Accepted Manuscript

Crystal structure, Hirshfeld analysis and HSA interaction studies of N'-[(E)-(5-bromothiophen-2-yl)methylidene]-3-hydroxynaphthalene-2-carbohydrazide

Savithri K, BC Vasantha Kumar, Chandra, H.D. Revanasiddappa

PII: S0022-2860(19)30349-7

DOI: https://doi.org/10.1016/j.molstruc.2019.03.070

Reference: MOLSTR 26339

- To appear in: Journal of Molecular Structure
- Received Date: 8 November 2018

Revised Date: 16 March 2019

Accepted Date: 19 March 2019

Please cite this article as: S. K, B.V. Kumar, Chandra, H.D. Revanasiddappa, Crystal structure, Hirshfeld analysis and HSA interaction studies of N-[(*E*)-(5-bromothiophen-2-yl)methylidene]-3-hydroxynaphthalene-2-carbohydrazide, *Journal of Molecular Structure* (2019), doi: https://doi.org/10.1016/j.molstruc.2019.03.070.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1Crystal structure, Hirshfeld analysis and HSA interaction studies of2N'-[(E)-(5-bromothiophen-2-yl)methylidene]-3-hydroxynaphthalene-2-3carbohydrazide

4

5

Savithri K¹, B C Vasantha Kumar¹, Chandra² and H D Revanasiddappa¹*

6 ¹Department of Studies in Chemistry, University of Mysore, Mysuru - 570 006, Karnataka, India

7 ²Department of Physics, National Institute of Engineering (NIE), Mysuru- 570 008, India

8 *Corresponding author. Tel.: +91 9449271137, e-mail: <u>hdrevanasiddappa@yahoo.com</u>

9

10 Abstract

Synthesis of ONO tridentate imine based molecule $N^{-1}(E)$ -(5-bromothiophen-2-11 yl)methylidene]-3-hydroxynaphthalene-2-carbohydrazide (HTp) is gained quick attention 12 because of its operational simplicity carried by both conventional and microwave methods 13 and structurally it was elucidated by analytical, spectral, X-ray crystallography and 14 Hirshfeld surface techniques. Analysis from the X-ray study provided the details of 15 molecular structure, packing and hydrogen bonding properties in the solid state. The 16 molecule is crystallized in monoclinic P21/c space group. The apparent binding affinity for 17 18 the coupling of human serum albumin (HSA) with HTp drug molecule was examined through in vitro spectroscopic methods and molecular docking studies. HTp strongly 19 quenched the intrinsic fluorescence intensity of HSA in terms of a static mode. The thermal 20 based binding parameters were quantified from the fluorescence quenching experimental 21 data. The energy transfer efficiency determined according to Förster's theory. Besides, the 22 experimental results were in line with the molecular docking results. 23

24

Key points: Imine base; X-ray study; Hirshfeld analysis; Human serum albumin;
Molecular docking;

- 27
- 28
- 29

1 **1. INTRODUCTION**

It is well known that the acid hydrazines R-CO-N=N-NH₂ and corresponding 2 hydrazones R-CO-NH-N=CH-R' have interesting and remarkable biological activity among 3 heterocyclic compounds due to their distinct physical, chemical and pharmaceutical 4 properties. Nowadays, the N-N linkage is employed in various bioactive agents as a key 5 structural motif [1]. It is well known that hydrazone compounds are a kind of distinct imine 6 7 bases, which possess versatile chemical and pharmacological properties owing to their potential applications [2–8]. Aroyl hydrazones have stimulating ligation properties because 8 of their facile keto-enol tautomerization and availability of several coordination sites [9-9 11]. The physiological effects of thiophene are similar to those of benzene (bioisostere), 10 with habitually superior pharmacodynamics and pharmacological properties [12]. 11

12 To accomplish the binding strategy of small molecules with the biomacromolecules have been received great importance. Human serum albumin, the principal extracellular 13 14 ubiquitous blood serum constituent (~60 % of total plasma protein) serves as the major transporter, play physiological role in bringing solutes into the bloodstream, deliver them to 15 the target site and maintain the optimal pH range 4-9 as long as 10 h at 60 °C [13-15]. A 16 multi-domain structure (Sudlow's sites) of HSA accounts for high binding affinity to the 17 various chemical entities which is also a prerequisite factor for the application with the 18 biological drug molecules and make the protein a chief regulator of intercellular metabolic 19 and the pharmacokinetic behavior of many drugs in the body as well [16]. Hence, the 20 molecular structural features of HSA based drug delivery systems invariably provides 21 information on the therapeutic effect of a compound and have an immense interest in the 22 development of biologically active new compounds. Drug-protein interaction effects on the 23 drug absorption, circulation and abolition in the circulatory system. The binding efficiency 24 of the ligands to serum albumin is believed to affect their half-life [17]. Moreover, such 25 binding helps to increase drug solubility in plasma by preventing rapid exclusion of drugs 26 27 from the bloodstream, decreases its toxicity and prolong it's in vivo half-time with the protection from the oxidation [18]. 28

The exigency of the binding process of the imine based ligand (HTp) with HSA in providing potential drugs is the target that the author had. This was achieved using absorption, emission spectroscopy and molecular modeling under simulated physiological conditions. The employed UV-Vis and fluorescence spectroscopic techniques were

adequate to study the binding behavior of ligands with proteins due to its sensitivity, reproducibility and convenience. The binding parameters, thermodynamic functions and fluorescence resonance or Forster's non-radiative energy transfer (FRET) on the protein microenvironment were interpreted. Furthermore, it was curious to locate the binding sites of ligands on HSA, and this was able to identify the pose of the molecules in the binding sites by using docking tools and the binding score represents the strength of binding affinity.

