

Bioorganic & Medicinal Chemistry Letters 11 (2001) 2647-2649

Synthesis of a Reported Calpain Inhibitor Isolated from Streptomyces griseus

I. O. Donkor* and M. Lee Sanders

Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA

Received 7 June 2001; accepted 25 July 2001

Abstract—The reported diketopiperazine calpain inhibitor, cis-L-L-3,6-bis-(4-hydroxybenzyl)-1,4-dimethylpiperazine-2,5-dione 1, and its analogues 3 and 4 were synthesized from the corresponding amino acids. The previously assigned structure of 1 is confirmed but neither synthetic 1 nor its *N*-methylphenylalanine analogues 3 and 4 inhibit porcine erythrocyte calpain I. © 2001 Elsevier Science Ltd. All rights reserved.

Calpain (EC 3.4.22.17) is a unique cytosolic calciumactivated cysteine protease that is widely distributed in mammalian cells.^{1–3} The enzyme has been implicated in various neurodegenerative disorders and several other pathological conditions.^{4–7} Calpain has therefore attracted considerable interest as a therapeutic target. Several synthetic, semi-synthetic, as well as natural products have been investigated as inhibitors of the enzyme.^{8,9} Diketopiperazine 1 of *N*-methyltyrosine was isolated from Streptomyces griseus (SC488) and reported to inhibit calpain $(IC_{50} = 0.8 \,\mu\text{M})$.¹⁰ Phevalin 2, which bears some structural resemblance to diketopiperazine 1, was isolated from Streptomyces species and also reported to inhibit calpain with an IC₅₀ of 1.2 µM.¹¹ These natural products attracted our attention as interesting leads for the discovery of novel nonpeptide inhibitors of calpain. In this communication we describe the total synthesis of diketopiperazine 1 and its *N*-methylphenylalanine analogues $\hat{\mathbf{3}}$ and $\mathbf{4}$ and their calpain inhibitory activity. Marcuccio and Elix¹² previously reported compounds 3 and 4 but no calpain inhibitory data were presented.

The diketopiperazine 1 of *N*-methyltyrosine and its *N*-methylphenylalanine analogues 3 and 4 were synthesized from the appropriately protected amino acids 5a-5c and 6a-6c (see Scheme 1). Coupling of *t*-boc-protected amino acids 5a-5c with amino acid methyl esters 6a-6c followed by purification of the crude product by column chromatography (silica gel) with

^{*}Corresponding author. Tel.: + 1-901-448-7736; fax: + 1-901-448-6828; e-mail: idonkor@utom.edu

Scheme 1. (a) EDC/CH₂Cl₂/Et₃N or CDI/anhyd THF/DIEA/N₂; (b) 96% formic acid; (c) *sec*-butanol/toluene (4:1), reflux; (d) NaH/MeI/DMF; (e) H₂, 10% Pd/C, MeOH. For 1, $R_1 = R_2 = Bzl$ (4-OH).

0960-894X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(01)00524-8

EtOAc/hexanes (1:1) as eluant afforded dipeptides 7a-7c.¹³ It was observed in the synthesis of 7a that utilization of carbonyldiimidazole (CDI) instead of ethylcarbodiimide hydrochloride (EDC) as the coupling agent afforded higher yields of the corresponding dipeptide. Following a modification of the procedure of Nitecki et al.,¹⁴ compounds 7a-7c were selectively deprotected with 96% formic acid and the resulting dipeptide amino esters were transformed to diketopiperazines 8a-8c by refluxing in a mixture of secbutanol/toluene (4:1).¹⁵ The diketopiperazines (8a–8c) were N-methylated using NaH/MeI in DMF as described by Marcuccio and $Elix^{12}$ to give the *N*-methylphenylalanine analogues 3 and 4 as well as 9a.¹⁶ Catalytic hydrogenolysis of 9a over 10% Pd/C at 60 psi afforded the diketopiperazine 1 of *N*-methyltyrosine as a yellow tinted solid.17

We expected that, like the diketopiperazine isolated from S. griseus, 1 and 3 should have a cis or LL-configuration since they were derived from dipeptides composed of L-amino acids while 4 should have a *trans* or DL-configuration since it was derived from a dipeptide composed of D- and L-amino acids. Indeed, the ¹H NMR spectrum of 1 was identical to that of the diketopiperazine isolated from S. griseus.¹⁰ The spectra of 3and 4 were also in agreement with literature values.¹² Additionally, the splitting pattern and the resonance positions of the geminal methylene protons and the methine protons of 1 and 3 were similar and different from those of 4, which has a *trans* or DL-configuration (see Fig. 1). Furthermore, the specific rotation of the compounds confirmed their assigned configuration. Compounds 1 and 3 had specific rotations of -114.64° and -98.24°, respectively, due to their LL-configuration while **4** did not rotate plane polarized light due to its DL-configuration.

