Investigation of the Formation of Ligated Dinitrogen from Rhenium-Bound Aryldiazenide

Antonio Cusanelli and Derek Sutton*

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Received May 5, 1995[®]

Chemical or electrochemical reduction of the cationic rhenium aryldiazenido complexes $[Cp'Re(L_1)(L_2)(p-N_2C_6H_4OMe)][BF_4]$ (1b-7b) generates the corresponding neutral dinitrogen complexes 1a-7a of the type $Cp'Re(L_1)(L_2)(N_2)$ ((a) Cp' = Cp; $L_1 = L_2 = CO$ (1a); (b) Cp' = Cp' = Cp' + Cp' Cp^* , $L_1 = CO$, $L_2 = PMe_3$ (3a) or $P(OMe)_3$ (4a); and (c) $Cp' = Cp^*$, $L_1 = L_2 = CO$ (2a), PMe_3 (5a), dmpe (6a), or $P(OMe)_3$ (7a)). Evidence is presented in support of a proposed mechanism which involves one-electron reduction of the aryldiazenido complex cation in 1b-7b to the neutral 19-electron intermediate, followed by C-N bond homolysis to give 1a-7a plus the *p*-methoxyphenyl radical that proceeds to form anisole by hydrogen atom abstraction from the solvent. The cathodic reduction peak potentials observed for 1b-7b by cyclic voltammetry are increasingly negative in the sequence of coligands $(PMe_3)_2$ (5b, -1.89 V) > dmpe $(6b, -1.74 \text{ V}) > [P(OMe)_3]_2 (7b, -1.41 \text{ V}) > (CO)(PMe_3) (3b, -1.24 \text{ V}) > (CO)[P(OMe)_3] (4b, -1.24 \text{ V}) >$ $-0.98 \text{ V} > (CO)_2$ (2b, -0.62 V). The value for the dicarbonyl Cp* complex 2b is more negative than for the corresponding Cp complex 1b (-0.46 V). These potentials are a good indication of the success of chemical reduction: all 1b-7b are reduced to 1a-7a by Na/Hg in THF, whereas Cp₂Co, which has a smaller reduction potential than Na/Hg, only reduces **1b**, **2b**, and **4b**. The reaction of **2b** with $NaBH_4$ is shown by full spectroscopic characterization to produce the aryldiazene complex $Cp^*Re(CO)_2(p-NHNC_6H_4OMe)$, which is thermally unstable and yields the dinitrogen complex 2a and anisole.

Introduction

The first examples of rhenium dinitrogen complexes were reported in 1969 by Chatt et al.¹ These octahedral rhenium(I) dinitrogen complexes, *trans*-ReCl(N₂)(dppe)₂, *trans*-ReCl(N₂)(PMe₂Ph)₄, and *trans*-ReCl(N₂)(PPh₃)₂-(PF₃)₂, were prepared by the degradation of the chelated benzoyldiazenido complex ReCl₂(PPh₃)₂(N₂COPh). The production of methyl benzoate in the reactions suggested that nucleophilic attack of methanol or methoxide ion on the carbonyl carbon atom may be involved in the production of the dinitrogen complexes.²

Since the initial discovery, numerous dinitrogen complexes of rhenium have been prepared by many different routes. For example, the rhenium hydrido dinitrogen complex $\text{ReH}(N_2)(\text{dppe})_2$ resulted from the reaction of the ammonium salt $[NH_4]_2[\text{ReH}_9]$ with 2 equiv of dppe in 2-propanol under an atmosphere of dinitrogen.³ Furthermore, the half-sandwich rhenium dinitrogen complex $\text{CpRe}(\text{CO})_2(N_2)$ was synthesized by controlled oxidation of the corresponding hydrazine complex $\text{CpRe}(\text{CO})_2(N_2H_4)$ with H_2O_2 in the presence of copper(II) salts⁴ or by displacement of the labile THF ligand in $\text{CpRe}(\text{CO})_2(\text{THF})$ by dinitrogen under high pressure.⁵