1 **2. EXPERIMENTAL**

2 **2.1. Instruments and operations**

3 All the used chemicals throughout the experiments were of reagent grade. A precision digi melting point apparatus was used to determine the melting point of HTp in an open 4 capillary tube. For the structural identification, an Agilent NMR spectrometer was used to 5 record ¹H and ¹³C NMR spectra with TMS as a reference in DMSO-d₆ solvent at ambient 6 7 temperature. LCMS (2010EV) Shimadzu spectrometer was employed to record the mass spectrum. CHN microanalysis was performed with a Perkin-Elmer elemental analyzer. UV 8 measurements (200-800 nm) were performed with UV-Vis spectrophotometer (DU 730 M/S 9 Beckman coulter, 'Life Science' USA) using DMSO solvent. Vibrational spectra were 10 recorded via attenuated total reflection (ATR) on a Perkin-Elmer 783 spectrophotometer in 11 the range of $4000-400 \text{ cm}^{-1}$. 12

13 **2.2.Synthetic procedure of compound (HTp):**

14 N'-[(E)-(5-bromothiophen-2-yl)methylidene]-3-hydroxynaphthalene-2-carbohydrazide

17 *Classical method*

A methanolic solution of 5-Bromo-2-thiophenecarboxaldehyde was added to a wellstirred methanolic solution of 2-amino-3-hydroxy-2-naphthoic acid hydrazide in an equivalent ratio. The reactant mixture was continued to stir for an hour at room temperature (26 °C), during which a creamy white precipitate was formed and TLC was utilized to monitor the reaction. The solid product was recrystallized with the solvent system of methanol and chloroform (3:7) by a slow evaporation method. **Yield**=83 %.

24

15

16

1 Microwave irradiation method

An equivalent reaction mixture of the 2-amino-3-hydroxy-2-naphthoic acid hydrazide and 5-bromo-2-thiophenecarboxaldehyde was placed in a flask and subjected to microwave power at 300 W with the temperature of 80 °C for ~6 minutes. TLC monitored the completion of the reaction and the content was left for evaporation at ambient temperature (26 °C). The colorless crystalline product was formed from the recrystallization of methanol/chloroform (3/7) system. **Yield**=89 %.

Mp= 224-226 °C; R_f 0.55, Anal. (%) for C₁₆H₁₁BrN₂O₂S: Found (calc.): C 51.20 (51.21), H
2.92 (2.95), N 7.43(7.47); LCMS m/z 375.23; FT IR (v_{max}/cm⁻¹); (HC=N) 1663, (vOH)
3253; ¹H NMR (DMSO-*d*₆ 400 MHz/295 K/δ in ppm) 9.776 (s, 1H, HC=N); 10.04 (s, 1H,
OH), 11.16 (s, 1H, NH), ppm 7.21-7.26 (m, 2H, Ar); ¹³C NMR (DMSO-*d*₆ 100 MHz)
154.333, 164.039, 143.132, 141.273, 136.257, 132.220, 131.810, 130.664, 129.070, 128.645,
127.219, 126.278, 124.236, 120.981, 115.509, 110.994.

14 **2.3.** X-ray structure determination protocol

The titled imine based molecule $C_{16}H_{11}BrN_2O_2S$ has been synthesized; highresolution X-ray diffraction determines its crystal structure. The analysis provided the details of the molecular packing and hydrogen bonding of HTp.

A single crystal of N'-[(E)-(5-bromothiophen-2-yl)methylidene]-3-hydroxynaphthalene-2-18 carbohydrazide (HTp) with dimension $0.30 \times 0.25 \times 0.20$ mm was chosen for diffraction 19 20 studies. The crystallographic X-ray diffraction data were collected at 296 K on a Bruker APEXII CCD detector with CuKa radiation (1.54178 Å). Processing and reduction of 21 crystal structure raw data were carried out using APEX2 and SAINT [19]. A crystal 22 structure of HTp was solved by direct methods; full-matrix least-squares refinement was 23 performed using SHELXS-97 and SHELXL-97 [20, 21] with a final residual value of 24 R₁=0.045. The thermal ellipsoid plot [22] at 50% probability of the compound is publicized 25 in crystallographic figures. 26

27

28 **2.3. Hirshfeld surface analysis**

Analysis of molecular crystal structure by Hirshfeld method to venture crystal packing diagrams of various models, internuclear distances and angles, hydrogen bond interactions and credentials of close contacts deemed to be significant given molecule as

organic wholes; thereby the crystal lattice can be stabilized. *Crystal Explorer 3.0* [23]
 computational software was employed to perform Hirsh surface analysis.

3

2.4. Preparation of HSA stock solution

Human serum albumin (HSA, >99% purity, essentially globulin free) was procured
from Sigma Aldrich Inc. An initial solution of HSA was prepared by dissolving and dialyzed
it in a buffer (Tris-HCl/NaCl at pH 7.4) prior to use, and it was kept at 4 °C for no longer
than two days. The standard working solutions of 0-25 μM were made the stock.

8 HSA concentration in buffer was determined by UV absorbance with $\sum_{280nm}^{1\%}$ is 35700 9 M⁻¹cm⁻¹ [24].

10

11 2.4.1. Electronic absorption and Fluorescence spectral measurements

12

The UV-Visible spectra were recorded with a quartz cell of 1 cm path length.
Absorption spectra of HSA-HTp were scanned from 200 to 800 nm with concentration ranges
from 0-25 µM at ambient temperature.

Steady-state fluorescence spectral measurements were recorded on F-2000 spectrofluorometer, Hitachi equipped with a 150 W Xenon lamp at 298, 303 and 310 K. Very dilute solutions of HSA (2×10^{-6} mol/L) and HTp ($0-6\times10^{-6}$ mol/L) were taken. The excitation wavelength was made to fix at 295 nm, while the emission wavelength measured from 300 to 500 nm with a slit width of 5 nm. The Origin 7.0 software provided with Microcal was employed to analyze the titration heat profiles to find binding parameters. Data well fitted to a single set of identical binding parameter [25].

