

Reactive Intermediates

International Edition: DOI: 10.1002/anie.201605280 German Edition: DOI: 10.1002/ange.201605280

Bis(difluoromethyl)trimethylsilicate Anion: A Key Intermediate in Nucleophilic Difluoromethylation of Enolizable Ketones with Me₃SiCF₂H

Dingben Chen, Chuanfa Ni, Yanchuan Zhao, Xian Cai, Xinjin Li, Pan Xiao, and Jinbo Hu*

Dedicated to Professor K. Barry Sharpless on the occasion of his 75th birthday

Abstract: A pentacoordinate bis(difluoromethyl)silicate anion, $[Me_3Si(CF_2H)_2]^-$, is observed for the first time by the activation of Me_3SiCF_2H with a nucleophilic alkali-metal salt and 18-crown-6. Further study on its reactivity by tuning the countercation effect led to the discovery and development of an efficient, catalytic nucleophilic difluoromethylation of enolizable ketones with Me_3SiCF_2H by using a combination of CsF and 18-crown-6 as the initiation system. Mechanistic investigations demonstrate that $[(18-crown-6)Cs]^+[Me_3Si(CF_2H)_2]^$ is a key intermediate in this catalytic reaction.

Hypercoordinate silicates are key intermediates in nucleophilic substitution on silicon and activation of organosilicon compounds.^[1] Many pentacoordinate silicates containing at least one electronegative heteroatom ligand such as F, Cl, O, and N have been prepared to study their structures and reactivities.^[2] However, pentaorganosilicate species containing five Si-C bonds are rare, and little is known about their carbon-ligand transfer reactivity.^[3-5] In 1999, the groups of Naumann^[5a] and Röschenthaler^[5b] independently reported the preparation and characterization of the pentaorganosilicate anion [Me₃Si(CF₃)₂]⁻, which is derived from the interaction of a pentacoordinate [Me₃SiF(CF₃)]⁻ with the Ruppert-Prakash reagent (Me₃SiCF₃). The formation of such an acyclic pentaorganosilicate is attributed to the pronounced group electronegativity of the trifluoromethyl unit, which renders Me₃SiCF₃ of sufficient Lewis acidity to accept an incoming trifluoromethanide anion (CF₃⁻).^[6] In 2014, Prakash and co-workers^[5c] elegantly demonstrated that the pentacoordinate $[Me_3Si(CF_3)_2]^-$ prepared from a bulky *tert*-butoxy anion with a $[K(18\text{-crown-6})]^+$ countercation and Me_3SiCF_3 can dissociate to give a CF3⁻. They observed the CF3⁻ species by NMR spectroscopy and ascertained its reactivity in nucleophilic trifluoromethylations.^[5c]

[*] Dr. D. Chen, Dr. C. Ni, Dr. Y. Zhao, X. Cai, X. Li, P. Xiao, Prof. Dr. J. Hu Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road, Shanghai 200032 (China) E-mail: jinbohu@sioc.ac.cn Dr. D. Chen College of Pharmaceutical and Chemical Engineering Taizhou University, Taizhou, Zhejiang 318000 (China)
Image: Supporting information for this article can be found under:

Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie.201605280.

Angew. Chem. Int. Ed. **2016**, 55, 1–6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers!

Me₃SiCF₂H, as an analogue of Me₃SiCF₃, has recently emerged as a potentially useful difluoromethanide anion (HCF₂⁻) source for the nucleophilic introduction of a difluoromethyl group.^[7-9] However, because of the weaker electronwithdrawing ability of the CF₂H group (compared with CF₃ group),^[10] the reactivity of Me₃SiCF₂H is distinct from the well-developed Me₃SiCF₃ in nucleophilic fluoroalkylation reactions. The trifluoromethylation with Me₃SiCF₃ readily takes place under the activation of a wide range of Lewis bases,^[11] whereas the similar difluoromethylation normally requires harsher reaction conditions, thus limiting the substrate scope.^[7-9] To address these challenges in difluoromethylation with Me₃SiCF₂H, it is essential to investigate the hypervalent silicon intermediate in the nucleophilic activation of Me₃SiCF₂H and to probe its difluoromethyl-transfer reactivity. Herein, we describe the discovery and characterization of a unique pentacoordinate bis(difluoromethyl)silicate anion [Me₃Si(CF₂H)₂]⁻ derived from Me₃SiCF₂H and the tuning of its reactivity with the countercation [(18-crown-6)Cs]⁺, as well as its application in the efficient difluoromethylation of enolizable ketones, a reaction which was previously difficult to achieve.[7-9]

