

Trigonal Rigid Triphenols: Self-Assembly and Multicomponent Lattice Inclusion

Published as part of a virtual special issue on Structural Chemistry in India: Emerging Themes

Jarugu Narasimha Moorthy,^{*,†} Palani Natarajan,[†] Alankriti Bajpai,[†] and Paloth Venugopalan^{*,§}

⁺Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India

[§]Department of Chemistry, Panjab University, Chandigarh 160014, India

Supporting Information

The sterics introduced via methyl groups impart rigidity and inclusion behavior to trigonal C_3 -symmetric triphenol hosts H1–H4. Triphenol H1 is found to mimic the O–H···O hydrogen-bonded self-assembly of trimesic acid to yield porous honeycomb nets. It is found that 18-crown-6⊂H1 in turn binds guest molecules in the hexagonal voids to yield guest⊂guest⊂host multicomponent molecular crystals. The triphenol H2 and the homologous derivatives H3 and H4 are also found to crystallize with 18-crown-6 and other guests to yield multicomponent crystals, but in these cases the 18-crown-6 is found to serve as a spacer. While the structure of H2 is determined in its guest-free form, some of the inclusion compounds of triphenols lend themselves to crystal packings that are deciphered based on network topologies. The networks observed for H1–Tol and H3–C–B–Et are unique; in the latter, the crystal packing analysis reveals organization of molecules into a pattern that is reminiscent of borromean rings.

INTRODUCTION

The ability to organize molecules in a desirable manner is pertinent to the development of materials with predefined properties.¹ Although crystal structures, which represent an extreme of periodic organization of molecules in three dimension, cannot yet be predicted a priori, it is increasingly becoming possible to control the molecular order to some degree based on directed hydrogen bonding and metal-assisted self-assembly.² One aspect of self-assembly that has been advantageously exploited is in the construction of porous materials.^{1,3} Indeed, development of porous metal-organic materials/frameworks (MOMs/MOFs) for the binding of gases is an intensely pursued topic of research at present.⁴ Insofar as hydrogen-bonded selfassembly is concerned, a prototype example that yields a predictable honeycomb porous network constitutes the case of trimesic acid.⁵ It has been found to exhibit dimorphism with hexagonal channels of diameter ca. 14 Å, which are interpenetrated. The interpenetration has been shown to be destroyed by crystallization of trimesic acid in the presence of guest molecules such as coronene, [18] annulene, hexahelicene, and pyrene.⁶

Recently, we envisaged that the C_3 -symmetric triphenols H1 and H2 (Chart 1) should be unique in undergoing hydrogen-bonded

self-assembly into porous networks for guest inclusion.⁷ It was shown that both H1 and H2 do indeed exhibit strong propensity to self-assemble into porous networks in which the guest molecules could be included to construct multicomponent molecular crystals. A feature that is inherent to these host systems is that the sterics enforced via methyl groups ensure that the hydroxyphenyl/aryl rings lie orthogonally to the central aromatic core. A result of this is higher thickness of the interior cavities thus generated via self-assembly; we have shown that host H1 undergoes hydrogen-bonded self-assembly into honeycomb networks with hexagonal voids that include 18-crown-6 and other neutral as well as ionic guest molecules to afford guest Cguest Chost multicomponent crystals in a manner akin to Russian dolls.⁸ Further, in these systems, the self-assembly via phenolic hydroxy groups over carboxyl functionalities was deemed advantageous from the point of view of flexibility in the adoption of supramolecular synthons.⁹ The phenolic hydroxy groups hydrogen bond in a variety of modes/synthons¹⁰ as compared to the

Received:	January 18, 2011
Revised:	May 12, 2011
Published:	June 07, 2011

Chart 1. Molecular Structures of Hosts H1 and H2, and their Phenyl-Extended Homologues H3 and H4, respectively

carboxylic acids, which predominantly exhibit dimeric and catemeric motifs.¹¹ The flexibility in synthon adoption, although detrimental to predictable organization of molecules, may confer the hosts with the liberty to explore packing modes that are suitable to a given guest system. In other words, the synthon flexibility may render the hosts to be responsive systems to include any guest molecule type. In the present investigation, we have expanded our initial findings with hosts H1 and H2 and designed homologous systems H3 and H4 for guest inclusion. Given that the phenyl rings are almost coplanar in the crystal structures of simple biaryls,¹² it was surmised that the self-assembly of homologous hosts H3 and H4 may lead to networks with considerably larger cavities.¹³ We have found that the solvent of crystallization is crucial to obtain the inclusion compounds, which alludes to the importance of solvent on synthon adoption. Herein, we report the formation of novel multicomponent inclusion compounds with hosts H1, H3, and H4. The crystal structure of host H2 in its guest-free form is also described.

RESULTS AND DISCUSSION

Synthesis of Triphenols H1–H4. The synthesis and characterization of triphenol hosts **H1** and **H2** have already been published by us elsewhere.⁷ The hosts **H3** and **H4** were readily synthesized starting from **H1** and **H2**; the latter were converted to their triflates and subjected to Suzuki coupling with 4-methoxyphenyl boronic acid under Pd(0)-catalyzed conditions. The resultant methoxy derivatives were demethylated using BBr₃ to afford extended triphenol hosts **H3** and **H4** (Scheme 1).

Inclusion Behavior of the Triphenols H1–H4. In our numerous crystallization experiments with hosts **H1** and **H2**, we found that they invariably form inclusion crystals in neat DMSO and EtOAc solvents, respectively.⁷ In the absence of these solvents, both **H1** and **H2** failed to crystallize. To examine the extent to which the choice of solvent influences crystallization

of H1 and H2 in the absence and presence of guests, crystallization in several combinations of solvents containing either DMSO or EtOAc as a partner was explored. We were successful in obtaining the crystals of both H1 and H2 in DMSO-CHCl₃toluene and EtOAc-CH₂Cl₂-pet. ether, respectively. The crystals obtained in these solvents were found to be indeed different from those obtained in neat solvent systems, cf. Table 1. The solvent/ guest-dependent molecular assembly of hosts H1 and H2 prompted us to explore further such a property in the presence of 18-crown-6 guest, which was shown to be readily included in the crystal lattices of both H1 and H2 in our previous investigation.7 Thus, crystallization of H1 with 18-crown-6 and DME-H₂O led to multicomponent molecular crystals containing the solvent and water. Indeed, the crystals were found to be isostructural with those containing methanol-water and methanol-nitromethane,⁷ cf. Table 1. Likewise, multicomponent crystals were also obtained when ammonium acetate was employed in conjunction with 18-crown-6. The host H2 was found to crystallize in its guest-free form, while our attempts to obtain the crystals of H2 in our previous investigations were unsuccessful. This shows that slight variation in solvent/s of crystallization influences the host-guest phenomenon. The crystallization of hosts H3 and H4 was explored in various solvents and in several combinations of solvents with and without macrocyclic 18-crown-6 guest. The host H3 yielded crystals in an ethanolacetonitrile-benzene mixture containing 18-crown-6, while H4 afforded crystals in toluene-EtOAc with and without inclusion of 18-crown-6. All the host-guest inclusion compounds were characterized by X-ray studies as well as by ¹H NMR analysis of the crystals. The details of inclusion compounds, space groups, and abbreviations adopted for the inclusion compounds are given in Table 1, and the crystal data are collected in Table 2. The metrics for important hydrogen bonds that are responsible for the self-assembly are collated in Table 3. In the following are described the modes of self-assembly and

the ways in which the guest species are bound in the crystal lattices.

H1-Tol. Good quality crystals of triphenol host H1 were obtained from a DMSO-CHCl3-toluene mixture by slow evaporation. The crystals were found to be monoclinic (C2/c)with one molecule of H1 and two molecules of toluene in the asymmetric unit cell; the host-guest stoichiometry was also confirmed by TGA analysis, cf. Supporting Information. The dimethylhydroxyphenyl rings of H1 in its structure are found to be roughly orthogonal to the plane of the central benzene ring with the angles between the benzene plane and the orthogonal aryl rings being ca. 87–88°. The crystal packing reveals that the phenolic OH groups are bonded via $O-H \cdots O$ hydrogen bonds in a zigzag manner down the *b*-axis to lead to a three-dimensional (3D) assembly (Figure 1). One observes channels down the b-axis in which the guest toluene molecules are found to be located. The guests seemingly enjoy translational motion to account for the observed disorder.