The inner filter effect could stand as an error for any fluorescence measurement particularly where an absorbing component is being titrated into the cuvette [26]. An absorption spectrum of the ligand overlaps with the excitation and emission of HSA. Hence, Inner filter effect and dilution effects were corrected for fluorescence intensities before binding and quenching data analysis. Fluorescence intensity was corrected based on the Eq. (1)

29

$$\mathbf{F}_{\rm corr} = \mathbf{F}_{\rm obs} \; e^{(\lambda_{ex} + \lambda_{em})/2} \qquad \dots (1)$$

The corrected and observed fluorescence intensities are referred to as F_{corr} and F_{obs} , respectively and λ_{em} and λ_{ex} are the absorption of HTp at the emission and excitation wavelength of HSA. All the HTp solutions were prepared by weight/volume (w/v) basis. The fluorescence quenching phenomena are conventionally described in terms of Eq. (2)
 given by Stern-Volmer [27].

3

$$\frac{F_0}{r} = 1 + K_{sv}[Q] = 1 + K_q T_o[Q] \qquad \dots (2)$$

where, the quenched fluorophore intensity and the steady-state fluorescence intensity are represented by F and F_o, respectively. [Q] is the molar concentration of HTp, Stern-Volmer quenching constant is given by K_{sv} and k_q is the apparent biomolecular quenching rate constant. T_o stands for the integral/average lifetime of protein fluorophore without quencher and the fluorescence lifetime of the biomolecule is 10^{-8} s [28, 29].

9

10 Energy transfer between HTp and HSA

Energy transfer between HTp and HSA gives valuable information about their binding. Equimolar concentration $(10^{-6} \text{ mol L}^{-1})$ of the absorption spectra of ligands and the fluorescence spectrum of HSA were recorded at 298 K with the range from 200 to 500 nm (n=3 replicates). Then, the overlap of the UV absorption spectrum of HTp with the emission spectrum of HSA was used to calculate the energy transfer and subtracted the buffer background readings.

17

18 **2.5. Molecular docking studies**

AutoDock was employed for docking simulation. The crystal structure of the N'-[(E)-19 (5-bromothiophen-2-yl)methylidene]-3-hydroxynaphthalene-2-carbohydrazide (HTp) was 20 selected for docking study with receptor Human Serum Albumin target, obtained from the 21 protein data bank (PDB Code: 1H9Z). The AutoDock has to contain core technology, which 22 is used for simulations of bio-organics and macromolecules. Simulations are an essential tool 23 to validate HTp pose geometries, stability and the generation of macromolecule 24 conformations. For the docking methodology, Lamarckian genetic algorithm was used to 25 figure out the optimal docking position between small molecules and macromolecules. Also, 26 partial atomic charges were calculated using Gasteiger method. AutoDock tools (ADT) was 27 28 used to define the rotatable bonds in the ligand. In addition to that, both Kollman charges and polar hydrogen bonds were assigned using ADT. 29

- 30
- 31
- 32

1 3. Results and Discussion

2 *3.3.* Chemistry

A potential imine-based molecule (HTp) was synthesized (Scheme 1) by two ways where microwave assisted synthesis is more accessible, convenient and have short reaction period. The obtained yield (89%) from this was found to be much more than the conventional method (83%). The product HTp is stable at atmospheric conditions, non-hygroscopic and moderate solubility in alcohol but highly soluble in hot alcohol and all common organic solvents. Analytical data of the compound are reliable with the proposed formula and are summarized in the above synthetic section.

The ¹³C NMR spectrum of HTp is displayed in **Fig. S1**[†] shows a characteristic signal 10 at 143.132 ppm for the azomethine (HC=N) carbon. The chemical shift positions of other 11 carbons have appeared at 159.638, 158.848, 135.710, 124.494, 121.596, 115.471 and 109.150 12 ppm. A singlet signal peaked at 9.77 ppm in ¹H NMR spectrum of HTp is attributed to the 13 azomethine proton. The OH proton resonates as a singlet equivalent to single hydrogen at 14 10.04 ppm indicates that the OH proton is probably involved in the formation of 15 intramolecular hydrogen bonding. NH proton appears at11.16 ppm and aromatic protons are 16 17 resonated as multiplet in the range of 7.0-7.92 ppm. The molecular ion peak at m/z 375 [M] and 376 [M+1] in the mass spectrum of HTp corresponding to its formulation and confirms 18 the presence of bromine in the molecule. The IR spectrum of the molecule exhibits a sharp 19 band at 1662 cm⁻¹ due to the azomethine group (HC=N) vibration. Some significant 20 21 stretching bands associated with N-H, C=O, C=N and O-H were observed in the range 3339-3175, 1630–1660, 1610-1635 and 3490-3515 cm⁻¹, respectively [9,30]. Also, a new C-O 22 stretch has appeared in the range 1260–1285 cm⁻¹. It suggests the occurrence of keto-imine 23 tautomerization of hydrazone groups. The electronic spectrum (Fig. S2⁺) of HTp show 24 intense bands in the range 320-385 nm attributed $\pi \rightarrow \pi^*/n \rightarrow \pi^*$ transitions. 25

- 26 3.3.1. Crystal features of HTp
- 27

The X-ray crystal and molecular structure analysis of the compound (HTp) suggested that the compound crystallizes in monoclinic system under the space group *P*21/c, with cell parameters a = 16.5155(19)Å, b = 11.4248(14)Å, c = 7.9982(10)Å, β = 92.993(4)Å and Z=4. **Table S1**[†] detailed the crystal data and structure refinement for HTp. In the Oak Ridge thermal ellipsoid plot (ORTEP) drawn for the HTp molecule (**Fig. 1**), the thermal ellipsoids for naphthalene (C1—C10) and thiophene groups (S1—C13—C14—C15—C17) are almost

collinear as appears from the relative dihedral angle of 1.70(12)° between the two groupings.
The hydroxyl group and bromine moiety are approximately coplanar with the naphthalene
and with atom O1 and Br1 deviating from the mean plane by -0.047 (2) Å and -0.019 (1) Å,
respectively. Also, carbohydrazide group is present in anti-periplanar conformation relating
to the naphthalene moiety, as indicated by the torsion angle value of -179.9 (2)° (N2—N1—
C11—C10). The crystal structure is stabilized by N(1)—H(1A)...O(1) intramolecular Hbonds. The packing of the molecules is as shown in Fig.S3⁺.