We began our study with an investigation on the interaction between Me_3SiCF_2H and various nucleophilic activators in THF without adding the carbonyl substrate (Scheme 1a). Based on our previous report on the difluoromethylation of various aldehydes, diaryl ketones, and imines

a) Activation with fluoride or *tert*-butoxide

b) Activation with fluoride or *tert*-butoxide and 18-crown-6

 $\it Scheme 1.$ Activation of Me_3SiCF_2H with various nucleophiles and observation of the pentacoordinate difluoromethylsilicate. THF = tetrahydrofuran.

with Me₃SiCF₂H,^[7b] stoichiometric amounts of CsF and *t*BuOK were initially tested as the activators. However, only the signals of CF₂H₂ and unreacted Me₃SiCF₂H were detected by ¹⁹F NMR spectroscopy at a wide range of temperatures (-70 °C to room temperature). The failure to observe any pentacoordinate difluoromethyl silicate species probably arises from the strong affinity of the HCF₂⁻ to the alkalimetal cations, and thus leads to a spontaneous decomposition of the difluoromethyl silicates into HCF₂⁻, with subsequent protonation by either adventitious water or the solvent THF.

Considering that the countercation effect can significantly influence the stability of hypercoordinate silicate anions,^[3f,5b] we turned our attention to the employment of a crown ether^[12] as an additive to stabilize the silicate intermediate by minimizing the interaction between HCF_2^- and the alkali metal cations (Scheme 1b). To our delight, a weak signal at around $\delta = -130.0$ ppm was observed by ¹⁹F NMR spectroscopy at room temperature using the combination of CsF/18crown-6 as the activator (see Figure S1 in the Supporting Information). Much stronger signals with the similar chemical shifts were observed at temperatures ranging from -78°C to room temperature when the combinations of more soluble tBuOK/18-crown-6, tBuOCs/18-crown-6, and even tBuONa/ 18-crown-6 were used. Compared with the ¹⁹F NMR chemical shift of Me₃SiCF₂H ($\delta = -140.7$ ppm), the downfield shift of the observed signal is likely to correspond to an anionic species.^[13] To determine the structure of the observed species, we further carried out ${}^{29}Si{}^{1}H$ NMR, ${}^{13}C{}^{1}H$ NMR, ¹H NMR, and heteronuclear multiple quantum coherence (HMQC) experiments of the reaction between Me₃SiCF₂H and tBuOCs/18-crown-6 in [D8]THF (Figure 1; see Figur-

Figure 1. ²⁹Si{¹H} NMR (a) and ¹H NMR (b) spectra of [Me₃Si-(CF₂H)₂]⁻, generated from tBuOCs/18-crown-6 and Me₃SiCF₂H in [D₈]THF at -30° C. In (a), the signals (*) at $\delta = 7.5-7.0$ ppm are assigned to Me₃SiOtBu as well as side-products arising from the silylation of [D₈]THF and 18-crown-6.

es S2–S6 and Table S1).^[14] In the ²⁹Si{¹H} NMR spectrum, the signal is shifted upfield [$\delta = -118.4 \text{ ppm}$ (quint, ² $J_{\text{Si-F}} = 10.3 \text{ Hz}$)] compared with that of Me₃SiCF₂H [$\delta = -0.04 \text{ ppm}$ (t, ² $J_{\text{Si-F}} = 28.8 \text{ Hz}$)], and is in accordance with the formation of a pentacoordinated silicate species.^[15] This chemical shift change is similar to that of the reported [Me₃Si(CF₃)₂]⁻ ($\delta =$

