal Expansion Coefficient  $\alpha_p$  for C<sub>12</sub>DHAB at Different Molalities *m* under Temperature T = (293.15 to 318.15) K and Pressure  $p = 0.1 \text{ MPa}^a$ 

| T/K    | $m/mmol \cdot kg^{-1}$ | $ ho/\text{g}\cdot\text{cm}^{-3}$ | $V_{\Phi}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\overline{V}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\alpha_{P} \cdot 10^{3}/\mathrm{K}^{-1}$ |
|--------|------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| 293.15 | 4.97                   | 0.998465                          | $317.0 \pm 0.3$                                  | $317.5 \pm 0.3$                                      | 0.2172                                    |
|        | 6.07                   | 0.998521                          | $317.2 \pm 0.3$                                  | $317.6 \pm 0.3$                                      | 0.2176                                    |
|        | 6.98                   | 0.998568                          | $317.2 \pm 0.3$                                  | $317.5 \pm 0.3$                                      | 0.2180                                    |
|        | 8.05                   | 0.998622                          | $317.3 \pm 0.2$                                  | $317.7 \pm 0.2$                                      | 0.2184                                    |
|        | 9.09                   | 0.998675                          | $317.3 \pm 0.2$                                  | $318.1 \pm 0.2$                                      | 0.2187                                    |
|        | 10.02                  | 0.998722                          | $317.4 \pm 0.2$                                  | $318.9 \pm 0.2$                                      | 0.2190                                    |
|        | 11.09                  | 0.998774                          | $317.7 \pm 0.2$                                  | $320.2 \pm 0.2$                                      | 0.2192                                    |
|        | 12.02                  | 0.998818                          | $317.9 \pm 0.2$                                  | $321.5 \pm 0.2$                                      | 0.2193                                    |
|        | 13.06                  | 0.998867                          | $318.2 \pm 0.2$                                  | $323.2 \pm 0.2$                                      | 0.2195                                    |
|        | 14.14                  | 0.998915                          | $318.7 \pm 0.2$                                  | $325.4 \pm 0.2$                                      | 0.2198                                    |
|        | 15.05                  | 0.998953                          | $319.1 \pm 0.1$                                  | $327.0 \pm 0.1$                                      | 0.2197                                    |
|        | 16.09                  | 0.998993                          | $319.8 \pm 0.1$                                  | $327.7 \pm 0.1$                                      | 0.2198                                    |
|        | 18.15                  | 0.999080                          | $320.6 \pm 0.1$                                  | $326.9 \pm 0.1$                                      | 0.2205                                    |
|        | 20.08                  | 0.999160                          | $321.2 \pm 0.1$                                  | $327.1 \pm 0.1$                                      | 0.2205                                    |
|        | 25.18                  | 0.999367                          | $322.5 \pm 0.1$                                  | $327.9 \pm 0.1$                                      | 0.2214                                    |
|        | 30.23                  | 0.999571                          | $323.4 \pm 0.1$                                  | $327.2 \pm 0.1$                                      | 0.2219                                    |
|        | 35.25                  | 0.999778                          | $323.8 \pm 0.1$                                  | $326.7 \pm 0.1$                                      | 0.2233                                    |
|        | 40.28                  | 0.999983                          | $324.2 \pm 0.1$                                  | $326.5 \pm 0.1$                                      | 0.2239                                    |
|        | 45.12                  | 1.000187                          | $324.4 \pm 0.1$                                  | $325.9 \pm 0.1$                                      | 0.2248                                    |
|        | 50.25                  | 1.000398                          | $324.6 \pm 0.1$                                  | $326.7 \pm 0.1$                                      | 0.2258                                    |
| 298.15 | 4.97                   | 0.997294                          | $319.4 \pm 0.3$                                  | $319.4 \pm 0.3$                                      | 0.2596                                    |
|        | 6.07                   | 0.997349                          | $319.4 \pm 0.3$                                  | $319.4 \pm 0.3$                                      | 0.2600                                    |
|        | 6.98                   | 0.997394                          | $319.4 \pm 0.3$                                  | $319.5 \pm 0.3$                                      | 0.2603                                    |
|        | 8.05                   | 0.997446                          | $319.5 \pm 0.2$                                  | $319.5 \pm 0.2$                                      | 0.2607                                    |
|        | 9.09                   | 0.997498                          | $319.4 \pm 0.2$                                  | $319.3 \pm 0.2$                                      | 0.2610                                    |
|        | 10.02                  | 0.997544                          | $319.4 \pm 0.2$                                  | $319.6 \pm 0.2$                                      | 0.2613                                    |
|        | 11.09                  | 0.997597                          | $319.4 \pm 0.2$                                  | $320.9 \pm 0.2$                                      | 0.2615                                    |
|        | 12.02                  | 0.997641                          | $319.6 \pm 0.2$                                  | $322.8 \pm 0.2$                                      | 0.2617                                    |
|        | 13.06                  | 0.997686                          | $320.1 \pm 0.2$                                  | $325.0 \pm 0.2$                                      | 0.2618                                    |
|        | 14.14                  | 0.097734                          | $320.4 \pm 0.2$                                  | $326.7 \pm 0.2$                                      | 0.2620                                    |
|        | 15.05                  | 0.997//1                          | $320.9 \pm 0.1$                                  | $328.0 \pm 0.1$                                      | 0.262                                     |
|        | 10.09                  | 0.007807                          | $521.5 \pm 0.1$                                  | $328.4 \pm 0.1$                                      | 0.2021                                    |
|        | 20.08                  | 0.997976                          | $322.1 \pm 0.1$<br>$322.6 \pm 0.1$               | $327.7 \pm 0.1$<br>$328.1 \pm 0.1$                   | 0.2628                                    |
|        | 25.18                  | 0.998178                          | $323.9 \pm 0.1$                                  | $329.0 \pm 0.1$                                      | 0.2635                                    |
|        | 30.23                  | 0.998380                          | $324.7 \pm 0.1$                                  | $3284 \pm 0.1$                                       | 0.2641                                    |
|        | 35.25                  | 0.998580                          | $325.2 \pm 0.1$                                  | $328.4 \pm 0.1$                                      | 0.2652                                    |
|        | 40.28                  | 0.998782                          | $325.6 \pm 0.1$                                  | $327.4 \pm 0.1$                                      | 0.2658                                    |
|        | 45.12                  | 0.998981                          | $325.7 \pm 0.1$                                  | $327.2 \pm 0.1$                                      | 0.2666                                    |
|        | 50.25                  | 0.999187                          | $325.9 \pm 0.1$                                  | $328.1 \pm 0.1$                                      | 0.2675                                    |
| 303.15 | 4.97                   | 0.995890                          | $321.6 \pm 0.3$                                  | $321.8 \pm 0.3$                                      | 0.3022                                    |
|        | 6.07                   | 0.995942                          | $321.7 \pm 0.3$                                  | $321.9 \pm 0.3$                                      | 0.3026                                    |
|        | 6.98                   | 0.995986                          | $321.6 \pm 0.3$                                  | $321.7 \pm 0.3$                                      | 0.3029                                    |
|        | 8.05                   | 0.996036                          | $321.7 \pm 0.2$                                  | $321.8 \pm 0.2$                                      | 0.3032                                    |
|        | 9.09                   | 0.996086                          | $321.7 \pm 0.2$                                  | $321.8 \pm 0.2$                                      | 0.3035                                    |
|        | 10.02                  | 0.996130                          | $321.7 \pm 0.2$                                  | $322.3 \pm 0.2$                                      | 0.3038                                    |
|        | 11.09                  | 0.996180                          | $321.8 \pm 0.2$                                  | $323.2 \pm 0.2$                                      | 0.3040                                    |
|        | 12.02                  | 0.996222                          | $322.0 \pm 0.2$                                  | $324.3 \pm 0.2$                                      | 0.3042                                    |
|        | 13.06                  | 0.996268                          | $322.2 \pm 0.2$                                  | $325.5 \pm 0.2$                                      | 0.3043                                    |
|        | 14.14                  | 0.996315                          | $322.5 \pm 0.2$                                  | $326.9 \pm 0.2$                                      | 0.3044                                    |
|        | 15.05                  | 0.996353                          | $322.8 \pm 0.1$                                  | $328.1 \pm 0.1$                                      | 0.3044                                    |
|        | 16.09                  | 0.996394                          | $323.2 \pm 0.1$                                  | $329.1 \pm 0.1$                                      | 0.3045                                    |
|        | 18.15                  | 0.996476                          | $323.9 \pm 0.1$                                  | $329.4 \pm 0.1$                                      | 0.3049                                    |
|        | 20.08                  | 0.996554                          | $324.4 \pm 0.1$                                  | $329.4 \pm 0.1$                                      | 0.3052                                    |
|        | 25.18                  | 0.996752                          | $325.6 \pm 0.1$                                  | $330.2 \pm 0.1$                                      | 0.3058                                    |
|        | 30.23                  | 0.996950                          | $326.3 \pm 0.1$                                  | $329.6 \pm 0.1$                                      | 0.3064                                    |
|        | 33.23                  | 0.007244                          | $320.8 \pm 0.1$                                  | $329.0 \pm 0.1$                                      | 0.3072                                    |
|        | 40.28                  | 0.007520                          | $32/.1 \pm 0.1$                                  | $328.7 \pm 0.1$                                      | 0.30/8                                    |
|        | 43.12                  | 0.77/337                          | $327.2 \pm 0.1$                                  | $320.5 \pm 0.1$<br>$320.5 \pm 0.1$                   | 0.3000                                    |
|        | 50.25                  | 0.77// TU                         | 54/.T <u>1</u> 0.1                               | 547.5 <u>1</u> 0.1                                   | 0.3073                                    |