The topology of the hydrogen-bonded assembly was examined by TOPOS program.¹⁴ The Schläfli notation that is determined

for the H-bonded molecular assembly is $4^4 \cdot 6^{11}$. To the best of our knowledge, the network of this vertex symbol is heretofore unknown.

H1-C-DME. As mentioned already, crystallization of triphenols H1 and H2 in the presence of 18-crown-6 yielded multicomponent molecular crystals in which the crown is filled with solvents, that is, CH₃OH/CH₃NO₂/H₂O.⁷ Host H1 readily yielded the crystals with dimethoxyethane in the presence of 18-crown-6. The X-ray crystal structure determination revealed that the crystals belong to monoclinic lattice system (space group: C2/c) with one molecule each of H1, 18-crown-6 and half molecule of dimethoxyethane and 1.5 water molecules in the asymmetric unit. As shown in Figure 2, the hydrogen-bonded self-assembly of triphenol H1 leads to infinite 2D chicken-wire networks with hexagonal voids along the *ab*-plane down the *c*-axis. The guest 18-crown-6 molecules nicely fit into the hexagonal enclosures resulting from the assembly of three H1 building blocks. The vacant space in the crown is found to be filled by two disordered water molecules. The chicken-wire layers in the *ab*-plane are marginally shifted relative to each other with the solvent dimethoxyethane

host	guest and/or solvent/s used for crystallization	host-guest composition	space group	code
H1	DMSO	H1 •DMSO•H ₂ O $(1:2:1)^7$	$P2_{1}2_{1}2_{1}$	H1-DMSO
H1	DMSO, CHCl ₃ , toluene	H1 •toluene (1:1.5)	C2/c	H1-Tol
H1	MeOH, EtOH, 18-crown-6	H1 •18-crown-6•MeOH•H ₂ O $(1:1:1:1)^7$	C2/c	H1-C-MeW
H1	MeOH, NO ₂ Me, 18-crown-6	H1 •18-crown-6•MeOH•H ₂ O $(1:1:1:1)^7$	C2/c	H1-C-MeW
H1	DMSO, 18-crown-6, DME	H1 •18-crown-6•DME •H ₂ O (1:1:0.5:1.5)	C2/c	H1-C-DME
H1	DMSO, 18-crown-6, CH ₃ COONH ₄	H1•18-crown-6• CH ₃ COONH ₄ •H ₂ O (1:1:1:1)	<i>P2</i> ₁ / <i>n</i>	H1-C-Aac
H2	EtOAc	H2 •EtOAc $(1:1)^7$	P2/n	H2-EA
H2	EtOAc, CH ₂ Cl ₂ , pet. ether	H2	I4cm	H2
H2	EtOAc, dioxane, 18-crown-6	H2•18-crown-6•H ₂ O (1:1:2)	P-1	H2-C-W
Н3	ethanol, CH ₃ CN, benzene, 18-	H3•18-crown-6•benzene•	<i>R</i> –3	H3-C-B-Et
	crown-6	CH ₃ CN•H ₂ O (1:1:0.167:0.5:4)		
H4	EtOAc, toluene	H4•toluene (1:1)	$I\!\!-\!\!4$	H4-Tol
H4	EtOAc, toluene, 18-crown-6	H4 •18-crown-6•toluene•H ₂ O (1:1:4:3)	<i>P2</i> ₁ 2 ₁ 2 ₁	H4-C-Tol

Table 1.	Details of	Crystallization	of Hosts H1	–H4 with and	d without	Guests and	their	Codes
----------	------------	-----------------	-------------	--------------	-----------	------------	-------	-------

molecules occupying the interlayer voids (Figure 2). All the guest molecules, that is, 18-crown-6, water and dimethoxyethane, are found to be severely disordered. While each of the H1 molecules self-assembles with its three hydroxyphenyl rings via $O-H\cdots O$ hydrogen bonds, a closer analysis shows that one of the water molecules that is bonded to the crown forms a strong $O-H\cdots O$ hydrogen bond with one of the hydroxy group of H1 in the adjacent layer approximately down the *c*-axis, cf. Figure 2b.

H1-C-Aac. As mentioned already, host H1 forms honeycomb networks in all crystals containing 18-crown-6 as one of the guests. Recently, Nangia and co-workers have demonstrated the crucial role of cation in the self-assembly of cis,cis-1,3,5-cyclohexanetricarboxylic acid.¹⁵ With the latter, they have shown that one obtains networks of β -arsenic topology with Na⁺ \subset 18-crown-6 and black phosphorus network with $NH_4^+ \subset 18$ -crown-6. We wished to explore if the presence of a cation such as NH₄⁺ can make any difference. The crystallization of host H1 in the presence of 18-crown-6 and CH₃COONH₄ yielded crystals, whose structure determination revealed the presence of one host molecule H1, one 18-crown-6, one CH3COONH4, and an adventitious water molecule in the asymmetric unit cell, that is, H1·18-crown-6·CH₃COONH₄·H₂O. The crystal packing reveals the absence of anticipated honeycomb network. One observes that the host triphenol molecules are interconnected by water as well as the acetate counteranion to lead to a twodimensional (2D) layered structure along the *ac* plane as shown in Figure 3. The layers in the *ac* plane are offset with respect to each other to make up the crystal. The guest crown molecules are found to be located in the voids thus formed. Of course, the ammonium cation is found to be trapped by the crown via N-H···O hydrogen bonds with the disordered oxygens, which is also supported by cation-dipole interactions.

H2. The crystals of host **H2** in its guest-free form were not realized from several crystallization experiments.⁷ As mentioned earlier, the crystallization of **H2** in a $EtOAc-CH_2Cl_2$ -pet. ether solvent mixture led to needle-shaped crystals. The crystal structure determination revealed that the crystals belong to the tetragonal lattice system with *I4cm* space group. The asymmetric

unit cell was found to contain only half of the host H2 with the molecule lying on the mirror plane. One of the hydroxyphenyl rings is found to be disordered. The crystal packing analysis shows that the molecules that are related by 4-fold rotational symmetry are $O-H \cdots O$ hydrogen-bonded down the *c*-axis. The typical crystal packing diagram is shown in Figure 4. The tetrameric association between the molecules that are related by C_4 -rotational symmetry is one of the common modes of the assembly of hydroxy compounds.¹⁰ We note that the triphenol H2 does not readily crystallize in its guest-free form unless crystallized under the conditions described above. A perspective view of the crystal packing down the *c*-axis shows that the hydrogen-bonding motifs in the close packed layers reminisce the "piedfort" motif.¹⁶

H2-C-W. We noted earlier that the methyl groups of the central mesitylene ring in H2 may fill the voids partially to account for the absence of honeycomb organization for inclusion of 18-crown-6.7 The guest crown molecules were found to mediate the assembly by functioning as spacers. It was shown that crystallization of H2 in EtOAc containing ethanol and benzene leads to multicomponent crystals in which the ethanol guests expand the dimensions of hexagonal voids to allow inclusion of 18-crown-6 that also binds two water molecules.⁷ The crystallization in dioxane and EtOAc mixture containing 18-crown-6 with exclusion of ethanol led to rhombus-shaped crystals, whose structure determination revealed the presence of 18-crown-6 and adventitious water in the lattice. The crystals were found to belong to triclinic (space group: $P\overline{1}$) with one molecule each of H2 and 18-crown-6 and two molecules of water in the asymmetric unit cell. The typical crystal packing of H2-C-W is shown in Figure 5. As can be seen, both H2 and 18-crown-6 are found to form columns that alternate along the c-axis. The crown is found to serve as a guest as well as a spacer in the hydrogen-bonded assembly of triphenols into distorted honeycomb networks (Figure 5).

H3-C-B-Et. The phenyl extended triphenol H3 is expected to exhibit the self-assembly and guest inclusion behavior similar to its simple analogue H1 with more porosity. The crystallization of H3 was tried out with and without the addition of 18-crown-6.