-112.1 ppm) versus Me₃SiCF₃ ($\delta = 5.4$ ppm).^[5a] In the ¹H NMR spectrum, both the signals of the CF₂H ($\delta =$ 5.00 ppm) and Me ($\delta = -0.24$ ppm) groups are also detected to be upfield compared with those of Me₃SiCF₂H [δ (CF₂H) = 5.85 ppm; $\delta(Me) = 0.14$ ppm]. The ${}^{1}J_{H-F}$ coupling constant is in good agreement with the corresponding coupling observed in ¹⁹F NMR [$\delta = -130.0$ ppm (d, ¹ $J_{H-F} = 47.3$ Hz)]. According to the ratio (2:9) of integrated area of the ¹H NMR signals of CF₂H and Me, we inferred that the above silicon species is a pentacoordinated bis(difluoromethyl)slicate with five Si-C bonds, that is, $[(18 \text{-crown-6})M]^+[Me_3Si(CF_2H)_2]^-$ (M = Na, K, Cs).^[16] The observed quintet peak in ²⁹Si^{{1}H} NMR spectrum supports a trigonal-bipyramidal structure with two axial CF2H groups and three equatorial methyl groups, and it is similar to the structure of [Me₃Si(CF₃)₂]^{-.[5a]} Moreover, the ¹³C NMR signals of CF₂H [$\delta = 140.3$ ppm (t, ${}^{1}J_{CF} = 285$ Hz)] and Me $(\delta = -3.2 \text{ ppm})$, which were assigned by ¹H-¹³C HMQC analysis, appear downfield from those of Me₃SiCF₂H (t, $[\delta(CF_2H) = 123.7 \text{ ppm}]$ ${}^{1}J_{\text{C-F}} = 253 \text{ Hz});$ $\delta(Me) =$ -6.5 ppm]. An increase in ${}^{1}J_{C-F}$ coupling as well as a decrease in ${}^{2}J_{Si-F}$ coupling, which have been observed in the transformation of Me₃SiCF₃ into [Me₃Si(CF₃)₂]^{-,[5a]} are probably characters of bipyramidal $[R_3Si(R_f)_2]^-$ species with two R_f groups at the axial positions.

It is noteworthy that these pentacoordinate silicates were relatively stable below -30°C and decomposed gradually to CF_2H_2 when slowly raising the temperature from -30 °C to 20°C [for variable-temperature (VT) NMR study, see Figures S7 and S17]. Moreover, $[Me_3Si(CF_2H)_2]^-$ was the only detectable difluoromethylated hypercoordinate silicon species regardless the ratio of Me₃SiCF₂H/tBuOM (either > 1:1 or not). We also attempted to observe CF_2H^- at a wide range of temperatures (from -78°C to 20°C), but no evidence supported the persistence of this species in our system, which is significantly different from the CF3- anion derived from $Me_3SiCF_3.^{[5c]}$ The generation of CF_2HD and CF_2H_2 as side products when using $[D_8]$ THF as the solvent indicates that CF₂H⁻ is kinetically unstable and has a high tendency to abstract a proton from both THF and 18-crown-6 (see Figures S3 and S13).