- 8
- 9

3.3.2. Hirshfeld surface analysis

10

The molecular Hirshfeld surface (3D d_{norm} surface, shape index and curvedness) is 11 displayed in Fig.2. The deep red spot with large circular depressions visible on the 12 normalized contact distance (d_{norm}) surfaces with d_i and d_e indicates hydrogen bonding and 13 other weak contacts. The shape index displays red areas parallel to C-H-C (or C-H- π) 14 interactions, which coincide with similar regions in the d_{norm} surface. The van der Waals 15 (vd_w) radii encodes particularly for intermolecular interactions [31]. The shape index is 16 extremely sensitive to subtle variations in the surface shape and is consistent with 2D 17 fingerprint plots. The curvedness is usually tending to divide the surface into patches, 18 indicates neighboring molecular interactions [32]. The two-dimensional fingerprint plots 19 further emphasized the significance of the H--H, C--H, O--H, S--H and H--Br interactions in 20 determining its arrangement in the solid state. The significant contribution obtained from the 21 22 interactions which make up C-H (15 %) and H-H (22.8 %) of the surface. Quantification of different interactions and their relative contributions are displayed in Fig. 3. 23

24

25 3.4. HSA Binding studies

26 UV–Vis spectral features

The simple but effective method to study the HTp-HSA binding and to investigate the structural modification of the aromatic protein residues upon drug accumulation is UV-Vis/electronic absorption spectroscopy. As can be seen in **Fig. 4**, a sharp absorption peak at ~206 nm resulted by n to π^* transition for the peptide bond of protein helix and a weak peak at 278 nm is assigned to π to π^* spin forbidden transition of the phenyl rings in aromatic amino acids Trp, Tyr and Phe residues [33]. A hypochromic effect is observed (**Fig. 4**) in the

absorption spectrum of HSA on gradual incremental addition of compound HTp ($10 \mu M$), the reduced absorption intensity of HSA after the enhancement of HTp implied that the aromatic amino acid residues of the protein in a hydrophobic cavity were exposed to an aqueous environment upon complexation of HTp with HSA and could cause structural changes in the protein.

6 Fluorescence spectral analysis

7 Fluorescence titration is a qualitative spectroscopic technique of the binding of the drug 8 to the proteins. Fluorescence titration is a qualitative spectroscopic technique to obtain the 9 details on the binding of the drug to the proteins, binding sites and intermolecular distances 10 exists between them. The fluorescence quenching is any process which diminishes the fluorescence intensity of a compound. The quenching can be the consequence of a variety of 11 molecular interactions may include excited-state/ground state complex reactions, energy 12 transfer or collisional quenching. The fluorescence quenching of ligands and HSA is due to 13 the intrinsic tryptophan residue, which is used as an inherent probe to comprehend the 14 interaction of ligands with the protein as the other two aromatic fluors viz. tyrosine and 15 phenylalanine have meager quantum yield which undergoes ionization when they locates 16 close to carboxyl groups, so they get quenched completely [15]. 17

18

The fluorescence quenching of HTp and HSA is due to the intrinsic tryptophan residue, which is used as a prime tool to understand the interaction of HTp with the protein (**Fig. 5**). While titrating HTp with HSA, the maximum fluorescence intensity at 342 nm was decreased with the addition of the compound continues, which leads to changes in the microenvironment around tryptophan-214 when excited at 295 nm. The above data specifies that the HTp binding site exists near to the tryptophan residue, which is located at the IIA subdomain of HSA.

26

Diverse molecular interactions may results in fluorescence quenching of intrinsic fluorophore due to energy transfer, molecular rearrangement and collision quenching. The observed fluorescence quenching is likely related to collisional quenching by the ground state complex formation when the inner filter effect is removed [34]. Fluorescence quenching can be static or dynamic type according to their different temperature dependence. Hence, fluorescence tests were performed at temperatures (298, 303 and 310 K) and the quenching

1 data were analyzed using Stern-Volmer (SV) plot expressed in equation (2). SV quenching plot of $F_o/F \nu/s$ [Q] shown in Fig.5 helps to get the values for K_q and K_{sv} . The binding 2 parameters with a correlation coefficient (\mathbb{R}^2) at chosen temperatures are tabulated in **Table** 3 **1.** K_{sv} reflects the efficiency of fluorescence quenching which is given by the slope. The 4 5 linear regression of the SV plot proposes the binding process of HTp to HSA is indicative of homogeneity of quenching and the phenomena found to be 'static' since the observed K_{sv} 6 values drastically decreased on raising the temperature with high magnitude of k_q (10¹² M⁻¹S⁻ 7 ¹) is found. The dynamic quenching occurs when the quencher and fluorophore approach 8 each other at excited state, while static quenching occurs when non-fluorescent complex 9 formed in the ground state. 10

11

12

3.4.1. Analysis of binding equilibria

Fluorescence quenching data analysis afforded quantitative evaluation of the binding 13 constant (K_b) and binding stoichiometry (n) for the HSA-HTp interaction process and 14 analyzed according to modified Stern-Volmer Eq. (3) 15

16
$$\log\left[\frac{F_0 - F}{F}\right] = \log K_b + n \log[Q] \dots (3)$$

where, the quenched fluorophore intensity and the steady-state fluorescence intensity are 17 represented by F and F_o, respectively. The double logarithm regression plot of $log(F_o-F)/F$) 18 19 $v/s \log[Q]$ is shown in Fig. S4[†], where slope and intercept gives K_b and n, the values of the same at performed temperatures are reported in Table 1. It was observed that the binding 20 constant (K_b) decreases as temperature rises which indicates the formation of unstable HSA-21 22 HTp complex.