Despite the similarity in the ¹H NMR data of synthetic diketopiperazine 1 and the natural product, 1 was obtained as a solid while the natural product was reported as an oil.¹⁰ Also, synthetic diketopiperazine **1** and its N-methylphenylalanine analogues 3 and 4 did not inhibit porcine erythrocyte calpain I up to 1 mM inhibitor concentration under our assay conditions.¹⁸ This is at odds with the reported calpain inhibitory activity (IC₅₀= $0.8\,\mu$ M) of the diketopiperazine isolated from Streptomyces griseus. Casein and calpain I isolated from purified human RBC were used as the substrate and the enzyme, respectively, to determine the calpain inhibitory potency of the diketopiperazine isolated from the natural product.¹⁰ Suc-Leu-Tyr-AMC and calpain I isolated from porcine erythrocytes were used as the substrate and the enzyme, respectively, in the assay system that we used to evaluate the calpain inhibitory potency of the synthetic diketopiperazines 1, 3, and $4^{.18}$ We have previously used our calpain assay system to duplicate the calpain inhibitory potency of a known α -ketoamide (Z-Leu-Phe-CONHCH₂CH₂Ph) calpain inhibitor.^{19,20} Thus, despite the differences in the assay protocols the synthetic diketopiperazines should have inhibited calpain if they are true calpain inhibitors. We suggest that an unidentified contaminant of the diketopiperazine isolated from Streptomyces griseus is responsible for the observed calpain inhibitory activity reported by Alvarez et al.¹⁰ Indeed, the fact that synthetic diketopiperazine 1 is a solid and the diketopiperazine isolated from the natural product is an oil is consistent with the possibility of an impurity in the natural

Figure 1. ¹H NMR (500 MHz) spectra showing the aliphatic regions of 1, 3, and 4. S, solvent (DMSO- d_6); W, water; a, methylene protons; b, N–CH₃ protons; c, methine protons.

C.

product which may be responsible for its calpain inhibitory action.

Acknowledgements

The study was supported in part by grant 5 K14 HL03536 from the US Public Health Service (I.O.D.) and a University of Tennessee College of Pharmacy Faculty Development Grant (I.O.D.).

References and Notes

1. Sorimachi, H.; Saido, T. C.; Suzuki, K. FEBS Lett. 1994, 343.1.

2. Suzuki, K.; Ohno, S. Cell Struct. Funct. 1990, 156, 1.

3. Lin, G.-D.; Chattopahhyay, D.; Maki, M.; Wang, K. K. W.;

Carson, M.; Jin, L.; Yuen, P.-W.; Takano, E.; Hatanaka, M.; DeLucas, L. J.; Narayana, S. V. L. Nat. Struct. Biol. 1997, 4,

539.

4. Sorimachi, H.; Ishiura, S.; Suzuki, K. Biochem. J. 1997, 328, 721.

5. Saido, T.; Sorimachi, H.; Suzuki, K. FASEB J. 1994, 8, 814.

6. Bartus, R. T. Neuroscientist 1997, 3, 314.

- Wang, K. K. W.; Yuen, P.-W. Adv. Pharm. 1997, 37, 117. 7.
- 8. Otto, H.-H.; Schirmeister, T. Chem. Rev. 1997, 97, 133.
- 9. Donkor, I. O. Curr. Med. Chem. 2000, 7, 1171.

10. Alvarez, M. E.; Houck, D. R.; White, C. B.; Brownell, J. E.; Bobko, M. A.; Rodger, C. A.; Stawick, M. B.; Sun, H. H.; Gillum, A. M.; Cooper, R. J. Antibiot. 1994, 47, 1195. 11. Alvarez, M. E.; Houck, D. R.; White, C. B.; Brownell, J. E.; Bobko, M. A.; Rodger, C. A.; Stawick, M. B.; Sun, H. H.; Gillum, A. M.; Cooper, R. J. Antibiot. 1995, 48, 1165.