Table 2.	The Crystal Da	ata for Multicomponent	Molecular Compounds	of Hosts H1-	-H4 with	Various Guests
	/	1	1			

	H1-Tol	H1-C-DME	H1-C-Aac	H2
molecular formula	$C_{81}H_{84}O_6$	$C_{88}H_{124}O_{23}$	C44H63NO12	C ₂₇ H ₂₄ O ₃
formula weight	1153.48	1549.87	797.95	396.46
crystal system	monoclinic	monoclinic	monoclinic	tetragonal
space group	C2/c (No. 15)	C2/c (No. 15)	$P2_1/n$ (No. 14)	I4cm (No. 108)
a (Å)	23.376(7)	23.562(5)	13.932(3)	23.059(2)
b (Å)	13.341(3)	13.960(5)	11.104(2)	23.059(2)
c (Å)	23.042(5)	28.168(7)	28.633(6)	7.478(3)
α (deg)	90.00	90.00	90.00	90.00
β (deg)	105.77(7)	113.15(9)	100.75(6)	90.00
γ (deg)	90.00	90.00	90.00	90.00
volume (Å ³)	6916.0(3)	8519.0(4)	4351.9(5)	3975.8(6)
Ζ	4	4	4	8
calculated density (mg/m ³)	1.108	1.208	1.218	1.325
absorption coefficient (mm^{-1})	0.068	0.086	0.088	0.085
F(000)	2472	3344	1720	1680
goodness-of-fit on F^2	1.050	1.086	1.034	1.046
final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1=0.0852,wR_2=0.1936$	$R_1 = 0.1033, wR_2 = 0.2736$	$R_1=0.0656,wR_2=0.1221$	$R_1 = 0.0401, wR_2 = 0.0996$
R indices (all data)	$R_1=0.1621,wR_2=0.2261$	$R_1=0.1695,wR_2=0.3162$	$R_1=0.1278,wR_2=0.1398$	$R_1=0.0447,wR_2=0.1027$
	H2-C-W	H3-C-B-Et	H4-Tol	H4-C-Tol
molecular formula	H2-C-W C ₃₉ H ₄₈ O ₁₁	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆	H4-Tol C ₅₂ H ₄₄ O ₃	H4-C-Tol C ₈₅ H ₉₁ O ₁₂
molecular formula formula weight	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58
molecular formula formula weight crystal system	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic
molecular formula formula weight crystal system space group	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic PĪ (No. 2)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148)	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal I4̄ (No. 82)	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19)
molecular formula formula weight crystal system space group <i>a</i> (Å)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic PĪ (No. 2) 10.446(5)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148) 21.037(3)	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> \overline{4} (No. 82) 34.693(5)	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1)
molecular formula formula weight crystal system space group <i>a</i> (Å) <i>b</i> (Å)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic PĪ (No. 2) 10.446(5) 13.758(7)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3 (No. 148) 21.037(3) 21.037(3)	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> \overline{A} (No. 82) 34.693(5) 34.693(5)	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1) 22.498(1)
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic PĪ (No. 2) 10.446(5) 13.758(7) 16.201(8)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal <i>R</i> 3̄ (No. 148) 21.037(3) 21.037(3) 53.661(1)	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> 4̄ (No. 82) 34.693(5) 34.693(5) 7.198(3)	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1) 22.498(1) 37.809(9)
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic <i>P</i> Ī (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> 4̄ (No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00	$H4-C-Tol$ $C_{85}H_{91}O_{12}$ 1304.58 orthorhombic $P2_12_12_1$ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic PĪ (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00 90.00	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> 4̄ (No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00 90.00	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic <i>P</i> Ī (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00 90.00 120.00	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> \[4] (No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 90.00	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00 90.00
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³)	H2-C-W $C_{39}H_{48}O_{11}$ 692.77 triclinic $P\overline{1}$ (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1) 2050.1(8)	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3 (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00 90.00 120.00 20566.0(3)	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> 4̄ (No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 90.00 8664.0(4)	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00 90.00 90.00 7990.0(2)
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z	H2-C-W $C_{39}H_{48}O_{11}$ 692.77 triclinic $P\overline{1}$ (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1) 2050.1(8) 2	H3-C-B-Et $C_{138}H_{164}N_1O_{36}$ 2419.23 trigonal $R\overline{3}$ (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00 120.00 20566.0(3) 3	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal <i>I</i> 4̄ (No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 90.00 8664.0(4) 8	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00 90.00 90.00 7990.0(2) 4
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z calculated density (mg/m ³)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic <i>P</i> T (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1) 2050.1(8) 2 1.122	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3 (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00 90.00 120.00 20566.0(3) 3 1.184	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal I4 I5 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 8664.0(4) 8 1.099	H4-C-Tol $C_{85}H_{91}O_{12}$ 1304.58 orthorhombic $P2_12_12_1$ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00 90.00 7990.0(2) 4 1.090
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z calculated density (mg/m ³) absorption coefficient (mm ⁻¹)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic <i>P</i> Ī (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1) 2050.1(8) 2 1.122 0.082	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00 90.00 120.00 20566.0(3) 3 1.184 0.085	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal I4 I4 No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 90.00 8 1.099 0.067	H4-C-Tol $C_{85}H_{91}O_{12}$ 1304.58 orthorhombic $P2_{1}2_{1}2_{1}$ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 1.090 0.071
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z calculated density (mg/m ³) absorption coefficient (mm ⁻¹) F(000)	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic PĪ (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1) 2050.1(8) 2 1.122 0.082 740	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148) 21.037(3) 21.037(3) 53.661(1) 90.00 90.00 120.00 20566.0(3) 3 1.184 0.085 7784	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal I4 I5 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 90.00 8 1.099 0.067 3040	H4-C-Tol C ₈₅ H ₉₁ O ₁₂ 1304.58 orthorhombic P2 ₁ 2 ₁ 2 ₁ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00 90.00 90.00 7990.0(2) 4 1.090 0.071 2812
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z calculated density (mg/m ³) absorption coefficient (mm ⁻¹) F(000) goodness-of-fit on F^2	H2-C-W C ₃₉ H ₄₈ O ₁₁ 692.77 triclinic PĪ (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1) 2050.1(8) 2 1.122 0.082 740 1.092	H3-C-B-Et C ₁₃₈ H ₁₆₄ N ₁ O ₃₆ 2419.23 trigonal R3̄ (No. 148) 21.037(3) 21.037(3) 23.661(1) 90.00 90.00 120.00 20566.0(3) 3 1.184 0.085 7784 1.134	H4-Tol C ₅₂ H ₄₄ O ₃ 716.87 tetragonal I4̄ (No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 90.00 8664.0(4) 8 1.099 0.067 3040 1.062	H4-C-Tol $C_{85}H_{91}O_{12}$ 1304.58 orthorhombic $P2_12_12_1$ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.01 90.02 4 1.090 0.071 2812 1.061
molecular formula formula weight crystal system space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z calculated density (mg/m ³) absorption coefficient (mm ⁻¹) F(000) goodness-of-fit on F^2 final R indices $[I > 2\sigma(I)]$	H2-C-W $C_{39}H_{48}O_{11}$ 692.77 triclinic $P\overline{1}$ (No. 2) 10.446(5) 13.758(7) 16.201(8) 108.82(8) 93.86(1) 108.65(1) 2050.1(8) 2 1.122 0.082 740 1.092 $R_1 = 0.1315$, $wR_2 = 0.3219$	H3-C-B-Et $C_{138}H_{164}N_1O_{36}$ 2419.23 trigonal $R\overline{3}$ (No. 148) 21.037(3) 21.037(3) 21.037(3) 53.661(1) 90.00 90.00 120.00 20566.0(3) 3 1.184 0.085 7784 1.134 $R_1 = 0.1180, wR_2 = 0.3001$	H4-Tol $C_{52}H_{44}O_3$ 716.87 tetragonal $I\overline{4}$ (No. 82) 34.693(5) 34.693(5) 7.198(3) 90.00 90.00 90.00 8 1.099 0.067 3040 1.062 $R_1 = 0.0934$, $wR_2 = 0.2188$	H4-C-Tol $C_{85}H_{91}O_{12}$ 1304.58 orthorhombic $P2_12_12_1$ (No. 19) 9.393(1) 22.498(1) 37.809(9) 90.00 90.00 90.00 7990.0(2) 4 1.090 0.071 2812 1.061 $R_1 = 0.1046$, $wR_2 = 0.2318$