## Table 4. continued

| T/K    | $m/\text{mmol}\cdot\text{kg}^{-1}$ | $ ho/	ext{g}\cdot	ext{cm}^{-3}$ | $V_{\Phi}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $\overline{V}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$ | $\alpha_{p} \cdot 10^{3} / \mathrm{K}^{-1}$ |
|--------|------------------------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------|
| 308.15 | 4.97                               | 0.994266                        | $323.7 \pm 0.3$                                  | $323.7 \pm 0.3$                                    | 0.3450                                      |
|        | 6.07                               | 0.994317                        | $323.7 \pm 0.3$                                  | $323.7 \pm 0.3$                                    | 0.3453                                      |
|        | 6.98                               | 0.994359                        | $323.7 \pm 0.3$                                  | $323.7 \pm 0.3$                                    | 0.3456                                      |
|        | 8.05                               | 0.994408                        | $323.7 \pm 0.2$                                  | $323.7 \pm 0.2$                                    | 0.3459                                      |
|        | 9.09                               | 0.994456                        | $323.7 \pm 0.2$                                  | $323.6 \pm 0.2$                                    | 0.3462                                      |
|        | 10.02                              | 0.994499                        | $323.7 \pm 0.2$                                  | $323.7 \pm 0.2$                                    | 0.3465                                      |
|        | 11.09                              | 0.994548                        | $323.7 \pm 0.2$                                  | $324.2 \pm 0.2$                                    | 0.3467                                      |
|        | 12.02                              | 0.994590                        | $323.8 \pm 0.2$                                  | $325.0 \pm 0.2$                                    | 0.3469                                      |
|        | 13.06                              | 0.994637                        | $323.8 \pm 0.2$                                  | $326.6 \pm 0.2$                                    | 0.3470                                      |
|        | 14.14                              | 0.994681                        | $324.2 \pm 0.2$                                  | $328.8 \pm 0.2$                                    | 0.3471                                      |
|        | 15.05                              | 0.994719                        | $324.4 \pm 0.1$                                  | $330.3 \pm 0.1$                                    | 0.3471                                      |
|        | 16.09                              | 0.994756                        | 325.1 + 0.1                                      | 331.4 + 0.1                                        | 0.3472                                      |
|        | 18.15                              | 0.994837                        | 325.7 + 0.1                                      | $330.8 \pm 0.1$                                    | 0.3474                                      |
|        | 20.08                              | 0.994913                        | $326.1 \pm 0.1$                                  | $330.5 \pm 0.1$                                    | 0.3478                                      |
|        | 25.18                              | 0.995110                        | 327.1 + 0.1                                      | $330.9 \pm 0.1$                                    | 0.3483                                      |
|        | 30.23                              | 0.995305                        | $327.7 \pm 0.1$                                  | $330.9 \pm 0.1$                                    | 0.3488                                      |
|        | 35.25                              | 0.995497                        | $328.2 \pm 0.1$                                  | $330.8 \pm 0.1$                                    | 0.3494                                      |
|        | 40.28                              | 0.995692                        | $328.4 \pm 0.1$                                  | $329.7 \pm 0.1$                                    | 0.3500                                      |
|        | 45.12                              | 0.995884                        | $328.5 \pm 0.1$                                  | $329.6 \pm 0.1$                                    | 0.3507                                      |
|        | 50.25                              | 0.996082                        | $328.7 \pm 0.1$                                  | $330.6 \pm 0.1$                                    | 0.3513                                      |
| 313.15 | 4.97                               | 0.992443                        | $325.8 \pm 0.3$                                  | $325.9 \pm 0.3$                                    | 0.3880                                      |
| 515.15 | 4.97                               | 0.992492                        | $325.9 \pm 0.3$                                  | $325.9 \pm 0.3$                                    | 0.3883                                      |
|        | 6.98                               | 0.992533                        | $325.9 \pm 0.3$<br>$325.8 \pm 0.3$               | $325.9 \pm 0.3$                                    | 0.3885                                      |
|        | 8.05                               | 0.992580                        | $325.9 \pm 0.2$                                  | $325.9 \pm 0.9$<br>$326.1 \pm 0.2$                 | 0.3887                                      |
|        | 8.05                               | 0.992580                        | $325.9 \pm 0.2$                                  | $326.1 \pm 0.2$                                    | 0.3801                                      |
|        | 9.09                               | 0.992620                        | $325.9 \pm 0.2$                                  | $326.2 \pm 0.2$                                    | 0.3894                                      |
|        | 11.00                              | 0.992007                        | $323.9 \pm 0.2$                                  | $326.2 \pm 0.2$                                    | 0.3897                                      |
|        | 11.09                              | 0.992/14                        | $320.0 \pm 0.2$                                  | $320.2 \pm 0.2$                                    | 0.3897                                      |
|        | 12.02                              | 0.992/33                        | $320.0 \pm 0.2$                                  | $320.4 \pm 0.2$                                    | 0.3898                                      |
|        | 13.00                              | 0.992801                        | $320.0 \pm 0.2$                                  | $327.1 \pm 0.2$                                    | 0.3898                                      |