The values of n are observed to be close to unity indicating that there is one independent class 23 of binding site on HSA available for HTp. The thermodynamic parameters for the HSA-HTp 24 25 interaction process have also been estimated from the binding constant. The analysis of binding isotherms gives the major binding parameters that fit as a function of the binding 26 constant K, ΔS° (entropy of association) and ΔH° (enthalpy of association) of the protein. 27

28

29 In general, the non-covalent nature of binding forces exists between quencher and macromolecules. Hydrogen bonds, van der Waals force, hydrophobic force and electrostatic 30 31 forces are the four major molecular acting forces of interaction exists between HSA and HTp. Thermodynamic analysis of protein-HTp binding shows the importance of the binding 32

1 constant (K), entropy change (Δ S), enthalpy change (Δ H) and free energy change (Δ G) in 2 determining the predominant type of interactions in HTp–protein complex system [35] and 3 were used to elucidate probable binding forces of drug-protein interactions and these can be 4 intended by Van't Hoff and thermodynamic eq. (4) and (5) [36].

5

$$\ln K_{\rm bin} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R} \dots (4)$$

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -RTlnK_{bin}$...(5)

6 7

8

9 in which, K_{bin} is apparent binding constant, T is the absolute temperature and R is gas 10 constant (1.987 cal/mol·K). Slope and intercept of the plot of logK v/s 1/T (**Fig. S5**†) gives 11 Δ H° and Δ S°, respectively. Gibbs-Helmholtz equation 5 helps to calculate Δ G° and the 12 results are summarized in **Table 2.** A spontaneous and exergonic binding process observed 13 through the negative free energy change.

14

15 The obtained negative ΔH° (-78.314 KJmol⁻¹) and ΔS° (-361.304 KJmol⁻¹) indicate 16 predominant interactions in the binding process [37]. The compound HTp could actively 17 quench the intrinsic fluorescence of protein as the decreasing values of the binding constant 18 with an increase in temperature leads to the decrease in the stability of the HSA-HTp 19 complex which in turn suggests static quenching mechanism. Indeed, the unfavorable 20 enthalpy loss is canceled by the much larger entropic gain reveals hydrogen bonding and 21 weak van der Waals forces played a significant role in the interaction.

22

23 24

3.4.2. Resonance energy transmission between HSA and HTp

The significance of the energy transfer in biochemistry is that the efficacy of 25 transmission can be used to measure the distance between the ligand and the tryptophan 26 residues in the HSA. To find out a distance between HTp-Trp protein, it is possible to study 27 Forster's non-radiative process or fluorescence energy transfer (FRET) from donor (HSA) to 28 acceptor (HTp). FRET occurs when the fluorescence spectrum of HSA (fluorophore) 29 overlays on the UV absorption spectrum of HTp (acceptor) and is displayed in the Fig.S6[†]. 30 HSA has a solitary tryptophan residue (Trp 214) which gives a fluorescence emission at 300-31 32 400 nm.

As per the FRET theory [38], the energy transfer efficiency (E) is given by Eq. (6) and (7) which is interrelated to the distance (r) from donor to acceptor and the critical energy transfer distance when *E* is 50 % is known as Forster's radius (R_0). $E = 1 - \frac{F}{F_0} = \frac{R_0^6}{R_0^6 + r^2} \dots (6)$

$$R_0^{6} = 8.79 k^2 N^{-4} J \phi N^{-4} \dots (7)$$

3

2

where, the donor's fluorescence quantum yield Φ_D is 0.15, the orientation factor $k^2 = 2/3$, and the refractive index (n=1.336) were obtained. The overlap integral of the absorption spectrum of the HTp and the fluorescence emission spectrum of the HSA termed as J, and is given by the Eq. (8)

8

$$J = \frac{\Sigma F_D(\lambda)\varepsilon_A(\lambda)\lambda^4 d\lambda}{\Sigma F_D(\lambda) d\lambda} \dots (8)$$

9 where, the fluorescence intensity of the donor at wavelength λ is termed as $F_D(\lambda)$ and the 10 acceptor's molar absorption coefficient at λ wavelength is $\varepsilon_A(\lambda)$

11 We observed a functional overlap between the emission spectrum of tryptophan and the 12 absorption spectrum of HTp (**Fig. S5**†). The values for $J=4.67 \times 10^{-14} \text{ cm}^3 \text{ Lmol}^{-1}$, E=0.17, 13 $R_0=2.49 \text{ nm}$ and r=4.26 nm which were easy to obtain by using the equation 8.

These obtained data are consistent with a FRET mechanism being operative. *i.e.* The r value is actually the average value between the bound drug and Trp214 (since HSA possess only one tryptophan residue) and is found to be less than the standard value of 8 nm or on 2-8 nm scale and 0.5 $R_o < r < 1.5 R_o$ indicates a significant spectral overlap occurs between HSAligands with high probability. Further, as per the prediction by Forster's non-radiative energy transfer theory, the more substantial value of r compared to that of R_o proves the static quenching process [39, 40].

21

22 2.3.1. Molecular modeling study

23

The analysis was performed to decode the binding site of HTp against HSA. Crystal
structure of monomeric albumin revealed that the single polypeptide chain of heart-shaped
HSA consists three structurally homologous α-helical domains I(residues 1-195), II (196-33)
and III (34-585 amino acid residues) and each of the domain contains two subdomains A and
B, stabilized by 17 S-S bridges [41].