Good quality crystals of host H3 were readily obtained when the crystallization was performed in the presence of 18-crown-6 using an EtOH-CH₃CN-C₆H₆ solvent mixture. The crystals were found to belong to the trigonal lattice system with R3 space group. The asymmetric unit cell was found to contain two host H3 molecules sitting on the special position with one-third of occupancy along with one 18-crown-6, half CH₃CN, one-sixth of benzene, and four water molecules. The crystal packing down the *b*-axis reveals two independent host molecules in the asymmetric unit cell, that is, A and B, which self-assemble into layers that are connected by crowns as bridges (Figure 6). Each of the layers in the *ab*-plane shows that the hydroxyphenyl rings of the triphenol are found to be interconnected through O-H···O hydrogen bonds with one water molecule, which is in turn $O-H\cdots O$ hydrogen-bonded to one of the oxygen atoms of 18-crown-6. In other words, the host H3 self-assembles by the mediation of

water molecules that are accommodated as guests in 18-crown-6. The open network structure thus formed is found to be 4-fold interpenetrated as shown in Figure 6. Thus, the voids still left after interpenetration are found to be filled by benzene, acetonitrile, and ethanol as guest molecules. A further inspection of the crystal packing shows that the oxygen atom of one hydroxyphenyl ring of each triphenol molecule involves in a C-H···O hydrogen-bond ($d_{\rm H}$..._O = 2.49 Å, $D_{\rm C}$..._O = 3.42 Å, and θ_{C-H} = 166.0°) to yield a cyclic array of hydroxyphenyl rings in a chair geometry that is overall reminiscent of a rosette at the center of which lies benzene guest, cf. Figure 6. A comparison of the crystal packing of H3 with H1 is quite instructive: while H1 assembles into a 2D honeycomb network in the presence of crowns, the expanded host H3 assembles into a hexagonal (6,3) net that is bridged by crowns functioning as spacers. The (6,3)net is 4-fold interpenetrated. The point to note here is that the

observed molecular assembly is exactly similar to that of the **H1-DMSO**, which is 8-fold interpenetrated.⁷ These two structures illustrate the crucial dependence of the host size (in terms of the lengths of the aryl groups) on the self-assembly to afford voids that encapsulate crowns. It is also relevant to point out the

Table 3. The Geometrical Parameters for Important $O-H\cdots O$ Hydrogen Bonds Observed in the Inclusion Compounds of H1-H4

		$H\!\cdot\!\cdot\!\cdot O$	00	∠О−н…О
compound	atoms ^a	(Å)	(Å)	(deg)
H1-Tol ^b	O1-H1O3		2.72(1)	
	O2-H2O1		2.72(1)	
	$O2-H2\cdots O2$		2.76(1)	
H1-C-DME	O1-H1O3	1.93(1)	2.76(1)	178.7(2)
	$O2-H2\cdots O(W)$	1.81(1)	2.63(1)	165.1(3)
	O3-H3O2	1.82(1)	2.65(1)	170.9(2)
H1-C-Aac	O3-H3O2	1.85(1)	2.68(1)	169.7(1)
	$O1{-}H1{\cdots}O(ac)$	1.82(1)	2.63(1)	161.0(2)
	$O2-H2\cdots O(W2)$	1.74(1)	2.56(1)	165.1(1)
	$O(W1)-H\cdots O3$	1.81(1)	2.79(1)	156.4(1)
	$O(W3)-H\cdots O(ac)$	1.59(1)	2.60(1)	173.7 (1)
H2	$O1-H1\cdots O1$	1.95(1)	2.75(1)	158.9(1)
H2-C-W	O1-H1O3	1.90(1)	2.69(1)	160.9(3)
	$O(W1)-H\cdots O2$		2.75(1)	
	$O3-H3\cdots O(W2)$	1.77(1)	2.56(1)	163.4(1)
H3-C-B-Et	$O1-H1\cdots O(W1)$	1.85(1)	2.64(1)	156.0(3)
	$O2-H2\cdots O(W2)$	1.81(1)	2.65(1)	174.5(3)
H4-Tol	01-H101	1.90(1)	2.65(1)	148.4(3)
	$O2-H2\cdots O2$	1.91(1)	2.67(1)	149.3(3)
H4-C-Tol	O3-H3O1	2.22(1)	3.02(1)	159.0(5)
	$O1-H1\cdots O(W1)$	1.83(1)	2.67(2)	173.0(7)
	$O2-H2\cdots O(W2)$	1.86(1)	2.69(1)	170.8(3)

^{*a*} "W" and "ac" refer to water molecules and acetate anion. ^{*b*} Hydrogen atoms are disordered.

fact that the 4-fold penetration closely resembles 3-fold interpenetrated Borromean networks that are based on hydrogenbonded self-assembly reported recently.¹⁷

H4-Tol. Although the host H4 was found to include a variety of guest molecules and yield crystals that were seemingly good, their isolation from the mother liquor for structural determinations proved very difficult; the crystals developed cracks upon removal from the mother liquor to preclude structure determinations successfully. Similar to the guest-free self-assembly of H2, the phenyl-extended homologue H4 also exhibited tetragonal crystal packing with the space group $I\overline{4}$. The asymmetric unit cell was found to contain one host and one guest toluene molecule. One of the hydroxyphenyl rings and the toluene guest molecule were found to be disordered. One observes that the $O-H \cdots O$ hydrogen-bonded molecules are related by C₄-rotational symmetry down the *c*-axis. The adjacent layers are offset in a manner that one observes again a "piedfort" motif¹⁶ for the hydrogen-bonded motif down the c-axis (Figure 7).

H4-C-Tol. The crystallization of host H4 with 18-crown-6 using equimolar mixture of EtOAc and toluene furnished thick needle-shaped crystals, which were found to belong to orthorhombic lattice system with the space group $P2_12_12_1$. The asymmetric unit cell was found to contain one molecule each of host H4 and 18-crown-6 along with four toluene and three water molecules. As in H2-C-W and H3-C-B-Et, the crown guest molecules are found to function as spacers in linking up triphenol H4 molecules. The two water molecules bonded to the crown oxygens are also found to form $O-H \cdots O$ hydrogen bonds with the hydroxyphenyl rings of H4. In the process, each triphenol engages two hydroxyphenyl rings. The resultant 2D hydrogenbonded assembly propagates to develop a pseudohoneycomb structure as shown in Figure 8. In other words, each triphenol unit is found to self-assemble with the aid of 18-crown-6 guest molecules into a pseudo-honeycomb structure to furnish corru-gated 2D sheets.¹⁰ Two such adjacent sheets interpenetrate to make up the crystal. As the host H4 is an extended version of H2,

Figure 1. The crystal packing of H1-Tol inclusion compound (a), and the pattern of $O-H\cdots O$ hydrogen-bonded assembly (b). Schematic representation of the host assembly upon reduction of the host structure into a 3-connecting module (c).

Figure 2. (a) The $O-H \cdots O$ hydrogen bond-mediated self-assembly of H1 into honeycomb layers. The water included in the crown hydrogen bonds with hydroxyl oxygen of another H1 in the adjacent layer (b). The crystal packing down *c*-axis without the guests is shown at far right (c).

Figure 3. The crystal packing of **H1-C-Aac** (a) and the molecular organization in one of the layers to exemplify the self-assembly that leads to voids for guest inclusion (b). A segment of hydrogen-bonded assembly involving acetate anion is also shown (c).

Figure 4. The crystal packing of **H2** (a). The $O-H \cdots O$ hydrogen bond-mediated tetrameric association down the *c*-axis is shown separately (b). Notice that the hydrogen-bonding motif down the *c*-axis appears like a piedfort motif (c). The hydrogen atoms have been removed for clarity.

larger cavities of the former are filled by interpenetration, and the guest toluene molecules are found to be accommodated in the void spaces.