|        | 14.14                              | 0.99284/                        | $520.1 \pm 0.2$                                  | $326.7 \pm 0.2$                                    | 0.3899                                      |
|        | 15.05                              | 0.992884                        | $320.5 \pm 0.1$                                  | $330.4 \pm 0.1$                                    | 0.3899                                      |
|        | 10.09                              | 0.992925                        | $320.7 \pm 0.1$                                  | $331.9 \pm 0.1$                                    | 0.3900                                      |
|        | 10.15                              | 0.993001                        | $327.4 \pm 0.1$                                  | $332.5 \pm 0.1$                                    | 0.3901                                      |
|        | 20.08                              | 0.993070                        | $327.7 \pm 0.1$                                  | $332.1 \pm 0.1$                                    | 0.3900                                      |
|        | 25.18                              | 0.993207                        | $328.7 \pm 0.1$                                  | $332.5 \pm 0.1$                                    | 0.3910                                      |
|        | 30.23                              | 0.993400                        | $329.2 \pm 0.1$                                  | $331.0 \pm 0.1$                                    | 0.3910                                      |
|        | 35.25                              | 0.993649                        | $329.7 \pm 0.1$                                  | $332.1 \pm 0.1$                                    | 0.3918                                      |
|        | 40.28                              | 0.993840                        | $329.9 \pm 0.1$                                  | $331.3 \pm 0.1$                                    | 0.3925                                      |
|        | 45.12                              | 0.994027                        | $330.0 \pm 0.1$                                  | $331.0 \pm 0.1$                                    | 0.3932                                      |
| 210.15 | 50.25                              | 0.994223                        | $330.1 \pm 0.1$                                  | $331.5 \pm 0.1$                                    | 0.3935                                      |
| 516.15 | 4.97                               | 0.990430                        | $327.8 \pm 0.3$                                  | $327.5 \pm 0.3$                                    | 0.4312                                      |
|        | 6.07                               | 0.990478                        | $327.8 \pm 0.3$                                  | $327.5 \pm 0.5$                                    | 0.4315                                      |
|        | 0.98                               | 0.990318                        | $327.7 \pm 0.3$                                  | $327.4 \pm 0.3$                                    | 0.4317                                      |
|        | 8.05                               | 0.990564                        | $327.7 \pm 0.2$                                  | $327.6 \pm 0.2$                                    | 0.4319                                      |
|        | 9.09                               | 0.990609                        | $327.7 \pm 0.2$                                  | $32/.7 \pm 0.2$                                    | 0.4322                                      |
|        | 10.02                              | 0.990649                        | $327.7 \pm 0.2$                                  | $327.8 \pm 0.2$                                    | 0.4325                                      |
|        | 11.09                              | 0.990695                        | $327.7 \pm 0.2$                                  | $32/.8 \pm 0.2$                                    | 0.4329                                      |
|        | 12.02                              | 0.990735                        | $327.7 \pm 0.2$                                  | $328.0 \pm 0.2$                                    | 0.4330                                      |
|        | 13.06                              | 0.990780                        | $327.7 \pm 0.2$                                  | $328.6 \pm 0.2$                                    | 0.4330                                      |
|        | 14.14                              | 0.990825                        | $327.8 \pm 0.2$                                  | $329.9 \pm 0.2$                                    | 0.4330                                      |
|        | 15.05                              | 0.990862                        | $328.0 \pm 0.1$                                  | $331.3 \pm 0.1$                                    | 0.4330                                      |
|        | 16.09                              | 0.990900                        | $328.4 \pm 0.1$                                  | $332.5 \pm 0.1$                                    | 0.4331                                      |
|        | 18.15                              | 0.990980                        | $328.8 \pm 0.1$                                  | $333.3 \pm 0.1$                                    | 0.4331                                      |
|        | 20.08                              | 0.991051                        | $329.3 \pm 0.1$                                  | $333.7 \pm 0.1$                                    | 0.4336                                      |
|        | 25.18                              | 0.991242                        | $330.1 \pm 0.1$                                  | $333.2 \pm 0.1$                                    | 0.4339                                      |
|        | 30.23                              | 0.991431                        | $330.6 \pm 0.1$                                  | $332.9 \pm 0.1$                                    | 0.4345                                      |
|        | 35.25                              | 0.991620                        | $330.9 \pm 0.1$                                  | $333.0 \pm 0.1$                                    | 0.435                                       |
|        | 40.28                              | 0.991807                        | $331.2 \pm 0.1$                                  | $332.7 \pm 0.1$                                    | 0.4352                                      |
|        | 45.12                              | 0.991991                        | $331.3 \pm 0.1$                                  | $332.1 \pm 0.1$                                    | 0.4358                                      |
|        | 50.25                              | 0.992184                        | $331.4 \pm 0.1$                                  | $332.5 \pm 0.1$                                    | 0.4360                                      |

