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7-Azaindole derivatives as potential partial nicotinic agonists
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Abstract—We have investigated a series of 7-azaindoles as potential partial agonists of the a4b2 nicotinic acetylcholine receptor
(nAChR). Three series of 7-azaindole derivatives have been synthesized and evaluated for rat brain neuronal nicotinic receptor affin-
ity and functional activity. Compound (+)-51 exhibited the most potent nAChR binding (Ki = 10 nM). Compound 30A demon-
strated both moderate binding affinity and partial agonist potency, thus representing a promising lead for the indications of
cognition and smoking cessation.
� 2007 Elsevier Ltd. All rights reserved.
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Nicotinic acetylcholine receptors (nAChRs) are a sub-
type of acetylcholine-operated receptors and are mem-
bers of the superfamily of ligand-gated ion channel
receptors.1 Pentameric combinations of multiple a and
b subunits lead to a large number of nicotinic receptors
in the brain, complicating their study.2 The nAChR are
involved in a wide range of physiological and pathophys-
iological processes. The numerous neuronal nAChRs
subtypes are located at neurons throughout the CNS,
where they are involved in a number of processes con-
nected to cognitive functions, learning and memory, re-
ward, motor control, and analgesia.2 Equally
important to the overall contribution of nAChRs to cho-
linergic neurotransmission are the roles of presynaptic
and preterminal nAChRs as autoreceptors and heterore-
ceptors regulating the synaptic release of acetylcholine
and other neurotransmitters including dopamine, nor-
epinephrine, serotonin, glutamate, and c-aminobutyric
acid. Because of their modulatory influence on these neu-
rotransmitter systems, neuronal nAChRs have been pro-
posed as potential therapeutic targets for the treatment
of pain, epilepsy, and a wide range of neuron-degenera-
tive and psychiatric disorders such as Alzheimer’s
disease, Parkinson’s disease, schizophrenia, anxiety,
depression and the treatment of smoking cessation.3–5
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The invention of TC-2403,6 as a moderately potent nic-
otinic receptor agonist exhibiting some functional pref-
erence for a4b2 over other a/b, a7, and muscle-type
nAChRs, and the finding of TC-1734,7 as a partial ago-
nist on nicotinic receptor subtype a4b2 showing im-
proved short- and long-term memory in rodent
models,8 encouraged us to synthesize 7-azaindole9,10

derivatives (I–III, Fig. 1). It was envisaged that these
conformationally restricted analogs of trans-meta-nico-
tine (TC-2403) would result in compounds with the tra-
ditional pharmacophoric elements for nAChR agonists,
consisting of a charged nitrogen and a hydrogen bond
acceptor,11 with distinctive distance/angle geometries.12

An elegant example, which illustrates such a rigidifica-
tion strategy, is varenicline, acting as a selective partial
agonist of the a4b2 nAChR, displaying 30–60% of the
in vivo efficacy of nicotine, and effectively blocking the
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in vivo response to nicotine.4b This compound was ap-
proved by the FDA for smoking cessation in 2006.

The investigation of the novel 7-azaindole derivatives
(I–III) as putative partial nicotinic agonists is presented
in this paper, and their synthetic routes are described in
Schemes 1–7.

Commercially available 7-azaindole 1 (Scheme 1) was
reacted with 1-benzyl-piperidin-3-one 2 under basic con-
ditions to yield the piperidin-3-ol compound 3.9 Benzyl
group deprotection with ammonium formate and palla-
dium hydroxide resulted in 4, which was dehydrated to 5
under acidic conditions. Hydrogenation gave the desired
3-piperidin-3-yl-1H-pyrrolo[2,3-b]pyridine 6.

The synthesis of 6-chloro-3-piperidin-3-yl-1H-pyrrolo-
[2,3-b]pyridine 12 is depicted in Scheme 2. Compound
6 was reacted with di-tert-butyl-dicarbonate to generate
the piperidine N-Boc protected analog 8 (in a two-step
sequence), thereby facilitating the synthesis of the N-
oxide 9. Regioselective chlorination occurred at the C-
6 position of 7-azaindole N-oxide 9 and was achieved
by a Reissert–Henze type reaction, effectively assisted
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Scheme 2. Reagents and conditions: (a) (Boc)2O, N(Et)3, CH2Cl2, reflux,

dimethoxyethane, rt, 0.25 h (95%); (d) HMDS, methyl chloroformate, THF,

reflux, 1 h (76%).
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Scheme 1. Reagents and conditions: (a) NaOEt/EtOH, rt, 72 h (75%);

(b) NH4HCO2, Pd(OH)2, MeOH, reflux, 2 h (88%); (c) HCl/EtOH,

reflux, 1 h (44%); (d) H2, 50 psi, Pd(OH)2, HCl/MeOH, rt, 1 h (55%).
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Scheme 3. Reagents and conditions: (a) 1—LDA/THF, �10 �C, 0.5 h;