Generalizations Concerning Hydrogen-Bonded Self-Assembly of H1–H4 and Formation of Multicomponent Molecular Crystals. Phenols are acidic and hence can involve in hydrogen bonding by functioning both as strong hydrogen bond donors and acceptors.⁹ Indeed, one may observe a range of synthons for the association of phenols, which include dimers, trimers, linear chains, helices, etc.¹⁰ Thus, the self-assembly based on phenols as applied to rational development of porous organic materials in general and inclusion host compounds in particular should be appealing from the point of synthon flexibility;^{1,3,9} the latter may facilitate guest-dependent crystal packing or adoption of synthons. A cursory perusal of the literature reveals a variety of hosts that are based on phenolic functionality. These include hydroquinone,¹⁸ Dianin's compound,¹⁸ hexa-host,¹⁹ anthracene bisresorcinols,²⁰ bifluorene-tetraphenols,^{13a,b,21} bimesityl-based tetraphenols reported from our laboratory,²² binaphthols,²³ H-shaped tetraphenols,²⁴ T-shaped bisphenols,²⁵ calixarenes,²⁶ resorcinarenes,²⁶ etc.²⁷ In the backdrop of this noted propensity of phenols to assemble via $O-H \cdots O$ hydrogen bonds, we were

Figure 5. The molecular packing in the crystals of H2-C-W (a). The guest crown molecules mediate the assembly with the aid of water molecules that are in turn bound via $O-H \cdots O$ hydrogen bonds (b). Notice that the crystal packing is akin to H1-C-DME, except that the trimeric assembly down the *a*-axis is mediated by crown guest molecules (c).

Figure 6. The crystal packing of **H3-C-B-Et** down the *b*-axis (a); each of the layers in the *ab*-plane is shown separately on the right (b). The basic motif of the (6,3) net (c), which undergoes 4-fold interpenetration (d). The water embedded in crown-mediated linkage of the triphenols is shown (e) along with the $C-H\cdots O$ hydrogen-bonded motif that augments the self-assembly of the host **H3** in the *ab*-plane (f).

intrigued by the reported observation that the trigonal 1,3,5tris(4-hydroxyphenyl)benzene does not undergo self-assembly into an expected (6,3) honeycomb porous 2D net.²⁸ We envisaged that rigidification of the hydroxyphenyl rings by exploiting sterics introduced through methyl groups as in **H1** and **H2** might allow porous honeycomb networks to be observed in the presence of suitable guests.⁷ The motivation for rigidification was indeed derived from remarkable inclusion behavior uncovered for tetraarylpyrenes characterized by perpendicular planes that are devoid of functional groups that exhibit strong intermolecular hydrogen bonding.²⁹

Although inclusion compounds were obtained with H1 and H2 previously, the change in crystallization solvents evidently leads to new inclusion compounds with H1 and H2. Indeed, H2 is found to crystallize in the guest-free form under the changed solvent conditions. While the host H1 is found to undergo self-assembly either into a highly interpenetrated 2D network (in **H1-DMSO**) or a 3D unique net (in **H1-Tol**),⁷ one observes the formation of expected porous 2D honeycomb networks with 18-crown-6 as a guest; indeed the crowns fit into the hexagonal voids and in turn include solvent water molecules. It should be noted that the multicomponent inclusion compounds with 18crown-6, DME, and water is isostructural with H1-C-MeW and H1-C-MeNM (Table 1) reported earlier. This suggests the fact that the self-assembly remains unaltered with subtle variation of solvents and is robust to replacement of one kind of solvent with another. In the case of H1-C-Aac, water, and acetate anions are found to expand the hydrogen-bonded assembly to yield corrugated layers with pseudohexagonal voids in which NH_4^+ crown complexes are bound. From the present as well as our previous investigations, host H2 is found not to yield such hydrogen-bonded 2D honeycomb networks with hexagonal voids in the presence of

Figure 7. The crystal packing of H3-Tol (a); notice that one of the hydroxyphenyl rings is disordered. The $O-H \cdots O$ hydrogen bonded tetrameric assembly (b). Notice that the layers down the *c*-axis are offset such that the hydrogen-bonded motif appears like a piedfort (c).

Figure 8. The crystal packing of H4-C-Tol (a). Water molecules bound in the crowns are found to expand the hydrogen-bonded assembly of H4 (b). Notice the 2-fold interpenetration of corrugated 2D nets constructed by the mediation of crown-water complexes (c).

18-crown-6, which underscores the importance of (i) thickness of the interior pores that result and (ii) location of methyl groups that protrude into the hexagonal voids, if the self-assembly analogous to H1 were to occur. Otherwise, it should be noted that H2 does crystallize with inclusion of 18-crown-6 in the lattice. In the crystal structure of H2-C-W, water and the crown that bind the former are found to mediate the overall selfassembly as shown in Figure 5. In other words, the crown is found to function as a spacer in all of the inclusions compounds of H2. Presumably, the assembly of the triphenol does not lead to pores with sufficient thickness to include 18-crown-6. The extended triphenol H3 is found to crystallize in the presence of 18-crown-6 to yield multicomponent molecular crystals by including benzene and acetonitrile also as guest species. The crystal packing reveals the absence of a honeycomb structure. A careful analysis shows that the crowns act as spacers to yield a hexameric assembly that is highly porous to undergo self-interpenetration. In fact, the packing akin to H1-DMSO in which the (6,3) net undergoes 8-fold interpenetration.⁷ In this instance, the crown-mediated hexameric honeycomb network is found to be 4-fold interpenetrated (Figure 6). In the crystal structure, the hydroxyphenyl ring and the dimethyl phenyl ring are found to be almost coplanar with the angles between the planes to be ca. 32° ; in fact, this is approximately the magnitude that is found in a majority of the crystal structures of biphenyls deposited in CSD.³⁰ This means that the biphenyl ring can be considered to

be rigid enough to permit assembly of the host into the basic trimeric motif with large hexagonal pores. The fact that one does not observe honeycomb network could also be a consequence of the dimensions of the employed guest crown being too small compared to the void dimensions that would otherwise be created. There is no reason to believe that the porous 2D network cannot be observed with a suitable guest. Insofar as 18-crown-6 as the guest is concerned, H4 self-assembles with the former as a spacer to afford pseudohexagonal (6,3) net that is self-interpenetrated. A scenario that is similar to H2 is observed in the crystals of H4-C-Tol; the crown is found to serve as a spacer to yield a pseudohoneycomb assembly that is doubly interpenetrated.

CONCLUSIONS

All the triphenol hosts H1–H4 exhibit notable guest inclusion, which attests to the importance of orthogonal aromatic planes—a feature ensured via sterics. In other words, the results illustrate the fact that the desired crystal packing with porosity for guest inclusion can be engineered via rational molecular design that exploits sterics.^{29,31} The host H1 reliably yields perfect honeycomb structure with hexagonal voids in which the 18crown-6 nicely fits; of course, the latter further binds guests such as methanol,⁷ nitromethane,⁷ ammonium cation, water, etc. to furnish guest⊂guest⊂host multicomponent inclusion compounds.⁸ That the length of the rigid aryl moiety is crucial for such an assembly is demonstrated by the crystal structure of H3-C-B-Et, which yields crown-spaced assembly. The host triphenols H2 and H4 do assemble with inclusion of crown, but the latter serves as a spacer. In the absence of crown, the triphenols include solvent molecules and self-assemble into nets that are 2- and 3D (for H1-Tol and H4-Tol). The host H2 is found to crystallize in guest-free form via $O-H\cdots O$ hydrogen-bonded tetrameric assembly that propagates.