#### Table 4. continued

<sup>a</sup>The relative standard uncertainty  $u_r$  of m is  $u_r(m) = 0.0006$ ; the standard uncertainties u are  $u(\rho) = 5 \cdot 10^{-6}$  g·cm<sup>-3</sup>, u(T) = 0.01 K,  $u(\alpha_p) = 5 \cdot 10^{-7}$  $K^{-1}$ , and u(p) = 10 kPa.



Figure 2. Dependence of the apparent molar volume on the reprocical molality of the surfactants: a, DTAB; b, C12HDAB; c, C12DHAB. The symbols represent the experimental data:  $\Rightarrow$ , 318.15 K;  $\bullet$ , 313.15 K;  $\triangle$ , 308.15 K; ▲, 303.15 K; O, 298.15 K; ■, 293.15 K; the lines are the results of the fits.

structured water being loosened due to increase of the temperature. There is a clear discontinuity in the plot of  $\alpha_{\rm P}$ against the concentration as shown in Figure 3, where the

concentration coincides well with the CMC value for DTAB at 303.15 K. Similar discontinuities and the consistency in the CMC values were observed for aqueous solutions of C12HDAB, C12DHAB, and DTAB at all temperatures studied. After the micellization, the amount of the structured water around the surfactant significantly reduces; thus the discontinuities on the plots of  $\alpha_{\rm P}$  against the concentration of the surfactant are expected.

The apparent thermal expansion coefficient  $\alpha_p^i$  (i = monomer or micellar state) of the surfactant at the monomer state or the micellar state can be calculated through

$$\alpha_p^{i} = \frac{1}{V_{\Phi}^{i}} \left( \frac{\partial V_{\Phi}^{i}}{\partial T} \right)_p = -\frac{1}{\rho^{i}} \left( \frac{\partial \rho^{i}}{\partial T} \right)_p \tag{6}$$

The values of  $(\partial_{\rho}^{i}/\partial T)_{p}$  in eq 6 can be obtained by differential of the dependences of  $\rho^{i}$  on T, which were well-described by linear forms for both monomer and micellar states of all systems we studied. Table 6 also lists the values of  $\alpha_{P}^{i}$  from which one can see that at the micellar state  $\alpha_p^{\rm mic}$  decreases with the increase of the hydroxyethyl substituent number, which may be attributed to the fact that the hydrogen bonding formation between hydroxyethyl groups disorders the structured water around the headgroups, which reduces the extent to further loosen their structure order during increasing the temperature; while at the monomer state, the distinction between C<sub>12</sub>HDAB and C<sub>12</sub>DHA in the isobaric thermal expansion  $\alpha_p^{\text{mon}}$  is not obvious, because the hydrogen bonding between the headgroups hardly forms in the dilute surfactant monomer aqueous solutions.

Micellization Thermodynamics. The conductivity is plotted against the concentration for each of surfactant solutions and each of the temperatures in Figure 4a for C12HDAB and Figure 4b for  $C_{12}$ DHAB, respectively, from which one can clearly see a turning point for each of the curves. By least-squares fitting of the experiment data before and after the point, two straight lines can be obtained whose intersection was taken as the CMC. The values of the CMC obtained by the conductivity measurements are listed in row 6 for C12HDAB and row 10 for C12DHAB in Table 5. The CMC values detected by using the conductivity method were in good consistence with that determined by measurements of the density and agreed well

| <b>Fable 5. CMC Values of DTAI</b> | B, C12HDAB, and C12DHAB at Temp | perature $T = (293.15 \text{ to } 318.15)$ | ) K and Pressure <i>p</i> = 0.1 MPa <sup>a</sup> |
|------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------------|
|------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------------|