2—1-benzyl-piperidin-3-one, THF,�30 �C, 2 h (23%); (b) 2 N NaOH in

MeOH, reflux, 2 h (66%); (c) NH4HCO2, Pd(OH)2, MeOH, reflux, 1 h

(80%); (d) 6 N HCl, reflux, 18 h (92%); (e) H2, 50 psi, Pd(OH)2, MeOH,

rt, 1 h (84%); (f) chiral column23; (g) 1—(BOC)2O, N(Et)3, CH2Cl2,

reflux, 0.25 h; 2—2 N NaOH/MeOH, rt, 0.5 h (87%); (h) m-ClPBA,

dimethoxyethane, rt, 0.25 h (87%); (i) HMDS, methyl chloroformate,

THF, reflux, 1.5 h (34% (22 A) and 44% (23A)); (j) 1—2 N NaOH in

MeOH, rt, 18 h; 2—HCl/EtOH, reflux, 1 h (31%); (k) chiral column.24
by hexamethyldisilazane (HMDS).13 Thus, the N-1-
methoxycarbonyl compound 10, obtained from this
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0.25 h; (b) 2 N NaOH/MeOH, rt, 0.5 h (55% overall); (c) m-CPBA,

rt, 0.5 h (59%); (e) 2 N NaOH/MeOH, rt, 18 h (95%); (f) HCl/EtOH,
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reaction, was converted to compound 11 under basic
conditions. Acidic deprotection of the N-Boc completed
the synthesis of 12.

Scheme 3 highlights the synthesis of 2-(3-piperidyl)
substituted azaindoles. The phenylsulfonyl group as
Directing Metalation Group (DMG) at the N-1-position
of azaindole analogs enabled the lithiation of the 2-posi-
tion and thereby the synthesis of C-2 derivatives.14 The
C-2 lithio derivative of 13, prepared on multigram scale
by a-metalation (1,1 equiv LDA, THF, �10 �C), was
trapped with 1-benzyl-piperidin-3-one (2) to afford 14
(Scheme 3). After basic hydrolysis of the N-1-phenylsul-
fonyl group (15), the preferred sequence to 17 was ben-
zyl group deprotection (16), subsequently followed by
dehydration under acidic conditions. Hydrogenation
yielded 2-piperidin-3-yl-1H-pyrrolo[2,3-b]pyridine 18.

Furthermore, by the sequence described in Scheme 3,
starting material 18 was converted into the N-oxide 20
which was exposed to methyl chloroformate and
HMDS.13 Surprisingly, the subsequent Reissert–Henze
reaction afforded a mixture of 6- and 4-substituted prod-
ucts (22A and 23A). We attributed the non-selectivity of
this reaction to steric and electronic influences of the
piperidine ring on the adjacent carbamate and carbonate
group in intermediate 21, decreasing the reactivity of the
6-position relative to the 4-position. Purification by chro-
matography and subsequent basic hydrolysis (22B,23B),
followed by removal of the N-Boc protecting group,
yielded the corresponding 6- and 4-chloro-2-piperidin-
3-yl-1H-pyrrolo[2,3-b]pyridines (24,25).



Table 1. Radioligand [3H]cytisine binding for 7-azaindole analogs29

Compound Ki
a (nM) Compound Ki

a (nM)

6 2950 36A 147

12 2950 36B 3715

(±)-18 10,000 37A 691

(+)-18 na 37B na

(�)-18 1995 38A 316

(±)-24 na 38B 1995

(�)-24 na 40 na

(+)-24 3460 (±)-51 16

25 na (�)-51 251

30A 125 (+)-51 10

30B 2750 (�)-Nicotine 7

32A 2511 TC-2403 266,35

32B 691 TC-1734 117,35

na, not active.
a Values are the average of three experiments. The assay-to-assay

maximum variability in the series was ±3-fold. More common vari-

ability was ±2-fold.
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5-(R)-[3,3,0]-1-Aza-2-thia-3-oxabicyclooctane-2,2-di-oxide
(26, Scheme 4) and the corresponding 5-(S)-analog (27)15

were employed as enantiomerically pure starting materi-
als for the synthesis of 30A and 30B (Scheme 4).

The 2-lithio derivative of 13 was reacted with (R)-sul-
famidate 26 to produce the lithium-sulfonate 28, which
was subsequently hydrolyzed to generate 29A. Various
methods were tried for the removal of the N-1-phenyl-
sulfonyl group. After considerable experimentation, we
found that potassium hydroxide in di-ethylene glycol,
in the presence of hydrazine, improved the reaction rate
and yields of 30A.25a The (S)-isomer 30B was obtained
starting from 13 and the (S)-sulfamidate 27. Reductive
methylation of 29A (29B) resulted in 31A (31B). Basic
deprotection of the N-1-phenylsulfonyl group completed
the synthesis of 32A (32B).