12. Marcuccio, S. M.; Elix, J. A. Aust. J. Chem. 1984, 37, 2397.

13. The ¹H NMR spectra of all the compounds in this study were recorded on a Bruker 300 MHz instrument. (a) t-Boc-Ltyrosyl(O-benzyl)-L-tyrosine(O-benzyl)methyl ester 7a was obtained in 96% yield as a white solid of melting point 163-165°C. ¹H NMR (CDCl₃) δ 1.41 (s, 9H, *t*-Boc), 2.92–3.0 (m, 4H, PhCH₂CH), 3.66 (s, 3H, OCH₃), 4.28 (m, 1H, CHCONH), 4.73 (dd, 1H, CHCOOCH₃), 5.01 (d, 4H, PhCH₂O), 6.81-7.12 (m, 8H, phenyl protons), 7.27-7.42 (m, 10H, phenyl protons). Anal. calcd for C₃₈H₄₂N₂O₇: C, 71.45; H, 6.63; N, 4.39. Found: C, 71.64; H, 6.57; N, 4.31. (b) t-Boc-L-phenylalanyl-L-phenylalanine methyl ester 7b was obtained in 60% yield as a white solid of melting point 116–117 °C. ¹H NMR (CDCl₃) & 1.39 (s, 9H, t-Boc), 2.98-3.12 (m, 4H, PhCH₂CH), 3.67 (s, 3H, OCH₃), 4.32 (m, 1H, CHCONH), 4.78 (dd, 1H, CHCOOCH₃), 6.95–7.30 (m, 10H, phenyl protons). Anal. calcd for C₂₄H₃₀N₂O₅: C, 67.59; H, 7.09; N, 6.57. Found: C, 67.34; H, 7.03; N, 6.47. (c) t-Boc-D-phenylalanyl-Lphenylalanine methyl ester 7c was obtained in 63% yield as a white solid of melting point 124–126 °C. ¹H NMR (CDCl₃) δ 1.38 (s, 9H, t-Boc), 2.90–3.11 (m, 4H, PhCH₂CH), 3.67 (s, 3H, OCH₃), 4.35 (m, 1H, CHCONH), 4.83 (dd, 1H, CHCOOCH₃), 6.94–7.30 (m, 10H, phenyl protons). Anal. calcd for $C_{24}H_{30}N_2O_5$: C, 67.59; H, 7.09; N, 6.57. Found: C, 67.34; H, 7.04; N, 6.54

14. Nitecki, D. E.; Halpern, B.; Westley, J. W. J. Org. Chem. 1968, 33, 864.

15. (a) cis-L-L-3,6-Bis-(4-benzyloxybenzyl)piperazine-2,5dione 8a was obtained in 84% yield. Mp>260 °C. ¹H NMR (TFA-d) & 2.15 (m, 2H, PhCH₂CH), 2.87 (d, 2H, PhCH₂CH), 4.47 (s, 2H, PhCH₂CH), 5.19 (s, 4H, PhCH₂O), 6.96-7.35 (m,

18H, phenyl protons). Anal. calcd for $C_{32}H_{30}N_2O_4$: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.81; H, 6.04; N, 5.56. (b) cis-L-L-3,6-Dibenzylpiperazine-2,5-dione 8b was obtained in 87% yield. Mp > 300 °C. ¹H NMR (TFA-*d*) δ 2.25 (m, 2H, PhCH₂CH), 3.01 (d, 2H, PhCH₂CH), 4.52 (s, 2H, PhCH₂CH), 7.05-7.34 (m, 10H, phenyl protons). Anal. calcd for C₁₈H₁₈N₂O₂: C, 73.45; H, 6.16; N, 9.52. Found: C, 73.32; H, 6.25; N, 9.43. (c) trans-D-L-3,6-Dibenzylpiperazine-2,5-dione 8c was obtained in 50% yield. Mp 294 °C. ¹H NMR (TFA-d) δ 3.03-3.20 (m, 4H, PhCH₂CH), 3.86 (d, 2H, PhCH₂CH), 7.00-7.28 (m, 10H, phenyl protons). Anal. calcd for $C_{18}H_{18}N_2O_2$: 73.45; H, 6.16; N, 9.52. Found: C, 73.58; H, 6.22; N, 9.56. 16. (a) cis-L-L-3,6-Bis-(4-benzyloxybenzyl)-1,4-dimethylpiperazine-2,5-dione 9a was obtained in 59% yield as a colorless oil. ¹H NMR (CDCl₃) δ 2.22 (dd, 2H, 4-BzlOPhCH₂CH, J=6.6, 14.2), 2.75 (s, 6H, NCH₃), 2.80 (dd, 2H, 4-BzlOPhCH₂CH, J=4.0, 14.2), 4.01 (dd, 2H, 4-BzlOPhCH₂CH, J=4.0, 6.6), 5.02 (s, 4H, PhCH₂O), 6.91-7.02 (m, 8H, phenyl protons), 7.27-7.37 (m, 10H, phenyl protons). Anal. calcd for C₃₄H₃₄N₂O₄·0.2EtOAc: C, 75.69; H, 6.50; N, 5.07. Found: C, 75.31; H, 6.47; N, 5.02. (b) cis-L-L-3,6-Dibenzyl-1,4-dimethylpiperazine-2,5-dione 2 was obtained in 94% yield. Mp 144-146 °C. ¹H NMR (CDCl₃) δ 2.22 (dd, 2H, PhCH₂CH, J=6.5, 14.2), 2.76 (s, 6H, NCH₃), 2.84 (dd, 2H, PhCH₂CH, J=4.2, 14.2) 4.06 (dd, 2H, PhCH₂CH, J=4.2, 6.5), 7.07-7.35 (m, 10H, phenyl protons); ¹³C NMR (CDCl₃) δ 33.5 (NCH₃), 39.0 (CH₂), 64.3 (CH), 127.2, 128.8, 129.0, 129.6, 137.0 (Ar), 165.4 (CO). $[\alpha]_D^{23}$ -98.24° (c 1, CH₃OH). Anal. calcd for C₂₀H₂₂N₂O₂: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.26; H, 6.92; N, 8.72. (c) trans-D-L-3,6-Dibenzyl-1,4-dimethylpiperazine-2,5-dione 3 was obtained in 89% yield. Mp 184-187 °C. ¹H NMR (CDCl₃) δ 2.84 (s, 6H, NCH₃), 2.96 (dd, 2H, PhCH₂CH, J=4.2, 14.1 Hz), 3.21 (dd, 2H, PhCH₂CH, J=3.1, 14.1 Hz), 3.39 (t, 2H, PhCH₂CH, J=3.6), 6.95–7.27 (m, 10H, phenyl protons); ¹³C NMR (CDCl₃) & 32.2 (NCH₃), 36.9 (CH₂), 61.7 (CH), 127.3, 128.3, 129.6, 134.8 (Ar), 165.2 (CO). $[\alpha]_{D}^{26}$ +0.05° (c 1, CH₃OH). Anal. calcd for C₂₀H₂₂N₂O₂: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.58; H, 6.93; N, 8.74. 17. cis-L-L-3,6-Bis-(4-hydroxybenzyl)-1,4-dimethylpiperazine-2,5-dione 1 was obtained in 88% yield as a yellow tinted solid.