| T/K                                      | 293.15            | 298.15             | 303.15                               | 308.15             | 313.15             | 318.15             |
|------------------------------------------|-------------------|--------------------|--------------------------------------|--------------------|--------------------|--------------------|
|                                          |                   |                    | DTAB                                 |                    |                    |                    |
| CMC <sup>dm</sup> /mmol·kg <sup>-1</sup> | $14.3 \pm 0.3$    | $14.7 \pm 0.4$     | $15.4 \pm 0.4$                       | $15.9 \pm 0.3$     | $16.4 \pm 0.4$     | $17.6 \pm 0.7$     |
| $\rm CMC^r/mmol\cdot L^{-1}$             | 14.3 <sup>b</sup> | 14.6 <sup>b</sup>  | 15.1 <sup>b</sup> ,15.3 <sup>c</sup> | 15.9 <sup>b</sup>  | 16.6 <sup>b</sup>  | 17.5 <sup>b</sup>  |
|                                          |                   |                    | C <sub>12</sub> HDAB                 |                    |                    |                    |
| CMC <sup>cm</sup> /mmol·kg <sup>-1</sup> | $13.1 \pm 0.4$    | $13.4 \pm 0.7$     | $13.5 \pm 0.7$                       | $13.9 \pm 0.6$     | $14.2 \pm 0.5$     | $14.9 \pm 0.8$     |
| CMC <sup>dm</sup> /mmol·kg <sup>-1</sup> | $13.7 \pm 0.3$    | $13.9 \pm 0.4$     | $14.1 \pm 0.4$                       | $14.5 \pm 0.3$     | $14.9 \pm 0.3$     | $15.6 \pm 0.3$     |
| $\rm CMC^r/mmol\cdot L^{-1}$             |                   | 13.20 <sup>d</sup> | 13.43 <sup>d</sup>                   | 13.92 <sup>d</sup> | 14.22 <sup>d</sup> | 14.83 <sup>d</sup> |
|                                          |                   |                    | C <sub>12</sub> DHAB                 |                    |                    |                    |
| CMC <sup>cm</sup> /mmol·kg <sup>-1</sup> | $12.1 \pm 0.3$    | $12.3 \pm 0.4$     | $12.6 \pm 0.5$                       | $13.0 \pm 0.5$     | $13.3 \pm 0.7$     | $13.8 \pm 0.6$     |
| CMC <sup>dm</sup> /mmol·kg <sup>-1</sup> | $12.1 \pm 0.3$    | $12.4 \pm 0.4$     | $12.6 \pm 0.4$                       | $13.0 \pm 0.2$     | $13.5 \pm 0.6$     | $13.9 \pm 0.4$     |
| CMC <sup>r</sup> /mmol·L <sup>-1</sup>   |                   | 12.46 <sup>d</sup> | $12.62^{d}$                          | 13.09 <sup>d</sup> | 13.36 <sup>d</sup> | 13.89 <sup>d</sup> |
|                                          |                   |                    |                                      |                    |                    |                    |

<sup>a</sup>CMC<sup>cm</sup>: determined by conductivity measurement in this work, CMC<sup>dm</sup>: determined by density measurement in this work, CMC': from reference. The standard uncertainties u are u(T) = 0.01 K and u(p) = 10 kPa. <sup>b</sup>Reference 10. <sup>c</sup>Reference 12. <sup>d</sup>Reference 6.

Table 6. Volumetric Properties of DTAB,  $C_{12}$ HDAB, and  $C_{12}$ DHAB at Monomer and Micellar States at Temperature T = (293.15 to 318.15) K and Pressure  $p = 0.1 \text{ MPa}^a$ 

| T/K                                                             | 293.15          | 298.15                         | 303.15               | 308.15                         | 313.15          | 318.15          |
|-----------------------------------------------------------------|-----------------|--------------------------------|----------------------|--------------------------------|-----------------|-----------------|
|                                                                 |                 |                                | DTAB                 |                                |                 |                 |
| $V_{\Phi}^{\mathrm{mon}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$ | 286.1 ± 0.1     | $287.9 \pm 0.1$<br>$288.2^{b}$ | $290.0 \pm 0.1$      | $292.1 \pm 0.1$<br>$292.2^{b}$ | 294.1 ± 0.1     | $296.1 \pm 0.1$ |
| $V_{\Phi}^{ m mic}/ m cm^3 \cdot mol^{-1}$                      | $293.4 \pm 0.1$ | $294.7 \pm 0.2$<br>$294.8^{b}$ | $296.3 \pm 0.1$      | $297.5 \pm 0.1$<br>$297.5^{b}$ | $298.7\pm0.1$   | $300.2 \pm 0.1$ |
| $\Delta V/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$                | $7.3 \pm 0.2$   | $6.8 \pm 0.3$<br>$6.6^{b}$     | $6.3 \pm 0.2$        | $5.4 \pm 0.2$<br>$5.3^{b}$     | $4.6 \pm 0.2$   | $4.1 \pm 0.2$   |
| $\alpha^{\text{mon}} \cdot 10^3 / \text{K}^{-1}$                | 1.4086          | 1.3996                         | 1.3899               | 1.3797                         | 1.3702          | 1.3613          |
| $\alpha^{\rm mic} \cdot 10^3/{\rm K}^{-1}$                      | 0.9167          | 0.9127                         | 0.9080               | 0.9042                         | 0.9005          | 0.8961          |
|                                                                 |                 |                                | C <sub>12</sub> HDAB |                                |                 |                 |
| $V_{\Phi}^{\rm mon}/{\rm cm}^3 \cdot {\rm mol}^{-1}$            | 302.1 ± 0.2     | $303.9 \pm 0.2$                | $305.9 \pm 0.2$      | 307.9 ± 0.1                    | $310.0 \pm 0.1$ | 311.8 ± 0.1     |
| $V_{\Phi}^{ m mic}/ m cm^3 \cdot mol^{-1}$                      | $310.5 \pm 0.1$ | 311.8 ± 0.1                    | 313.1 ± 0.1          | 314.2 ± 0.1                    | $315.5 \pm 0.1$ | $316.7 \pm 0.1$ |
| $\Delta V/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$                | $8.4 \pm 0.3$   | $7.9 \pm 0.3$                  | $7.2 \pm 0.3$        | $6.3 \pm 0.2$                  | $5.5 \pm 0.2$   | $4.9 \pm 0.2$   |
| $\alpha^{\text{mon}} \cdot 10^3 / \text{K}^{-1}$                | 1.3091          | 1.3012                         | 1.2927               | 1.2841                         | 1.2757          | 1.2680          |
| $\alpha^{\rm mic} \cdot 10^3/{\rm K}^{-1}$                      | 0.7948          | 0.7915                         | 0.7883               | 0.7854                         | 0.7824          | 0.7792          |
|                                                                 |                 |                                | C <sub>12</sub> DHAB |                                |                 |                 |
| $V_{\Phi}^{\mathrm{mon}}/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ | $317.4 \pm 0.1$ | 319.3 ± 0.1                    | $321.7 \pm 0.1$      | $323.7 \pm 0.1$                | $325.8 \pm 0.1$ | $327.6 \pm 0.1$ |
| $V_{\Phi}^{ m mic}/ m cm^3 \cdot mol^{-1}$                      | $327.1 \pm 0.1$ | $328.3 \pm 0.1$                | $329.4 \pm 0.1$      | 330.6 ± 0.1                    | $331.9 \pm 0.1$ | $333.0 \pm 0.1$ |
| $\Delta V/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$                | $9.7 \pm 0.2$   | $9.0 \pm 0.2$                  | $7.7 \pm 0.2$        | $6.9 \pm 0.2$                  | $6.1 \pm 0.2$   | $5.4 \pm 0.2$   |
| $\alpha_p^{\text{mon}} \cdot 10^3 / \text{K}^{-1}$              | 1.3104          | 1.3025                         | 1.2929               | 1.2849                         | 1.2766          | 1.2694          |
| $\alpha_P^{ m mic} \cdot 10^3/ m K^{-1}$                        | 0.7268          | 0.7241                         | 0.7216               | 0.7190                         | 0.7162          | 0.7139          |
|                                                                 | ( i ) -         |                                |                      | $b_{-}$                        |                 |                 |