Having identified the relatively stable intermediate $[Me_3Si(CF_2H)_2]^-$, we next sought to probe its reactivity in nucleophilic difluoromethylation reactions. The experiment was conducted by adding the electrophilic substrate to a THF solution of $[Me_3Si(CF_2H)_2]^-$ pre-generated from stoichiometric amounts of tBuOM (M=Na, K, Cs), 18-crown-6, and Me₃SiCF₂H in a molar ratio of 1:1:2. To our surprise, enolizable ketones, which are challenging substrates under previously reported difluoromethylation conditions,^[7a,b,d] can be readily difluoromethylated. Thus, the reaction between 1-(2-methoxyphenyl) ethanone (1i) and $[Me_3Si(CF_2H)_2]^-$, generated from tBuOCs/18-crown-6/Me₃SiCF₂H, gave the corresponding difluoromethylated alcohol in good yield (Scheme 2a; for details see Figure S8). However, when tBuONa was used instead of tBuOCs, the pre-generated [Me₃Si- $(CF_2H)_2$ ⁻ failed to undergo addition to **1i**, only affording CF_2H_2 as the detectable side product. Based on these results, we concluded that the countercation effect not only influences the stabilization of [Me₃Si(CF₂H)₂]⁻, but it also dramat-

www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

• These are not the final page numbers!

b) tert-Butoxide-catalyzed difluoromethylation: the countercation effect

c) CsF-catalyzed difluoromethylation: optimization of reaction conditions

Scheme 2. Nucleophilic difluoromethylation of enolizable ketones. [a] Yield was determined by ¹⁹F NMR spectroscopy. TBAF = *tert-n*-butylammonium fluoride.

ically alters the reactivity of $[Me_3Si(CF_2H)_2]^-$ towards enolizable ketones.

Inspired by the observed excellent reactivity of [(18crown-6)Cs]⁺[Me₃Si(CF₂H)₂]⁻ towards the ketone **1i**, we decided to develop a catalytic difluoromethylation method for synthesizing tertiary carbinols from Me₃SiCF₂H and the challenging enolizable ketones by employing the impressive countercation effect.^[17] Thus, substoichiometric amounts of *t*BuOM (M = Na, K, Cs)/18-crown-6 were used as an initiator to investigate the reaction between **1i** and Me₃SiCF₂H. As shown in Scheme 2b, a remarkable metal-ion effect was also found in this catalytic reaction and [(18-crown-6)Cs]⁺ again proved to be the most effective countercation.

To determine the role of $[Me_3Si(CF_2H)_2]^-$ in the catalytic cycle, we investigated the progress of the (tBuOCs/18-crown-6)-initiated reaction by VT ¹⁹F NMR experiments. The experiment was carried out by adding a mixture of 1i (1 equiv) and Me₃SiCF₂H (2 equiv) to a THF solution of tBuOCs (20 mol %) and 18-crown-6 (20 mol %) at -70 °C. As the reaction temperature gradually rose, the intermediate $[Me_3Si(CF_2H)_2]^-$ was observed first (-70°C to -20°C), followed by the observation of the difluoromethylation product (> -20 °C). Interestingly, the silicate intermediate maintained a certain concentration even when the reaction temperature was elevated to 5°C (see Figures S10 and S11), thus indicating a continuous consumption and regeneration of $[Me_3Si(CF_2H)_2]^-$ during the reaction. In contrast, when tBuONa was used instead of tBuOCs, although the formation of $[Me_3Si(CF_2H)_2]^-$ was observed first, it could not diffuoromethylate 1i to initiate the reaction. According to these results, we conclude that the cesium ion played an important role in $(tBuO^{-}/18$ -crown-6)-initiated difluoromethylation of enolizable ketones.

Since $[Me_3Si(CF_2H)_2]^-$ can also be generated from the combination of CsF/18-crown-6, albeit in a low yield, we explored the difluoromethylation by employing the more readily available CsF instead of *t*BuOCs (Scheme 2c; for details see Table S1). We were pleased to find that reaction employing 10 mol% of CsF/18-crown-6 also provided a high yield of the difluoromethyl addition product. A screening of the solvent showed that the ether solvent dimethoxyethane (DME) is slightly superior to THF in improving the yield. Therefore, the combination of CsF/18-crown-6 was chosen as the optimal initiation system and DME was chosen as the optimal solvent for the reaction between Me₃SiCF₂H and enolizable ketones.