A variety of C_3 -symmetric inclusion compounds are reported in the literature. This symmetry is so much apparent in several important host systems such as tri-*ortho*-thymotide (TOT),³² perhydrotriphenylene,³² triphenyl methane,³² tris(*o*-phenylenedioxy)cyclotriphosphazene,^{4e,f,33} etc.³⁴ The prototype example of a C_3 -symmetric host that undergoes hydrogen-bonded selfassembly into a porous hexagonal network constitutes 1,3,5benzenetricarboxylic acid (trimesic acid).^{5,6} The results with H1 show that honeycomb networks with hexagonal voids can likewise be constructed with triphenol H1. Given the synthon flexibility that is inherent to phenols, we believe that the rigid triphenols H1–H4 reported herein should be an invaluable addition to the class of C_3 -symmetric inclusion hosts.

EXPERIMENTAL SECTION

Anhydrous tetrahydrofuran (THF) was freshly distilled over sodium prior to use. All other solvents were distilled prior to use. The progress of reactions was monitored by analytical thin layer chromatography (TLC) using aluminum sheets precoated with silica gel. Column chromatography was conducted with silica gel (60–120 mesh). ¹H and ¹³C NMR spectra were recorded on 400 and 500 MHz spectrometers using deuterated solvents. The TGA and DSC measurements were carried out on a TGA-DSC1 with a heating rate of 10 °C/min under N₂ atmosphere. Commercial chemicals were used as received.

Synthesis of Triphenol Hosts H1–H4. A general procedure for the synthesis of triphenols **H1–H4** involved 3-fold Suzuki coupling of tribromobenzenes/triaryl triflates with suitably functionalized boronic acids using Pd(PPh₃)₄ as a catalyst (Scheme 1). The preparation of triphenol hosts **H1** and **H2**, that is, 1,3,5-tris(2,6-dimethyl-4-hydroxyphenyl)benzene and 1,3,5-tris(4-hydroxyphenyl)mesitylene, has previously been published by us.⁷

General Procedure for the Esterification of Phenols with Triflic Anhydride. To a solution of triphenol (1.0 mmol) in anhydrous CH₂Cl₂ (30 mL) were added Et₃N (4.5 mmol) and triflic anhydride (3.1 mmol). The reaction mixture was stirred at 0-5 °C for 2 h. At the end of this period, the reaction mixture was quenched by pouring the contents into 50 mL of ice-cold water. The organic material was extracted with DCM, washed with water, dried over anhyd Na₂SO₄, and concentrated in vacuo. Filtration over a short-pad of silica gel gave the pure triaryl triflate as a colorless solid.

1,3,5-Tris(2,6-dimethyl-4-trifluoromethylsufonylphenyl)benzene. Yield 78%. Colorless powder; mp 164–168 °C; IR (KBr) cm⁻¹ 2962 (m), 1602 (s), 1427 (s); ¹H NMR (500 MHz, CDCl₃) δ 2.14 (18H, s), 6.94 (6H, s), 7.03 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 21.1, 118.8 (q, *J* = 38.75 Hz), 119.9, 128.4, 138.6, 140.8, 141.2, 148.4; ESI-MS⁺ *m*/*z* Calcd for C₃₃H₂₇O₉F₉S₃ 834.75 [M + Cl]⁻, found 869.0362.

1,3,5-Tris(4-trifluoromethylsulfonylphenyl)mesitylene. Yield 30%; mp 128–132 °C; IR (KBr) cm⁻¹ 2930 (m), 1914 (w), 1504 (s), 1432 (s), 1219 (s); ¹H NMR (400 MHz, CDCl₃) δ 1.59 (9H, s), 7.21 (6H, d, J = 8.20 Hz), 7.30 (6H, d, J = 8.20 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 19.4, 118.7 (q, J = 39.0 Hz), 121.6, 131.1, 133.6, 138.3, 141.9, 148.4; ESI-MS⁺ m/z Calcd for C₃₀H₂₁O₉F₉S₃ 792.67 [M + Cl], found 826.9898. General Procedure for the Suzuki Coupling with Aryl Triflates. Triflate (1.0 mmol), arylboronic acid (4.5 mmol), Pd(PPh₃)₄ (10 mol %, with respect to the triflate), and K₂CO₃ (10 mmol) were introduced into an initially oven-dried and cooled (under N₂) pressure tube. To this mixture, dry toluene (15 mL) was added. The reaction mixture was heated slowly at 70–100 °C and maintained at this temperature for 36 h with constant stirring. After this period, the reaction mixture was added. The organic matter was extracted with CHCl₃ and the combined extract was dried over Na₂SO₄ and filtered. The filtrate was coolent in vacuo to yield a crude product, which was subjected to column chromatography to isolate the methyl aryl ether as a colorless solid material.

1,3,5-Tris(2,6-dimethyl-4-(*p***-anisyl)phenyl)benzene.** Yield 57%. Colorless powder; mp 136–140 °C; IR (KBr) cm⁻¹ 2924 (s), 2854 (m), 1607 (s), 1512 (s), 1467 (s); ¹H NMR (400 MHz, CDCl₃) δ 2.23 (18H, s), 3.85 (9H, s), 6.97 (6H, d, *J* = 8.20 Hz), 7.00 (3H, s), 7.31 (6H, s), 7.56 (6H, d, *J* = 8.20 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 21.1, 55.3, 114.1, 125.7, 128.1, 128.4, 133.6, 136.3, 139.4, 140.2, 141.2, 159.0; ESI-MS⁺ *m*/*z* Calcd for C₅₁H₄₈O₃ 708.93 [M + H], found 709.3680.

1,3,5-Tris(4-(*p***-anisyl)phenyl)mesitylene.** Yield 48%. Colorless powder; mp 160–164 °C; IR (KBr) cm⁻¹ 2924 (m), 2836 (m), 1607 (s), 1495 (s), 1458 (s); ¹H NMR (400 MHz, CDCl₃) δ 1.76 (9H, s), 3.78 (9H, s), 6.91 (6H, d, *J* = 8.80 Hz), 7.22 (6H, d, *J* = 8.20 Hz), 7.53 (6H, d, *J* = 8.80 Hz), 7.56 (6H, d, *J* = 8.20 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 19.6, 55.3, 114.2, 126.7, 128.0, 129.8, 133.4, 133.5, 138.7, 139.6, 140.4, 159.0; ESI-MS⁺ *m*/*z* Calcd for C₄₈H₄₂O₃ 666.85 [M + NH₄], found 684.3474.

Synthesis of Extended Triphenols H3 and H4

General Procedure for Demethylation of Methyl Aryl Ethers. To a solution of methyl aryl ether (0.5 mmol) in 15 mL of dry CH_2Cl_2 at 0 °C was added dropwise BBr₃ solution (0.6 mmol) under a N₂ gas atmosphere. The reaction mixture was allowed to stir overnight. Subsequently, it was quenched with 10% HCl, extracted with ethyl acetate, dried over Na₂SO₄, treated with charcoal, filtered, and concentrated. The pure product was obtained as a colorless solid after filtration over a short pad of silica gel using a mixture of ethyl acetate and pet. ether (50:50), followed by recrystallization from ethyl acetate and pet. ether.

1,3,5-Tris(2,6-dimethyl-4-(*p***-hydroxyphenyl)phenyl)benzene (H3).** Yield 72%. mp 188–192 °C colorless powder; IR (KBr) cm⁻¹ 3404 (s, br), 1608 (m), 1514 (m), 1466 (m); ¹H NMR (400 MHz, DMSO- d_6) δ 2.15 (18H, s), 6.82 (6H, d, *J* = 8.6 Hz), 6.90 (3H, s), 7.33 (6H, s), 7.49 (6H, d, *J* = 8.6 Hz), 9.47 (3H, s); ¹³C NMR (100 MHz, DMSO- d_6) δ 20.6, 115.6, 124.9, 127.5, 135.6, 139.4, 177.8; ESI-MS⁺ *m*/*z* Calcd for C₄₈H₄₂O₃ 666.85 [M + Cl]⁻, found 701.2825.