<sup>a</sup>The standard uncertainties u are  $u(\alpha_P^i) = 5 \cdot 10^{-7} \text{ K}^{-1}$ , u(T) = 0.01 K, and u(p) = 10 kPa. <sup>b</sup>Reference 20.



**Figure 3.** Illustration of dependence of isobaric thermal expansion coefficients of the DTAB aqueous solutions on the concentration at 293.15 K.

with those reported in the literature.<sup>6</sup> It can also be found that the values of CMC slightly increase with the temperature for all three surfactants. This phenomenon was commonly reported for the ionic surfactants and can be explained by that the hydrophobic interaction of the surfactant tails becomes weaker and the static repulsion between the headgroups is strengthened due to the decrease of the association degree of the counterion when temperature increases, both of which hinder the micelle formation. The CMC values of the three surfactants follow the order of DTAB >  $C_{12}$ HDAB >  $C_{12}$ DHAB at the same temperature. As mentioned above, the formation of hydrogen bonds between hydroxyethyl groups in micelles is enhanced by increase of the micellization at the relatively lower surfactant concentration.

The slopes of the plot of the conductivity against the concentration of the surfactant in the post-CMC region (k) and the pre-CMC region (k') in Figure 4 were used to calculate the dissociation degree  $(\alpha)$  of the counterions by  $\alpha = k/k'$ , and the association degree  $(\beta)$  was obtained by  $\beta = 1 - \alpha$ , which is



**Figure 4.** Variation of the conductivity with the concentration of the surfactants in aqueous solutions: a,  $C_{12}$ HDAB; b,  $C_{12}$ DHAB. The symbols represent the experimental data:  $\Rightarrow$ , 318.15 K;  $\bigcirc$ , 313.15 K;  $\triangle$ , 308.15 K;  $\bigstar$ , 303.15 K;  $\bigcirc$ , 298.15 K;  $\blacksquare$ , 293.15 K, the lines are results of the fits.

listed in row 3 for C<sub>12</sub>HDAB and row 7 for C<sub>12</sub>DHAB of Table 7, respectively. As can be seen from Table 7, the values of  $\beta$  for both surfactants decrease with the increase of temperature, which is commonly observed for ionic surfactants and may be attributed to increase of the dissociation entropy of counterions with temperature. At a certain temperature the value of  $\beta$  decreases with the increase of the substituent hydroxyethyl group, which is in consistent with what was observed by Chatterjee et al. in their

| T/K                                              | 293.15            | 298.15                            | 303.15                            | 308.15                                   | 313.15                            | 318.15                            |
|--------------------------------------------------|-------------------|-----------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|
|                                                  |                   |                                   | C <sub>12</sub> HDAB              |                                          |                                   |                                   |
| β                                                | $0.766 \pm 0.005$ | $0.764 \pm 0.005$                 | $0.761 \pm 0.005$                 | $0.758 \pm 0.005$                        | $0.756 \pm 0.005$                 | $0.754 \pm 0.005$                 |
| $\Delta G_{ m mic}^0/{ m KJ}{ m \cdot mol}^{-1}$ | $-35.94 \pm 0.44$ | $-36.42 \pm 0.48$<br>$-41.37^{b}$ | $-36.91 \pm 0.48$<br>$-41.97^{b}$ | $-37.33 \pm 0.47$<br>-42.48 <sup>b</sup> | $-37.78 \pm 0.47$<br>$-43.06^{b}$ | $-38.10 \pm 0.50$<br>$-43.52^{b}$ |
|                                                  |                   |                                   | C <sub>12</sub> DHAB              |                                          |                                   |                                   |
| β                                                | $0.764 \pm 0.005$ | $0.758 \pm 0.005$                 | $0.753 \pm 0.005$                 | $0.748 \pm 0.005$                        | $0.743 \pm 0.005$                 | $0.740 \pm 0.005$                 |
| $\Delta G_{ m mic}^0/{ m KJ}{ m \cdot mol^{-1}}$ | $-36.24 \pm 0.43$ | $-36.65 \pm 0.45$<br>$-41.65^{b}$ | $-37.06 \pm 0.46$<br>$-42.29^{b}$ | $-37.40 \pm 0.46$<br>$-42.80^{b}$        | $-37.81 \pm 0.50$<br>$-43.39^{b}$ | $-38.17 \pm 0.48$<br>$-43.87^{b}$ |
| am1 1 1                                          |                   |                                   | to ID bD C                        |                                          |                                   |                                   |

<sup>*a*</sup>The standard uncertainties *u* are u(T) = 0.05 K and u(p) = 10 kPa. <sup>*b*</sup>Reference 6.

studies of the series of hydroxyethyl substituted cetylammonium bromide surfactants.<sup>15</sup> This may be attributed to the fact that the volume of the hydroxyethyl group is larger than that of the methyl group which leads to the increase of the distance and hence the decrease of the positive charge density on the micelle interface; thus the binding ability of negatively charged counterions to the micelle surface is reduced.