With the optimized reaction conditions in hand, we subsequently investigated the substrate scope. As shown in Scheme 3, most of the enolizable ketones examined provided good to excellent yields. In general, substituted aromatic ketones bearing electron-donating groups (such as Ph, iPr, OMe, and NMe₂) showed higher reactivity (**2b**–**f**) than those

Scheme 3. Direct nucleophilic difluoromethylation of various carbonyl compounds with Me₃SiCF₂H. Reaction conditions (unless otherwise noted): Me₃SiCF₂H (1.2 mmol), 1 (0.6 mmol), CsF (10 mol%), 18-crown-6 (10 mol%), DME (3 mL). Yields of isolated products are reported. [a] CsF (100 mol%), 18-crown-6 (100 mol%). [b] CsF (20 mol%), 18-crown-6 (20 mol%). [c] Yield was determined by ¹⁹F NMR spectroscopy.

Angew. Chem. Int. Ed. 2016, 55, 1-6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

www.angewandte.org

with electron-withdrawing groups (such as Br, Cl, COOMe, and NO₂; **2g-k**). 1-Phenylalkyl-1-ones containing alkyl groups of different chain lengths gave difluoromethylated products in good yields (20,p). The CsF/18-crown-6/DME system was also suitable for difluoromethylation of aliphatic ketones (2s-v). Particularly, the readily enolizable 1,3-diphenylpropan-2-one and steroid could also react with Me₃SiCF₂H to afford the products 2t and 2v in 65 and 53% yields, respectively. When conjugated methyl ketone (E)-4-phenylbut-3-en-2-one was subjected to the reaction, the alcohol 2r resulting from the carbonyl addition was obtained as the sole product. To demonstrate both the potential pharmaceutical relevance and the functional-group tolerance of the present direct difluoromethylation protocol, we applied it in the synthesis of the compound (\pm) -2w, a potential antagonist of the orexin receptor. It was previously prepared using a twostep method: nucleophilic (phosphoryl) difluoromethylation of the corresponding ketone followed by removal of the phosphonate group.^[18] In addition to enolizable ketones, other carbonyl compounds including diaryl ketones, aromatic aldehyde, enolizable aliphatic aldehyde, phthalimide, and phthalide could also be difluoromethylated by Me₃SiCF₂H under the similar reaction conditions, thus affording the products 2x-ab in 37-90% yields.

Finally, based on our investigation, a mechanism involving $[(18\text{-}crown-6)\text{Cs}]^+[\text{Me}_3\text{Si}(\text{CF}_2\text{H})_2]^-(\textbf{A})$ as a key intermediate was proposed. As is shown in Scheme 4, the process

 $\mbox{Scheme 4.}$ Possible mechanism of the difluoromethylation between $\mbox{Me}_3\mbox{SiCF}_2\mbox{H}$ and enolizable ketones.

commences with the initial generation of $[Me_3Si(CF_2H)_2]^$ from a catalytic amount CsF (or *t*BuOCs)/18-crown-6 and Me₃SiCF₂H. The complexation of 18-crown-6 with Cs⁺ inhibits the formation of the strongly basic, free difluoromethanide, thus stabilizing $[Me_3Si(CF_2H)_2]^-$ and favoring the carbonyl addition rather than the enolization. The subsequent reaction between **A** and carbonyl substrate leads to the formation of the alcoholate **B**, which continues to attack the silicon atom of Me_3SiCF_2H to produce a new pentacoordinate silicate **C**. This step is followed by the transfer of a difluoromethanide anion to Me_3SiCF_2H to release the target product and to regenerate **A**. **A** will be constantly generated until all of the carbonyl substrate is consumed. In view of the fact that **A** is formed much faster than the carbonyl addition product, another pathway involving the difluoromethanide anion addition to the carbonyl group at the initiation stage (Scheme 4, dashed arrow), which is similar to the commonly assumed trifluoromethylation of carbonyl compounds with Me_3SiCF_3 ,^[11] is less likely to occur as a major pathway under our conditions.