1,3,5-Tris(4-(*p***-hydroxyphenyl)phenyl)mesitylene (H4).** Yield 73%. mp 182–186 °C Colorless powder; IR (KBr) cm⁻¹ 3369 (s, br), 2926 (s), 1609 (m), 1498 (s), 1448 (m), 1258 (s); ¹H NMR (400 MHz, DMSO- d_6) δ 2.45 (9H, s), 6.84 (6H, d, *J* = 8.65 Hz), 7.40 (6H, d, *J* = 8.25 Hz), 7.54 (6H, d, *J* = 8.65 Hz), 7.65 (6H, d, *J* = 8.25 Hz), 9.56 (3H, s); ¹³C NMR (100 MHz, DMSO- d_6) δ 19.3, 115.7, 126.0, 127.6, 129.6, 130.5, 132.5, 138.3, 139.0, 139.5, 157.0; ESI-MS⁺ *m*/*z* Calcd for C₄₅H₃₆O₃ 624.77 [M + Cl]⁻, found 659.2356.

Crystallization of Triphenol Hosts H1–H4 with and without Guest Molecules. *Crystallization of* H1-Tol and H2. A 1:1 mixture of CHCl₃ and toluene was layered over a solution of host H1 (50.0 mg, 0.114 mmol) in DMSO (2.0 mL). Slow evaporation of the resultant clear solution over a period of a week led to square-shaped crystals in a quantitative yield. The crystals were characterized by ¹H NMR, TGA, and X-ray crystallography. A similar procedure was used for the crystallization of H2. In this instance, a CH_2Cl_2 –pet. ether mixture was layered over H2 in ethyl acetate solution. The crystals thus obtained were found to be devoid of any guest inclusion. Crystallization of **H1-C-DME** and **H1-C-Aac**. H1 (50.0 mg, 0.114 mmol) and 18-crown-6 (45.0 mg, 0.171 mmol) were dissolved in dimethoxyethane (5.0 mL). Slow evaporation of the resultant clear solution over a period of 4-5 days led to rectangular-shaped crystals. Filtration followed by washing with a CHCl₃-pet. ether (50:50) mixture led to isolation of the compound in 70–75% yield based on host H1. The crystals were characterized by TGA, DSC, and X-ray crystallography.

A similar procedure was used for the synthesis of H1-C-Aac. In this case, ammonium acetate in water was employed; yield of the inclusion compound was 80-85% based on host H1.

Preparation of H2-C-W, H3-C-B-Et, and H4-C-Tol. 18-Crown-6 (45.0 mg, 0.171 mmol) dissolved in EtOAc (2.0 mL) was slowly added to a solution of **H2** (50.0 mg, 0.114 mmol) in dioxane (3.0 mL). Slow evaporation of the resultant clear solution over a period of 5–7 days led to square-shaped crystals in a quantitative yield.

A similar procedure was used for the preparation of H3-C-B-Et and H4-C-Tol. In all cases, the appropriate guest and the solvent were used for crystallization.

X-ray Crystal Structure Determinations. A good quality crystal in each case was mounted in a glass capillary and cooled to 100 K, and the intensity data were collected on a Bruker Nonius SMART APEX CCD detector system with Mo-sealed Siemens ceramic diffraction tube ($\lambda = 0.71073$) and a highly oriented graphite monochromator operating at 50 kV and 30 mA. The data were collected on a hemisphere mode and processed with Bruker SAINTPLUS. Empirical absorption correction was made using Bruker SADABS. The structure was solved in each case by Direct Methods using SHELXTL package and refined by full matrix least-squares method based on F² using SHELX97 program. All the nonhydrogen atoms were refined anisotropically. The hydrogen atoms were included in their ideal positions with fixed isotropic *U* values and were allowed to ride with their respective non-hydrogen atoms. The experimental details of crystal data, intensity measurements, structure solution, and refinement are presented in Table 2.

ASSOCIATED CONTENT

Supporting Information. X-ray crystallographic information files (CIF), details of refinement, ¹H NMR spectral reproductions and TGA profiles for the multicomponent crystals are available. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: moorthy@iitk.ac.in (J.N.M.); venugopalanp@yahoo.com (P.V.).

ACKNOWLEDGMENT

J.N.M. is thankful to the Department of Science and Technology (DST), India, for generous funding. P.N. and A.B. thank UGC and CSIR, respectively, for their research fellowships.

DEDICATION

This paper is dedicated to Prof. K. Venkatesan on the occasion of his 80th birthday.

REFERENCES

(1) (a) Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, The Netherlands, 1989. (b) Design of Organic Solids; Weber, E., Ed.; Topics in Current Chemistry; Springer: Berlin, 1998: Vol. 198. (c) Crystal Engineering: From Molecules and Crystals to Materials; Braga, D., Orpan, A. G., Ed.; NATO ASI Series; Kluwer: Dordecht, The Netherlands, 1999. (d) Steed, J. W., Atwood, J. L., Eds.; Supramolecular Chemistry; Wiley: New York, 2000. (e) Encyclopedia of Supramolecular Chemistry; Atwood, J. L., Steed, J. W., Eds.; Marcel Decker: New York, 2004; Vols. I and II. (f) Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. **2005**, 38, 273.

(2) For hydrogen-bonded self-assembly, see:(a) Etter, M. C. Acc. Chem. Res. 1990, 23, 120. (b) Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311.(c) Comprehensive Supramolecular Chemistry, Solid-State Supramolecular Chemistry: Crystal Engineering; MacNicol, D. D., Toda, F., Bishop, R., Eds.; Pergamon: New York, 1996; Vol. 6. (d) Nangia, A.; Desiraju, G. R. Top. Curr. Chem. 1998, 198, 57. (e) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48. (f) Laliberte, D.; Maris, T.; Wuest, J. D. J. Org. Chem. 2004, 69, 1776. (g) Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313. (h) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 825. (i) Helzy, F.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2008, 8, 1547. For metal-assisted self-assembly, see:(j) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1989, 111, 5962. (k) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (1) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; Keeffe, M. O.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. (m) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334. (n) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369. (o) Perry, J. J.; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400.

(3) (a) Separation and Reactions in Organic Supramolecular Chemistry; Toda, F., Bishop, R., Eds.; Wiley: New York, 2004. (b) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science **2002**, 295, 469. (c) Sudik, A. C.; Wong-Foy, A. G.; O'Keeffe, M.; Yaghi, O. M. Angew. Chem., Int. Ed. **2006**, 45, 2528.

(4) For gas adsorption by organic materials, see:(a) Atwood, J. L.; Barbour, L. J.; Jerga, A.; Schottel, B. L. Science 2002, 298, 1000. (b) Enright, G. D.; Udachin, K. A.; Moudrakovski, I. L.; Ripmeester, J. A. J. Am. Chem. Soc. 2003, 125, 9896. (c) Lim, S.; Kim, H.; Selvapalam, N.; Kim, K. J.; Cho, S. J.; Seo, G.; Kim, K. Angew. Chem., Int. Ed. 2008, 47, 3352. (d) Msayib, K. J.; Book, D.; Budd, P. M.; Chaukura, N.; Harris, K. D. M.; Helliwell, M.; Tedds, S.; Walton, A.; Warren, J. E.; Xu, M.; McKeown, N. B. Angew. Chem., Int. Ed. 2009, 48, 3273. (e) Sozzani, P.; Comotti, A.; Bracco, S.; Simonutti, R. Angew. Chem., Int. Ed. 2004, 43, 2792. (f) Comotti, A.; Bracco, S.; Ferretti, L.; Mauri, M.; Simonutti, R.; Sozzani, P. Chem. Commun. 2007, 350. For gas absorption by metal-organic materials, see:(g) Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J.; Kepert, C. J. J. Am. Chem. Soc. 2002, 124, 9574. (h) Zhao, X.; Xiao, B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004, 306, 1012. (i) Maji, T. K.; Matsuda, R.; Kitagawa, S. Nat. Mater. 2007, 6, 142. (j) Férey, G. Chem. Soc. Rev. 2008, 37, 191. (k) Zaworotko, M. J. Nature 2008, 451, 410. (1) Sava, D. F.; Kravtsov, V.; Nouar, F.; Wojtas, L.; Eubank, J. F.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 3768. (m) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870. (n) Murray, L. J.; Dincă, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294. (o) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Science 2010, 239, 424. (p) Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2011.

(5) (a) Herbstein, F. H. In Comprehensive Supramolecular Chemistry; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F., Eds.; Pergamon: Oxford, 1996; Vol. 6, p 61. (b) Ermer, O.; Neudörfl, J. Helv. Chim. Acta **2001**, 84, 1268.