The micellization of a one mole single tail ionic surfactant may be interpreted by that it reacts with  $\beta$  mole counterions. Thus the standard Gibbs free energy  $\Delta G_{\rm mic}^0$  of micellization may be defined by the change of the Gibbs free energy in an ideal dilute surfactant solution with the surfactant concentration being 1 mol·kg<sup>-1</sup>. The value of  $\Delta G_{\rm mic}^0$  may be calculated by<sup>16</sup>

$$\Delta G_{\rm mic}^0 = (1+\beta)RT \ln({\rm CMC}/m^0) \tag{7}$$

where  $m^0 = 1$  mol·kg<sup>-1</sup>. The values of  $\Delta G_{\text{mic}}^0$  for C<sub>12</sub>HDAB and C<sub>12</sub>DHAB are listed in Table 7 and compared with those obtained by using the isothermal titration calorimetry reported by Tong et al.<sup>6</sup> The differences were mainly resulted from the contributions of the association degree of the counterions at the micellar state, which were neglected by Tong et al.<sup>6</sup> As it can be seen from eq 7 the absolute value of  $\Delta G_{\text{mic}}^0$  should decrease with  $\beta$ ; however it increases, and  $\beta$  decreases with the increase of temperature as shown in Table 7, which is in accordance with those reported in literature.<sup>17,18</sup> It indicates that the temperature dependence of  $\Delta G_{\text{mic}}^0$  is dominated by CMC. It can also been seen from Table 7 that the values of  $\Delta G_{\text{mic}}^0$  slightly decrease with the increase of the number of the hydroxyethyl groups, which is resulted from the change of CMC with the increase of the number of hydroxyethyl groups in the head of the surfactant.

**Aggregation Number.** The aggregation numbers (N) of the micelle formed by C<sub>12</sub>HDAB and C<sub>12</sub>DHAB are determined by using the steady-state fluorescence. The aggregation numbers are obtained using the following relation:

$$\ln \frac{I_0}{I} = \frac{N[Q]}{C - CMC} \tag{8}$$

where  $I_0$  and I are the fluorescence intensities at 373 nm in the absence and presence of the quencher, respectively; [Q] and C are the concentrations of the quencher and the surfactant with the units being mmol·kg<sup>-1</sup>. The plots of  $\ln(I_0/I)$  against [Q] are shown in Figure 5. Linear least-squares fits of the experimental data gave the slopes which together with known values of C and CMC were used to calculate the aggregation numbers N. The obtained values of N were  $52 \pm 2$  for  $C_{12}$ HDAB and  $51 \pm 2$  for  $C_{12}$ DHAB, respectively; the value of N for DTAB was reported to be 51 by the literature,<sup>19</sup> and it seems that the hydroxyethyl substituent has little effect on the aggregation number of the micelle formed by this series of surfactants.



Article

**Figure 5.** Dependence of  $\ln(I_0/I)$  on the concentration of the quencher. The symbols represent the experimental data:  $\blacksquare$ , C<sub>12</sub>HDAB ( $C = 50.0 \text{ mmol} \cdot \text{kg}^{-1}$ );  $\bullet$ , C<sub>12</sub>DHAB ( $C = 50.0 \text{ mmol} \cdot \text{kg}^{-1}$ ); the lines are the results of the fits.

The radius (r) of the micelle formed by the surfactant can be calculated using the volumetric data and the aggregation number through a simple geometric model:

$$V_{\rm m} = \frac{4}{3}\pi r^3 = \frac{N(V_{\Phi}^{\rm mic} - \alpha V_{\rm Br})}{N_{\rm A}}$$
(9)

where  $V_{\rm m}$  is the volume of a micelle,  $N_{\rm A}$  is the Avogadro constant, and  $V_{\rm Br^-}$  is the volume of Br<sup>-</sup>. The surface area  $(A_{\rm mic})$  occupied by a surfactant molecule can be obtained though  $A_{\rm mic} = 4\pi r^2/N$ . The values of *r* and  $A_{\rm mic}$  are listed and compared with that reported in the literature<sup>17,18</sup> in Table 8, from which one can see

Table 8. Radius of the Micelle *r* and the Surface Area  $A_{mic}$ Occupied by a Surfactant Molecule in the Micellar State in Aqueous Solutions at Temperature *T* = 298.15 K and Pressure *p* = 0.1 MPa<sup>*a*</sup>

|                        | DTAB                       | C <sub>12</sub> HDAB | C <sub>12</sub> DHAB |
|------------------------|----------------------------|----------------------|----------------------|
| r/nm                   | $1.80/1.8^{b}$             | $1.86 \pm 0.02$      | $1.87\pm0.02$        |
| $A_{\rm mic}/\rm nm^2$ | 0.79/0.78 <sup>c</sup>     | $0.82 \pm 0.01$      | $0.86\pm0.01$        |
| 'The standard          | uncertainties <i>u</i> are | u(T) = 0.05  K an    | d $u(p) = 10$ kPa.   |
| Reference 17           | <sup>c</sup> Reference 18  |                      |                      |

that our results are in excellent agreement with the literature ones and they increase with the substituent number of the hydroethyl group in the headgroup. The increase of  $A_{\rm mic}$  with the substituent number of the hydroethyl group is in consistence with what we proposed in above discussion of the association degree  $\beta$  of the counterion to the micelle, which was found to decrease with the increase of the substituent number of the hydroxyethyl group in the headgroup.

### AUTHOR INFORMATION

### **Corresponding Author**

\*Tel.: +86 21 64250804. Fax: +86 21 64250804. E-mail: shenwg@ecust.edu.cn.

### Funding

This work was supported by the National Natural Science Foundation of China (Projects 20973061 and 21173080).

### Notes

The authors declare no competing financial interest.