Mp 208 °C. ¹H NMR (CH₃OH- d_4) δ 2.14 (dd, 2H, 4-OHPhCH₂CH, J=6.4, 14.2 Hz), 2.75 (s, 6H, NCH₃), 2.76 (dd, 2H, 4-OHPhCH₂CH, J=4.2, 14.2 Hz), 4.09 (dd, 2H, 4-OHPhCH₂CH, J=4.2, 6.4 Hz), 6.75 (d, 4H, phenyl protons), 6.91 (d, 4H, phenyl protons). ¹H NMR (DMSO- d_6) δ 2.03 (dd, 2H, 4-OHPhCH₂CH, J=6.0, 14.2 Hz), 2.48 (dd, 2H, 4-OHPhCH₂CH, J=4.5, 14.2 Hz), 2.58 (s, 6H, NCH₃), 3.96 (t, 2H, 4-OHPhCH₂CH, J=5.3), 6.61-6.78 (dd, 8H, phenyl protons), 9.22 (s, 2H, PhOH); ¹³C NMR (DMSO-d₆) δ 32.6 (NCH₃), 37.3 (CH₂), 63.1 (CH), 115.3, 127.2, 130.4, 156.3 (Ar), 164.9 (CO); MS: calcd for $C_{20}H_{22}N_2O_4 + H = 355.4$; Found: 355.3. $[\alpha]_D^{25}$ –114.64° (*c* 1, CH₃OH). Anal. calcd for C₂₀H₂₂N₂O₄·1H₂Õ: C, 64.50; H, 6.50; N, 7.52. Found: C, 64.27; H, 6.49; N, 7.51.

18. Calpain activity was monitored in a reaction mixture containing 50 mM Tris HCl (pH 7.4), 50 mM NaCl, 10 mM dithiothreitol, 1 mM EDTA, 1 mM EGTA, 0.2 or 1.0 mM Suc-Leu-Tyr-AMC (Calbiochem), 2 µg porcine erythrocyte calpain I (Calbiochem), varying concentrations of inhibitor dissolved in DMSO (2% total concentration) and $5\,\text{mM}$ CaCl₂ in a final volume of 250 µL in a polystyrene microtiter plate. Assays were initiated by addition of CaCl₂ and the increase in fluorescence ($\gamma_{ex} = 370 \text{ nm}$, $\gamma_{em} = 440 \text{ nm}$) was monitored at ambient temperature using a SPECTRAmax Gemini fluorescence plate reader (Molecular Devices).

19. Donkor, I. O.; Zheng, X.; Miller, D. D. Bioorg. Med. Chem. Lett. 2000, 10, 2497.

20. Donkor, I. O.; Zheng, X.; Han, J.; Lacy, C.; Miller, D. D. Bioorg. Med. Chem. Lett. 2001, 11, 1753.