Using molecular docking simulations, the imine based ligand HTp was docked to the best conformer of HSA and they generally found to bind within their hydrophobic pockets in subdomains IIa and IIIA, such as site I and site II. The molecular docking analysis signified the most critical regions of compound binding sites in the HSA. The ligand molecule (HTp)

showed minimum binding energy of -7.5 kJ/mol with ligand efficiency -0.34. HTp molecule 1 shows hydrogen bond interaction with active site amino acid residues Arg257 and His288 at a 2 distance of 1.904 Å, 2.174 Å & 1.882 Å respectively. The molecular modeling results 3 revealed that the compound (HTp) have a good inhibition constant, vdW+H_{bond}+desol energy 4 5 with the best root mean square deviations. The best energy ranked details of the interaction 6 between the HTp and the receptor human serum albumin target (PDB Code: 1H9Z) in all the 7 runs of docking protocol have listed in Table S2⁺. Enfolding and H-bond interaction of molecule (HTp) are in the active site pocket of serum albumin target (PDB Code: 1H9Z) as 8 shown in Fig. 6A and Fig. 6B. 9

1 4. CONCLUSION

2 We report the convenient synthesis of a tri-dentate imine based molecule (HTp) in 3 good yield. The molecular structure was well explored through crystallography, Hirshfeld surface analysis and several spectroscopic techniques. As the key circulating protein in the 4 5 blood, albumin serves the excellent delivery platform for many exogenous and endogenous compounds. The nature of the binding of synthesized HTp with HSA was studied using 6 7 fluorescence and UV-Vis absorption method under physiological conditions. The interactions 8 were confirmed through variations in the absorption spectra and intrinsic fluorescence 9 quenching of the HSA. Further study of the quenching process uses k_a , k_{sv} and k_b parameters and the higher values of K_b demonstrated strong interaction with HSA. The probable mode of 10 11 interaction strategy is found to be a static quenching process.

FRET and fluorescence quenching model afforded the distance between the HSA and 12 HTp being the ratio 1:1 suggests that the high possibility of energy transfer has occurred. 13 HSA had a crucial effect on drug distribution and pharmacokinetics as the compound could 14 15 quench the protein fluorescence through static quenching phenomena. Quantitative assay for the binding of HTp with HSA was proposed from multi-spectroscopic methods at different 16 temperature conditions and correlated by molecular docking technique. With the above data 17 provided, this will be the benchmark for the molecule HTp to get used for further clinical 18 applications in protein conjugation pharmacology. 19

20

21 APPENDIX

22 CCDC 1548542 contains a supplement of crystallographic data for HTp.

23

24 ACKNOWLEDGMENTS

25 One of the authors, Savithri K gratefully acknowledges the University Grants Commission,

26 New Delhi for the award of Senior Research Fellowship under RGNF Scheme.

Fig.6. (A) Enfolding of molecule HTp in the active site pocket of Serum Albumin target (1H9Z)

(B) H-bond interaction of ligand molecule HTp with HSA.

Table.1: The quenching constants (K_{sv}), binding constants (K_b), number of binding sites
 (n) and corresponding correlation binding parameters for HSA-HTp interaction
 system at different temperatures obtained from fluorescence spectrophotometry

Compound	Temp (K)	K _{sv ×} 10 ⁴ (L/mol)	K _q ×10 ¹² (L/mol/sec)	K _b ×10 ⁵ (L/mol)	\mathbf{R}^2	*SD	n
НТр	298	2.8355 ±0.24	2.8355±0.21	44.452±0.47	0.9942	0.012	1.0461
	303	2.7021±0.13	2.7021±0.44	37.132±0.35	0.9883	0.021	1.0320
	310	2.5801±0.57	2.5801±0.32	13.135±0.22	0.9801 <	0.024	1.1621

5 R^2 = Correlation coefficient for the $K_{b,}^*$ SD -standard deviation of the best fit

6

7 **Table.2:** Thermodynamic binding parameters for HSA-ligand interaction system at different

8 temperatures.

Compound	Temp (K)	K _b ×10 ⁵ (L/mol)	∆G° (KJ/mol)	∆H° (KJ/mol)	∆S° (J/K/mol)
НТр	298	44.452±0.47	-33.518		
	303	37.132±0.35	-32.414	-78.314	-361.304
	310	13.135±0.22	-29.186	Y	

	310	13.135±0.22	-29.186	
9				
10				
11				
12				
13				
14				
15		\cup		
16)		
17	Υ,			
18				
19				
20				
21				

1 5. Bibliography

- 2
- [1]. R.M. Mohareb, D.H. Fleita, O.K. Sakka, O. City, Novel Synthesis of HydrazideHydrazone Derivatives and Their Utilization in the Synthesis of Coumarin, Pyridine,
 Thiazole and Thiophene Derivatives with Antitumor Activity, Acta Chim. Slov, 2013,
 (2011) 16–27. doi:10.3390/molecules16010016.
- 7 [2]. H.H. Monfared, O. Pouralimardan, C. Janiak, Synthesis and Spectral Characterization
 8 of Hydrazone Schiff Bases Derived from 2, 4-Dinitrophenylhydrazine. Crystal Structure
 9 of Salicylaldehyde-2,4-Dinitrophenylhydrazone, Z. Naturforsch, 62b (2007) 717–720.
- [3]. Y. Lei, G. Chen, Q. Yang, C. Fu, J. Pan, T. Li, Synthesis And Structures Of Two
 Hydrazone Compounds Derived From 4-Methylbenzohydrazide, J. Struct. Chem., 54
 (2013) 829–833. doi:10.1134/S0022476613040288.
- [4]. A. Stadler, J. Harrowfield, Bis-acyl-/aroyl-hydrazones as multidentate ligands,
 Inorganica Chim. Acta, 362 (2009) 4298–4314. doi:10.1016/j.ica.2009.05.062.
- [5]. S. Naseem, M. Khalid, M. Nawaz, M.A. Halim, A.A.C. Braga, M. Moazzam, Z. Sha,
 Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthenebased hydrazone ligand, J. Mol. Struct. 1143 (2017) 235-244.
 doi:10.1016/j.molstruc.2017.04.093.
- [6]. O.A. El-Gammal, Mononuclear and binuclear complexes derived from hydrazone
 Schiff base NON donor ligand: Synthesis, structure, theoretical and biological studies,
 Inorganica Chim. Acta. 435 (2015) 73–81. doi:10.1016/j.ica.2015.06.009.
- [7]. G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. Rahmat Ali, M. Mumtaz
 Alam, J Pharm Bioallied Sci., 6 (2014) 69–80.