(6) (a) Herbstein, F. H.; Kapon, M.; Reisner, G. M. J. Inclusion Phenom. **1987**, 5, 211. (b) Kolotuchin, S. V.; Fenlon, E. E.; Wilson, S. R.; Loweth, C. J.; Zimmerman, S. C. Angew. Chem., Int. Ed. **1995**, 34, 2654. (c) Ermer, O.; Neudörfl, J. Chem. — Eur. J. **2001**, 7, 4961.

(7) Moorthy, J. N.; Natarajan, P. Chem.—Eur. J. 2010, 16, 7796.

(8) For molecular Russian dolls, see:(a) Kamitori, S.; Hirotsu, K.; Higuchi, T. J. Am. Chem. Soc. **1987**, 109, 2409. (b) Atwood, J. L.; Barbour, L. J.; Hardie, M. J.; Lygris, E.; Raston, C. L.; Webb, H. R. CrystEngComm **2001**, 3, 18. (c) Dalgarno, S. J.; Fisher, J.; Raston, C. L. Chem.—Eur. J. **2006**, 12, 2772, and references therein. For ring-in-ring (9) Brock, C. P.; Duncan, L. L. Chem. Mater. 1994, 6, 1307.

(10) (a) Fournier, J. H.; Maris, T.; Simard, M.; Wuest, J. D. *Cryst. Growth Des.* **2003**, *3*, 535. (b) Sarma, B.; Sanphui, P.; Nangia, A. *Cryst. Growth Des.* **2010**, *10*, 2388.

(11) (a) Moorthy, J. N.; Natarajan, R.; Mal, P.; Venugopalan, P. J. Am. Chem. Soc. **2002**, 124, 6530. (b) Das, D.; Desiraju, G. R. Chem. Asian J. **2006**, 1, 231, and references therein.

(12) (a) Charbonneau, G.-P.; Delugeard, Y. Acta Crystallogr. 1976, B32, 1420. (b) Maly, K. E.; Gagnon, E.; Maris, T.; Wuest, J. D. J. Am. Chem. Soc. 2007, 129, 4306.

(13) (a) Demers, E.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2005, 5, 1227. (b) Demers, E.; Maris, T.; Cabana, J.; Fournier, J.-H.; Wuest, J. D. Cryst. Growth Des. 2005, 5, 1237. (c) Akimoto, K.; Suzuki, H.; Kondo, Y.; Endo, K.; Akiba, U.; Aoyama, Y.; Hamada, F. Tetrahedron 2007, 63, 6887.

(14) The network topologies were evaluated by the program "TOPOS-4.0". We have used the package with certain subroutines especially designed to process hydrogen-bonded structures. Only strong hydrogen bonds were considered, see: http://www.topos.ssu.samara.ru (a) Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. J. Appl. Crystallogr. **2000**, 33, 1193. (b) Blatov, V. A. *IUCr CompComm Newsl.* **2006**, 7, 4.

(15) Bhogala, B. R.; Nangia, A. Cryst. Growth Des. 2006, 6, 32.

(16) Jessiman, A. S.; Macnicol, D. D.; Mallinson, P. R.; Vallance, L J. Chem. Soc. Chem. Commun. **1990**, 1619.

(17) Men, Y. B.; Sun, J. L.; Huang, Z. T.; Zheng, Q. Y. Angew. Chem., Int. Ed. 2009, 48, 2873.

(18) (a) Powell, H. M. J. Chem. Soc. 1948, 61.(b) Powell, H. M. Inclusion Compounds, Vol. 1: Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Academic Press: London, 1984. (c) Herbstein, F. H. Crystalline Molecular Complexes and Compounds, Srtuctures and Principles; Oxford University Press: Oxford, 2005. (d) Davies, J. E. D.; Kemula, W.; Powell, H. M.; Smith, N. O. J. Incl. Phenom. 1983, 1, 3.

(19) (a) Kobayashi, K.; Shirasaka, T.; Sato, A.; Horn, E.; Furukawa, N. Angew. Chem., Int. Ed. 1999, 38, 3483. (b) Kobayashi, K.; Shirasaka, T.; Horn, E.; Furukawa, N. Tetrahedron Lett. 2000, 41, 89. (c) Kobayashi, K.; Sato, A.; Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 2003, 125, 3035.

(20) (a) Aoyama, Y.; Endo, K.; Anzai, T.; Yamaguchi, Y.; Sawaki, T.;
Kobayashi, K.; Kanehisa, N.; Hashimoto, H.; Kai, Y.; Masuda, H. J. Am. Chem. Soc. 1996, 118, 5562. (b) Endo, K.; Koike, T.; Sawaki, T.;
Hayashida, O.; Masuda, H.; Aoyama, Y. J. Am. Chem. Soc. 1997, 119, 4117. (c) Dewa, K.; Endo, K.; Aoyama, Y. J. Am. Chem. Soc. 1998, 120, 8933.

(21) Laliberté, D.; Maris, T.; Wuest, J. D. J. Org. Chem. 2004, 69, 1776.

(22) Moorthy, J. N.; Natarajan, R.; Venugopalan, P. J. Org. Chem. 2005, 70, 8568.

(23) Weber, E.; Csoregh, I.; Stensland, B.; Czugler, M. J. Am. Chem. Soc. 1984, 106, 3297.

(24) Thakuria, R.; Sarma, B.; Nangia, A. Cryst. Growth Des. 2008, 8, 1471.

(25) Aitipamula, S.; Nangia, A. Chem.—Eur. J. 2005, 11, 6727.

(26) Dondoni, A.; Marra, A. Chem. Rev. 2010, 110, 4949.

(27) (a) Sarma, R. J.; Baruah, J. B. CrystEngComm 2005, 7, 706.
(b) Sarma, R. J.; Baruah, J. B. Cryst. Growth Des. 2007, 7, 989.

(28) Thallapally, P. K.; Katz, A. K.; Carrell, H. L.; Desiraju, G. R. Chem. Commun. 2002, 344.

(29) (a) Moorthy, J. N.; Natarajan, P.; Venugopalan, P. J. Org. Chem.
2009, 74, 8566. (b) Moorthy, J. N.; Natarajan, P.; Venugopalan, P. Chem. Commun. 2010, 46, 3574.

(30) (a) Brock, C. P.; Minton, R. P. J. Am. Chem. Soc. **1989**, 111, 4586. (b) Bis, J. A.; Vishweshwar, P.; Middleton, R. A.; Zaworotko, M. J. Cryst. Growth Des. **2006**, 6, 1048.

(31) (a) Moorthy, J. N.; Natarajan, R.; Venugopalan, P. Angew. Chem., Int. Ed. 2002, 41, 3417. (b) Natarajan, R.; Savitha, G.; Moorthy, J. N. Cryst. Growth Des. 2005, 5, 69. (c) Natarajan, R.; Savitha, G.; Dominiak, P.; Wozniak, K.; Moorthy, J. N. Angew. Chem., Int. Ed. 2005, 44, 2115. (d) Moorthy, J. N.; Natarajan, R.; Savitha, G.; Savitha, G. Cryst. Growth Des. 2006, 6, 919.

(32) (a) Molecular Inclusion and Molecular Recognition-Clathrates I and II. In *Topics in Current Chemistry*; Weber, E., Ed.; Springer-Verlag: Berlin-Heidelberg, 1987 and 1988; Vols. 140 and 149. (b) *Inclusion Compounds*; Atwood, J. L., Davies, J. E. D., Macnicol, D. D., Eds.; Oxford University Press: Oxford, 1991.

(33) (a) Allcock, H. R.; Siegel, L. A. J. Am. Chem. Soc. 1964, 86, 5140.
(b) Allcock, H. R. Acc. Chem. Res. 1978, 11, 81.

(34) (a) Haberhauer, G.; Oeser, T.; Rominger, F. *Chem. Commun.* 2004, 2044. (b) Kobayashi, J.; Domoto, Y.; Kawashima, T. *Chem. Lett.* 2010, 39, 134.