In summary, $[Me_3Si(CF_2H)_2]^-$, a pentacoordinate difluoromethylsilicate anion with five Si-C bonds, was observed for the first time through the activation of Me₃SiCF₂H with a nucleophilic alkali-metal salt and 18crown-6. It is found that the countercation effect plays important roles in both stabilizing the $[Me_3Si(CF_2H)_2]^{-1}$ intermediate and improving its nucleophilic difluoromethylation potency. By employing the combination of a cesium salt and 18-crown-6 as the initiator, catalytic difluoromethylation of enolizable ketones was achieved in high yields because of the avoidance of the competitive enolization, which is usually encountered when using other initiators. During the whole reaction, $[Me_3Si(CF_2H)_2]^-$ is not only the difluoromethanide anion source, but also acts as a difluoromethanide reservoir. The formation of the bis(difluoromethyl)trimethylsilicate intermediate with [(18-crown-6)Cs]⁺ as countercation alleviates the strong basicity of a difluoromethanide, which is of great significance for the catalyzed difluoromethylation of enolizable ketones.

Acknowledgments

This work was supported by the National Basic Research Program of China (2015CB931900, 2012CB821600), the National Natural Science Foundation of China (21421002, 21472221, 21372246, 21302135), Shanghai Science and Technology program (15XD1504400 and 16QA1404600), Youth Innovation Promotion Association CAS (2014231), and the Chinese Academy of Sciences. Professor Aiguo Zhong (TU) and Dr. Haoyang Wang (SIOC) are thanked for helpful discussions.

Keywords: fluorine · ketones · reactive intermediates · reaction mechanisms · silicates

www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

Selected reviews: a) H. Sakurai, *Synlett* **1989**, 1; b) C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, *Chem. Rev.* **1993**, *93*, 1371; c) R. R. Holmes, *Chem. Rev.* **1996**, *96*, 927; d) J. Hermanns, B. Schmidt, J. Chem. Soc. Perkin Trans. 1 **1999**, 81; e) K. Uneyama, *J. Fluorine Chem.* **2007**, *128*, 1087.

^[2] a) E. P. A. Couzijn, D. W. F. van den Engel, J. C. Slootweg, F. J. J. de Kanter, A. W. Ehlers, M. Schakel, K. Lammertsma, J. Am. Chem. Soc. 2009, 131, 3741, and references therein; b) E. P. A.

Couzijn, J. C. Slootweg, A. W. Ehlers, K. Lammertsma, Z. Anorg. Allg. Chem. 2009, 635, 1273, and references therein.