[8]. E. Colleen, A. Booth, A.C. Sartorelli, Inhibition of Deoxyribonucleotide Synthesis by
 Pyridine Carboxaldehyde Thiosemicarbazones, Cancer Res., 31 (1971) 235–239.

- [9]. P. Kumar, D. Nandan, Spectral studies on cobalt(II), nickel(II) and copper(II)
 complexes of naphthaldehyde substituted aroylhydrazones, Spectrochim. Acta Part A,
 64 (2006) 853–858. doi:10.1016/j.saa.2005.08.014.
- [10]. H. Hosseini, R. Bikas, P. Mayer, Homogeneous green catalysts for olefin oxidation by
 mono oxovanadium(V) complexes of hydrazone Schiff base ligands, Inorganica Chim.
 Acta. 363 (2010) 2574–2583. doi:10.1016/j.ica.2010.04.046.
- [11]. A. Ray, S. Banerjee, S. Sen, Ray J. Butcher, G.M. Rosair, M.T. Garland, S. Mitra, Two
 Zn(II) and one Mn(II) complexes using two different hydrazone ligands : spectroscopic
 studies and structural aspects, Struct. Chem., 19 (2008) 209–217. doi:10.1007/s11224-

1	007-9274-7.
2	[12]. R.M. Mohareb, N.S. Abbas, R.A. Ibrahim, New Approaches for the Synthesis of
3	Thiophene Derivatives with Anti-tumor Activities, Acta Chim. Slov., (2013) 583–594.
4	[13]. L. Xu, Yan-Xi Hu, Yan-C. Li, Yu-F. Liu, Li Zhang, Hai-X. Ai, H. H. Liu, Study on the
5	interaction of paeoniflorin with human serum albumin (HSA) by spectroscopic and
6	molecular docking techniques, Chem. Cent. J., 11 (2017)116.
7	[14]. Z. Liu, X. Chen, Simple bioconjugate chemistry serves great clinical advances: albumin
8	as a versatile platform for diagnosis and precision therapy, Chem. Soc. Rev., (2016)
9	DOI: 10.1039/c5cs00158g
10	[15]. P. Zhao, G. Gao, L. Zhang, Q. Cai, N. Lu, L. Cheng, S. Li, X. Hou, Drug-protein
11	binding mechanism of juglone for early pharmacokinetic profiling: Insights from
12	ultrafiltration, multi-spectroscopic and molecular docking methods, J. Pharm. Biomed.
13	Anal., 141 (2017) 262–269. doi:10.1016/j.jpba.2017.03.036.
14	[16]. a) H. Rimac, Z. Debelijak, D. Sakic, T. Weitner, M. Gabricevic, V. Vrcek, B. Zorc, M.
15	Bojic, Structural and electronic determinants of flavonoid binding to human serum
16	albumin: an extensive ligand-based study, RSC Adv., 6 (2016) 75014. DOI:
17	10.1039/c6ra17796d
18	b) S. Allosteric, I. Enantiomers, W. Warfarin, Stereoselective Binding Of 3-Acetoxy-
19	And 3-hydroxy-1,4-benzodiazepine-2-ones to Human Serum Albumin, Biochem.
20	Pharmacol., 35 (1986) 263–269.
21	[17]. M. Dehkhodaei, M. Khorshidifard, H. Amiri, M. Sahihi, G. Azimi, N. Habibi, S. Taheri,
22	G. Bruno, R. Azadbakht, Synthesis, characterization, crystal structure and DNA, HSA-
23	binding studies of four Schiff base complexes derived from salicylaldehyde and
24	isopropylamine, Inorg. Chim. Acta. 466 (2017) 48–60. doi:10.1016/j.ica.2017.05.035.
25	[18]. M.B. Bolattin, S.T. Nandibewoor, S.D. Joshi, S.R. Dixit, S.A. Chimatadar, Interaction
26	of Hydralazine with Human Serum Albumin and Effect of $\beta \mathbb{Z}$ Cyclodextrin on
27	Binding: Insights from Spectroscopic and Molecular Docking Techniques, Ind. Eng.
28	Chem. Res., 55 (2016)5454-5464. doi:10.1021/acs.iecr.6b00517.
29	[19]. K. Savithri, B.C. Vasanth Kumar, H. D. Revanasiddappa, V. Hamse Kameshwar, M.
30	Kaur, J.P. Jasinski, 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-
31	chlorophenol; synthesis, characterization, crystal structure, Hirshfeld surface analysis
32	and BSA binding studies, J. Mol. Struc., 1142 (2017) 293-303.
33	doi:10.1016/j.molstruc.2017.04.050.
34	[20]. J.R. Lakowicz, G. Weber, Quenching of Fluorescence by Oxygen. A Probe for