### REFERENCES

(1) Dreja, M.; Pyckhout-Hintzen, W.; Mays, H.; Tieke, B. Cationic Gemini Surfactants with Oligo(oxyethylene) Spacer Groups and Their Use in the Polymerization of Styrene in Ternary Microemulsion. *Langmuir* **1999**, *15* (2), 391–399.

(2) Wetting, S. D.; Verall, R. E. Thermodynamics Studies of Aqueous m-s-m Gemini Surfactant Systems. J. Colloid Interface Sci. 2001, 235, 310–316.

(3) De, S.; Aswal, V. K.; Goyal, P. S.; Bhattacharya, S. Small-Angle Neutron Scattering Studies of Different Mixed Micelles Composed of Dimeric and Monomeric Cationic Surfactants. *J. Phys. Chem. B* **1997**, *101* (29), 5639–5645.

(4) Bales, B. L.; Zana, R. Characterization of Micelles of Quaternary Ammonium Surfactants as Reaction Media I: Dodecyltrimethylammonium Bromide and Chloride. *J. Phys. Chem. B* **2002**, *106* (8), 1926–1939.

(5) Mirgorodskaya, A. B.; Yackevich, E. I.; Syakaev, V. V.; Zakharova, L. Y.; Latypov, S. K.; Konovalov, A. I. Micellization and Catalytic Properties of Cationic Surfactants with Head Groups Functionalized with a Hydroxyalkyl Fragment. *J. Chem. Eng. Data* **2012**, *57*, 3153–3163.

(6) Tong, W.; Zheng, Q.; Shao, S.; Lei, Q.; Fang, W. Critical Micellar Concentration of Quaternary Ammonium Surfactants with Hydroxyethyl Substituents on Headgroups Determined by Isotermal Titration Calorimetry. *J. Chem. Eng. Data* **2010**, *55*, 3766–3711.

(7) Lei, Y.; Chen, Z.; An, X.; Huang, M.; Shen, W. Measurements of Density and Heat Capacity for Binary Mixtures {x Benzonitrile + (1 - x) (Octane or Nonane)}. *J. Chem. Eng. Data* **2010**, *55* (10), 4154–4161.

(8) Zhang, Z.; Zheng, P.; Guo, Y.; Yang, Y.; Chen, Z.; Wang, X.; An, X.; Shen, W. The effect of the spacer rigidity on the aggregation behavior of two ester-containing Gemini surfactants. *J. Colloid Interface Sci.* **2012**, 379 (64–71), 64.

(9) Wang, J.; Wang, H.; Zhang, S.; Zhang, H.; Zhao, Y. Conductivities, Volumes, Fluorescence, and Aggregation Behavior of Ionic Liquids  $[C_4mim][BF_4]$  and  $[C_nmim]Br$  (n = 4, 6, 8, 10, 12) in Aqueous Solutions. J. Phys. Chem. B **2007**, 111 (22), 6181–6188.

(10) Zielinski, R.; Ikeda, S.; Nomura, H.; Kato, S. Effect of temperature on micelle formation in aqueous solutions of alkyltrimethylammonium bromides. *J. Colloid Interface Sci.* **1989**, *129*, 175–184.

(11) Wang, H.; Wang, J.; Zhang, S.; Xuan, X. Structural Effects of Anions and Cations on the Aggregation Behavior of Ionic Liquids in Aqueous Solutions. J. Phys. Chem. B 2008, 112 (51), 16682–16689.

(12) Ribeiro, A. C. F.; Lobo, V. M. M.; Valente, A. J. M.; Azevedo, E. F. G.; Miguel, M. d. G.; Burrows, H. D. Transport properties of alkyltrimethylammonium bromide surfactants in aqueous solutions. *Colloid Polym. Sci.* **2004**, 283, 277–283.

(13) Fisicaro, E.; Biemmi, M.; Compari, C.; Duce, E.; Peroni, M. Thermodynamics of aqueous solutions of dodecyldimethylethylammonium bromide. J. Colloid Interface Sci. 2007, 305 (2), 301–307.

(14) González-Pérez, A.; Czapkiewicz, J.; Del Castillo, J. L.; Rodríguez, J. R. Temperature Dependence of Equilibrium and Transport Properties of Decyldimethylbenzylammonium Chloride in Aqueous Solutions. *J. Chem. Eng. Data* **2001**, *46*, 709–711.

(15) Chatterjee, A.; Maiti, S.; Sanyal, S. K.; Moulik, S. P. Micellization and Related Behaviors of N-Cetyl-N-ethanolyl-N,N-dimethyl and N-Cetyl-N,N-diethanolyl-N-methyl Ammonium Bromide. *Langmuir* **2002**, *18*, 2998–2004. (16) Grosmaire, L.; Chorro, M.; Chorro, C.; Partyka, S.; Zana, R. Alkanediyl- $\alpha$ , $\omega$ -Bis(dimethylalkylammonium Bromide) Surfactants: 9. Effect of the Spacer Carbon Number and Temperature on the Enthalpy of Micellization. *J. Colloid Interface Sci.* **2002**, *246* (1), 175–181.

(17) Mehta, S. K.; Bhasin, K. K.; Chauhan, R.; Dham, S. Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. *Colloids Surf.,* A 2005, 255, 153–157.

(18) Khatua, D.; Gupta, A.; Dey, J. Characterization of micelle formation of dodecyldimethyl-N-2-phenoxyethylammonium bromide in aqueous solution. *J. Colloid Interface Sci.* **2006**, *298*, 451–456.

(19) Rodenas, E.; Dolcet, C.; Valiente, M.; Valeron, E. C. Physical Properties of Dodecyltrimethylammonium Bromide (DTAB) Micelles in Aqueous Solution and Their Behavior as the Reaction Medium. *Langmuir* **1994**, *10* (2088–2094), 2088.

(20) Lisi, R. D.; Milioto, S.; Verrall, R. E. Volumes and Compressibilities of Pentanol in Aqueous Alkyltrimethylammonium Bromide Solutions at Different Temperatures. *J. Solution Chem.* **1990**, *19*, 665–692.