- [3] a) S. A. Sullivan, C. H. DePuy, R. Damrauer, J. Am. Chem. Soc. 1981, 103, 480; b) D. A. Dixon, W. R. Hertler, D. B. Chase, W. B. Farnham, F. Davidson, Inorg. Chem. 1988, 27, 4012; c) I. A. H. J. F. de Keijzer, F. J. J. de Kanter, M. Schakel, R. F. Schmitz, G. W. Klumpp, Angew. Chem. Int. Ed. Engl. 1996, 35, 1127; Angew. Chem. 1996, 108, 1183; d) A. H. J. F. de Keijzer, F. J. J. de Kanter, M. Schakel, V. P. Osinga, G. W. Klumpp, J. Organomet. Chem. 1997, 548, 29; e) D. Ballweg, Y. Liu, I. A. Guzei, R. West, Silicon Chem. 2002, 1, 55; f) S. Deerenberg, M. Schakel, A. H. J. F. de Keijzer, M. Kranenburg, M. Lutz, A. L. Spek, K. Lammertsma, Chem. Commun. 2002, 348; g) E. P. A. Couzijn, M. Schakel, F. J. J. de Kanter, A. W. Ehlers, M. Lutz, A. L. Spek, K. Lammertsma, Angew. Chem. Int. Ed. 2004, 43, 3440; Angew. Chem. 2004, 116, 3522; h) E. P. A. Couzijn, A. W. Ehlers, M. Schakel, K. Lammertsma, J. Am. Chem. Soc. 2006, 128. 13634.
- [4] a) M. Ishikawa, K. Nishimura, H. Sugisawa, M. Kumada, J. Organomet. Chem. 1981, 218, C21; b) N. Tokitoh, T. Matsumoto, H. Suzuki, R. Okazaki, Tetrahedron Lett. 1991, 32, 2049; c) Z. Wang, H. Fang, Z. Xi, Tetrahedron Lett. 2005, 46, 499; d) L. Bonnafoux, R. Scopelliti, F. R. Leroux, F. Colobert, Tetrahedron Lett. 2007, 48, 8768; e) P. Zheng, Z. Cai, A. Garimallaprabhakaran, P. Rooshenas, P. R. Schreiner, M. Harmata, Eur. J. Org. Chem. 2011, 5255; f) M. Onoe, T. Morioka, M. Tobisu, N. Chatani, Chem. Lett. 2013, 42, 238, and references therein.
- [5] a) N. Maggiarosa, W. Tyrra, D. Naumann, N. V. Kirij, Y. L. Yagupolskii, Angew. Chem. Int. Ed. 1999, 38, 2252; Angew. Chem. 1999, 111, 2392; b) A. Kolomeitsev, V. Movchun, E. Rusanov, G. Bissky, E. Lork, G.-V. Roschenthaler, P. Kirsch, Chem. Commun. 1999, 1107; c) G. K. S. Prakash, F. Wang, Z. Zhang, R. Haiges, M. Rahm, K. O. Christe, T. Mathew, G. A. Olah, Angew. Chem. Int. Ed. 2014, 53, 11575; Angew. Chem. 2014, 126, 11759.
- [6] a) S. Steinhauer, J. Bader, H.-G. Stammler, N. Ignat'ev, B. Hoge, Angew. Chem. Int. Ed. 2014, 53, 5206; Angew. Chem. 2014, 126, 5307; b) W. Tyrra, D. Naumann, N. V. Kirij, A. A. Kolomeitsev, Y. L. Yagupolskii, J. Chem. Soc. Dalton Trans. 1999, 657.
- [7] Difluoromethylation of carbonyl compounds and imines: a) T. Hagiwara, T. Fuchikami, *Synlett* **1995**, 717; b) Y. Zhao, W. Huang, J. Zheng, J. Hu, Org. Lett. **2011**, 13, 5342; c) A. A. Tyutyunov, V. E. Boyko, S. M. Igoumnov, *Fluorine Notes* **2011**, 5(78), http://notes.fluorine1.ru/public/2011/5 2011/letters/letter4.html; d) G. Du, Y. Wang, C. Gu, B. Dai, L. He, RSC Adv. **2015**, 5, 35421; e) E. Obijalska, G. Utecht, M. K. Kowalski, G. Mlostoń, M. Rachwalski, *Tetrahedron Lett.* **2015**, 56, 4701; f) O. M. Michurin, D. S. Radchenko, I. V. Komarov, *Tetrahedron* **2016**, 72, 1351.