1	Structural Fluctuations in Macromolecules, Biochem., 12 (1973) 4161-4170.
2	[21]. X. Fu, D. Liu, Y. Lin, W. Hu, Z. Mao, X. Le, Water-soluble DNA minor groove binders
3	as potential chemotherapeutic agents: synthesis, characterization, DNA binding and
4	cleavage, antioxidation, cytotoxicity and HSA interactions, Dalton Trans., 43 (2014)
5	8721-8737. doi:10.1039/c3dt53577k.
6	[22]. S.M. Al-barody, H. Ahmad, Synthesis, structural characterization and thermal studies of
7	lanthanide complexes with Schiff base, Cogent Chem. 41 (2015) 1–11.
8	doi:10.1080/23312009.2015.1093920.
9	[23]. Bruker, APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA (2009).
10	[24]. G.M. Sheldrick, A Short history of SHELX, Acta Cryst., A64, (2008) 112-122.
11	[25]. a) N. Keswani, S. Choudhary, N. Kishore, Quantitative aspects of recognition of the
12	antibiotic drug oxytetracycline by bovine serum albumin; Calorimetric and
13	spectroscopic studies, J. Chem. Thermodynamics, 58, (2013) 196-205
14	b) I. Matei, M. Hillebrand, Interaction of kaempferol with human serum albumin: A
15	fluorescence and circular dichroism study, J. Pharm. Biomed. Anal. 51 (2010) 768-773.
16	[26]. G. M. Sheldrick, Crystal structure refinement with SHELX, Acta Cryst., C71, (2015) 3-
17	8.
18	[27]. A. L. Spek, Structure validation in chemical crystallography, Acta Cryst., D65, (2009)
19	148-155.
20	[28]. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman,
21	CrystalExplorer 3.0, University of Western Australia, Perth, Australia, (2001).
22	[29]. D.A. Links, Insight into supramolecular self-assembly directed by weak interactions in
23	acetophenone derivatives : crystal structures and Hirshfeld surface analyses, Cryst. Eng.
24	Comm. 13 (2011) 6728-6741. doi:10.1039/c1ce05670k.
25	[30]. Shamsuzzaman, H. Khanam, A. Mashrai, M. Asif, A. Ali, A. Barakat, Y. N. Mabkhot,
26	synthesis, crystal structure, Hirshfeld surfaces and thermal, mechanical and dielectrical
27	properties of cholest-5-ene, J. Taibah Uni. Sci., 11 (2017) 141-150.
28	http://dx.doi.org/10.1016/j.jtusci.2016.01.001
29	[31]. K. Byadagi, M. Meti, S. Nandibewoor, S. Chimatadar, Investigation of binding
30	behavior of procainamide hydrochloride with human serum albumin using synchronous,
31	3D fluorescence and circular dichroism, J. Pharm. Anal., 7 (2017) 103–109.
32	doi:10.1016/j.jpha.2016.07.004.
33	[32]. L. Zhao, J. Liu, R. Guo, Q. Sun, H. Yang, H. Li, Investigating the interaction

mechanism of fluorescent whitening agents to human serum albumin using saturation

1	transfer difference-NMR, RSC Adv. 7 (2017) 27796–27806. doi:10.1039/C7RA04008C
2	[33]. a) S. Yu, M. Schuchardt, M. Tolle, M. V. Der Giet, W. Zidek, J. Dzubiella, M. Ballauff,
3	Interaction of human serum albumin with uremic toxins: a thermodynamic study, RSC
4	Adv., 7 (2017) 27913. DOI: 10.1039/c7ra02838e
5	b) G. Yang, C. Li, A. Zeng, Y. Zhao, R. Yang, Fluorescence spectroscopy of osthole
6	binding to human serum albumin, J. Pharm. Anal., 3 (2013) 200–204.
7	doi:10.1016/j.jpha.2012.10.002.
8	[34]. B.C.Vasantha Kumar, Savithri K, Chandra, Manpreet Kaur, Jerry P. Jasinski, H.D.
9	Revanasiddappa, 4-Chloro-2-(5,6-dihydro-benzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-
10	phenol (HL); synthesis, characterization, crystal structure, Hirshfeld surface analysis
11	and BSA binding studies, J. Mol. Struc., 1173 (2018) 481-489.
12	[35]. a) G, Vignesh, R. Senthilkumar, P. Paul, V. S. Periasamy, M. A. Akbarshac, S.
13	Arunachalam, Protein binding and biological evaluation of polymer-anchored
14	cobalt(III) complex containing a 2,2'-bipyridine ligand, RSC Adv., 2014, 4, 57483
15	b) P. Zhao, G. Gao, L. Zhang, Q. Cai, N. Lu, L. Cheng, S. Li, X. Hou, Drug-protein
16	binding mechanism of juglone for early pharmacokinetic profiling: Insights from
17	ultrafiltration, multi-spectroscopic and molecular docking methods, J. Pharm. Biomed.
18	Anal., 141 (2017) 262–269. doi:10.1016/j.jpba.2017.03.036.
19	[36]. G. Rabbani, M. H. Baig, E. J. Lee, Won-K. Cho, J. Y. Ma, I. Choi, Biophysical Study
20	on the Interaction between Eperisone Hydrochloride and Human Serum Albumin Using
21	Spectroscopic, Calorimetric, and Molecular Docking Analyses, Mol. pharmaceut., 14
22	(2017) 1656-1665. doi:10.1021/acs.molpharmaceut.6b01124.
23	[37]. I. Khosravi, F. Hosseini, M. Khorshidifard, M. Sahihi, Synthesis, characterization,
24	crystal structure and HSA binding of two new N, O, O-donor Schiff-base ligands
25	derived from dihydroxybenzaldehyde and tert -butylamine, J. Mol. Struct., 1119 (2016)
26	373–384. doi:10.1016/j.molstruc.2016.04.094.
27	[38]. C. Pontremoli, N. Barbero, S. Visentin, Insight into the interaction of Inhaled
28	Corticosteroids (ICS) with human serum albumin: a spectroscopic-based study Carlotta,
29	J. Pharm. Anal., (2017). doi:10.1016/j.jpha.2017.07.003.

Fig.6. (A) Enfolding of molecule HTp in the active site pocket of Serum Albumin target (1H9Z)(B) H-bond interaction of ligand molecule HTp with HSA.

Highlights:

- 1. The tridentate imine based molecule (HTp) was synthesized conveniently both by conventional and microwave methods.
- 2. Spectroscopic characterization, single x-ray crystallography and Hirshfeld surface mapping analysis for its structural elucidation.
- 3. Biological assays (HSA binding studies) for the potential analysis of prepared compound.
- 4. Results revealed that the synthesized molecule is an efficient protein binding drug exhibit higher binding affinity values was confirmed by both experimental (spectroscopic methods) and computational molecular docking simulation.

CER CER