Scheme 5 illustrates the preparation of the halogen and
methoxy derivatives of 30A/B. The procedure described
above (Scheme 4, using the chiral sulfamidates 26 and
27) was used to convert the N-1-phenylsulfonyl14 pro-
tected derivatives of 33,13 34,13 and 35 (Scheme 6) to
the corresponding compounds 36A/B, 37A/B, and 38A/
B16 (Scheme 5). The 6-bromo derivate 37A was con-
verted to its N-Boc protected analog 39 (as described
in Scheme 1) which was treated with NaOMe in the
presence of copper(I) bromide.17 Subsequent deprotec-
tion of the N-Boc yielded (R)-6-methoxy-2-pyrrolidin-
2-ylmethyl-1-H-pyrrolo[2,3-b]pyridine (40).

Surprisingly, and to the best of our knowledge, the syn-
thesis of 6-fluoro-7-azaindole (35) has not been pub-
lished yet. We envisioned a straightforward synthesis
of 35 from commercially available 2,6-difluoro-pyridine
41, which was converted to 2-amino-6-fluoro-pyridine
42.18 Different DMG groups were examined (for exam-
ple the 2,2-dimethyl-propanamide),17,19 the ethyl-carba-
mate20 being essential for the regioselective iodination of
compound 43 to generate the unknown (6-fluoro-3-
iodo-pyridin-2-yl)-carbamic acid ethyl ester (44). Subse-
quent Sonogashira chemistry (45) and ring closure in the
presence of copper(I) iodide21 afforded compound 46.
Cleavage of the N-1-carbamate generated the desired
6-fluoro-7-azaindole 35.

The preparation of 2-pyrrolidin-3-yl-1H-pyrrolo[2,3-b]-
pyridine (51) is depicted in Scheme 7. The C-2 lithio
derivative of 13 underwent a cerium-mediated reaction22

with 3-oxo-pyrrolidin-1-carboxylic acid tert-butyl ester
(47) to yield the corresponding tertiary alcohol (48). Ba-
sic hydrolysis of the phenylsulfonyl group resulted in
compound 49. Acidic deprotection of the N-Boc and
subsequent dehydration generated 50. Hydrogenation
completed the synthesis of 51. Chromatographic separa-
tion of the isomers could be achieved using a chiral
column.28a

The binding affinities of the 7-azaindole analogs at the
rat neuronal nicotinic receptors in the brain were
determined using [3H]cytisine displacement experi-
ments (Table 1).29 We can readily observe that the
2- and 3-azaindole substituted piperidine derivatives
(18 and 6) displayed low binding affinity. Electron-
withdrawing substitution in heterocyclic nicotine deriv-
atives has previously been reported to increase binding
affinity3 and/or improve subtype selectivity in terms of
functional activity.32 Interestingly, the 6-chloro ana-
logs 12 and (+)-24 exhibited the same affinity com-
pared to their hydrogen analogs (6 and (�)-18).
Moreover, replacement of the piperidine ring ((�)-
18) to a (methylene)-pyrrolidine ring, i.e., 30A and
(+)-5128a,b resulted in a 16-fold and 200-fold affinity
increase, respectively.

Demethylation of nicotine analogs typically reduced
affinity for the nicotinic receptors, but the extent of
the reduction depended on the particular nicotine ana-
log being examined.31 N-Demethylation of compound
32B decreased affinity by 4-fold (30B), however
demethylation of compound 32A increased the affinity
by ca. 20-fold (30A), indicating a lack of bulk toler-
ance in this vicinity with respect to the R-isomer
(30A).

The 6-fluoro substituted (R)-analog (38A) and its 6-
chloro counterpart (36A) displayed comparable affinity
(with respect to 30A). The 6-bromo substituted (R)-ana-
log (37A) and the 6-methoxy (R)-analog (40) displayed a
decreased or negligible binding affinity, suggesting unfa-
vorable interactions between the receptor and the
ligand.

All active compounds were subsequently evaluated in an
in vitro functional assay,30 the best compounds being
(+)-5128b and 30A.25b Thus, the presence of agonist or
partial agonist activity was detected by comparing the
effects of compounds at 10 nM and 1 lM to the response
elicited by 10 lM nicotine. In parallel, responses of test
compounds were determined in the presence of the aspe-
cific nicotine receptor antagonist mecamylamine, to ex-
clude the involvement of other than nicotinergic
mechanisms. Second, antagonist effects were assessed
in a similar paradigm that measured the compounds’
ability (10 lM) to inhibit the current evoked by 1 lM
nicotine.
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We found that compound 30A was a partial agonist,
displaying 62% of the in vitro efficacy of nicotine. In
addition, compound 30A blocked the nicotine re-
sponse in vitro (70%). We found that compound
30A has a favorable metabolic stability and brain pen-
etration25b in spite of it modest oral availability. Thus,
on the basis of its satisfactory binding affinity for the
CNS nAChR and his partial agonistic activity in com-
bination with its acceptable pharmacokinetics, we re-
gard compound 30A as a promising lead for the
indications of cognition and smoking cessation.
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