- [8] Difluoromethylation of (hetero)arenes: a) P. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524; b) Y. Gu, X. Leng, Q. Shen, Nat. Commun. 2014, 5, 5405; c) X.-L. Jiang, Z.-H. Chen, X.-H. Xu, F.-L. Qing, Org. Chem. Front. 2014, 1, 774; d) C. Matheis, K. Jouvin, L. J. Goossen, Org. Lett. 2014, 16, 5984; e) D. E. Stephens, G. Chavez, M. Valdes, M. Dovalina, H. D. Arman, O. V. Larionov, Org. Biomol. Chem. 2014, 12, 6190; f) M. Nagase, Y. Kuninobu, M. Kanai, J. Am. Chem. Soc. 2016, 138, 6103; g) X. Wang, E. Tokunaga, N. Shibata, ScienceOpen Research 2014, DOI: 10.14293/S2199-1006.1.SOR-CHEM.-AD1QVW.v2.
- [9] Difluoromethylation of heteroatoms: a) B. Bayarmagnai, C. Matheis, K. Jouvin, L. J. Goossen, Angew. Chem. Int. Ed. 2015, 54, 5753; Angew. Chem. 2015, 127, 5845; b) K. Jouvin, C. Matheis, L. J. Goossen, Chem. Eur. J. 2015, 21, 14324; c) J.-B. Han, H.-L. Qin, S.-H. Ye, L. Zhu, C.-P. Zhang, J. Org. Chem. 2016, 81, 2506; d) J. L. Howard, C. Schotten, S. T. Alston, D. L. Browne, Chem. Commun. 2016, 52, 8448.
- [10] K. Uneyama, Organofluorine Chemistry, Blackwell, Oxford, 2006.
- [11] a) G. K. S. Prakash, A. K. Yudin, *Chem. Rev.* **1997**, *97*, 757; b) X. Liu, C. Xu, M. Wang, Q. Liu, *Chem. Rev.* **2015**, *115*, 683.
- [12] G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev. 2004, 104, 2723.
- [13] W. R. Dolbier, Jr., *Guide to Fluorine NMR for Organic Chemists*, Wiley, Hoboken, **2009**, pp. 118–119.
- [14] For the NMR data of $[Me_3Si(CF_2H)_2]^-$ generated from Me_3SiCF_2H and *t*BuONa/18-crown-6, see the Supporting Information.
- [15] For example, the ²⁹Si NMR signal of lithium 2,2'-biphenyldiyltrimethylsilicate appears at $\delta = -116.9$ ppm. See Ref. [3c].
- [16] For examples on the complexation of Na⁺, K⁺, and Cs⁺ with 18-crown-6, see: a) M. D. Brown, J. M. Dyke, F. Ferrante, W. Levason, J. S. Ogden, M. Webster, *Chem. Eur. J.* 2006, *12*, 2620; b) T. Arliguie, M. Fourmigué, M. Ephritikhine, *Organometallics* 2001, *20*, 282.
- [17] During our preparation of this manuscript, a direct nucleophilic difluoromethylation of enolizable ketones with Me₃SiCF₂H/CsF/ HMPA was developed by Radchenko and co-workers. However, the yields are only moderate (see Ref. [7f]). In addition, both our group and that of Radchenko (see Ref. [7f]) were not able to reproduce Tyutyunov's results of efficient difluoromethylation of enolizable ketones with Me₃SiCF₂H (see Ref. [7c]).
- [18] S. D. Kuduk, N. J. Liverton, J. W. Skudlarek, WO Patent Appl. 176142, 2014.

Received: May 30, 2016 Revised: July 19, 2016 Published online:

einheim www.angewandte.org These are not the final page numbers!

Communications

Hail to the crown: A pentacoordinate

bis(difluoromethyl)silicate anion [Me₃Si-

 $(\mathsf{CF}_2\mathsf{H})_2]^-$ is observed for the first time through the activation of $\mathsf{Me}_3\mathsf{SiCF}_2\mathsf{H}$ with

CsF (or tBuOCs) and 18-crown-6. Study

Communications

D. Chen, C. Ni, Y. Zhao, X. Cai, X. Li, P. Xiao, J. Hu* _____ **∎∎∎∎−∎∎∎∎**

Bis (difluoromethyl) trimethylsilicate Anion: A Key Intermediate in Nucleophilic Difluoromethylation of Enolizable Ketones with Me₃SiCF₂H

2 equiv Me₃SiCF₂H 10 mol% CsF 10 mol% 18-crown-6 dimethoxyethane, RT; then desilylation 93% yield

on its reactivity leads to the discovery and development of an efficient, catalytic nucleophilic difluoromethylation of enolizable ketones by tuning the countercation effect.

6 www.angewandte.org

C 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2016, 55, 1-6

These are not the final page numbers!