Despite this, the original Chatt synthesis remained for more than a decade the only example in which an organodiazenido ligand was transformed into a dinitrogen ligand. However, it was observed several years ago in our laboratory that the aryldiazenido ligand in the cationic manganese complex $[(\eta^5-C_5H_4Me)Mn(CO)_2(N_2-Ar)][BF_4]$ was converted into ligated dinitrogen by I⁻, Br⁻, and Cl⁻ to yield the neutral complex $(\eta^5-C_5H_4Me)-Mn(CO)_2(N_2)$;⁶ the only other product identified was the respective substituted arene, IAr, BrAr, or ClAr. The limited available experimental evidence obtained for these reactions was consistent with a nucleophilic displacement mechanism, though a radical process cannot be ruled out.

Interestingly, identical results were not obtained when these reactions were repeated with the analogous cationic aryldiazenido complexes of rhenium, and products varied with the experimental conditions. For example, reaction of the rhenium aryldiazenido complex $[CpRe(CO)_2(p-N_2C_6H_4OMe)][BF_4]$ with I⁻ gave not only the expected dinitrogen complex $CpRe(CO)_2(N_2)$ but also the known⁷ diiodo complex $CpRe(CO)_2I_2$. Treatment of the rhenium aryldiazenido complex with Br⁻ yielded the dinitrogen complex, the corresponding dibromo complex $CpRe(CO)_2Br_2$,⁸ and the carbonyl substitution complex CpReBr(CO)(p-N₂C₆H₄OMe). GC-MS analysis of the reaction mixtures resulting from these halide ion additions showed in each case the presence of the respective iodo and bromo arene compounds (IC₆H₄OMe or BrC_6H_4OMe) as well as the formation of anisole (C_6H_5 -

1687. King, R. B.; Reimann, R. H. Inorg. Chem. 1976, 15, 183.

[®] Abstract published in Advance ACS Abstracts, September 1, 1995. (1) Chatt, J.; Dilworth, J. R.; Leigh, G. J. J. Chem. Soc., Chem. Commun. 1969, 687.

⁽²⁾ Chatt, J.; Dilworth, J. R.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1973, 612.

⁽³⁾ Tully, M. E.; Ginsberg, A. D. J. Am. Chem. Soc. 1973, 95, 2042.
(4) Sellmann, D. J. Organomet. Chem. 1972, 36, C27.

⁽⁵⁾ Sellmann, D.; Kleinschmidt, E. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1977, 32B, 795.

^{(6) (}a) Barrientos-Penna, C. F.; Einstein, F. W. B.; Sutton, D.; Willis, A. C. Inorg. Chem. 1980, 19, 2740. (b) Barrientos-Penna, C. F.; Sutton,

 ^[7] D. J. Chem. Soc., Chem. Commun. 1980, 111.
 [7] Dong, D. F.; Hoyano, J. K.; Graham, W. A. G. Can. J. Chem.

 ⁽⁷⁾ Dong, D. F., Hoyano, S. R., Granam, W. A. G. Can, S. Chen, 1981, 59, 1455.
 (8) Nesmeyanov, A. N.; Kolobova, N. E.; Makarov, Y. V.; Anisimov,

⁽⁸⁾ Nesheyanov, A. N., Kolobova, N. E., Makarov, T. V., Amshilov, K. N. Bull. Acad. Sci. USSR., Div. Chem. Sci. (Engl. Trans.) 1969,

OMe).⁹ Using Cl⁻ as the reagent produced only the carbonyl substitution complex CpReCl(CO)(p-N₂C₆H₄-OMe); the dichloro derivative CpRe(CO)₂Cl₂ and the dinitrogen complex were not formed. Furthermore, the reaction of the halide ion X⁻ (X⁻ = I⁻, Br⁻, or Cl⁻) with the pentamethylcyclopentadienyl analog [Cp*Re(CO)₂-(p-N₂C₆H₄OMe)][BF₄] yielded in all cases exclusively the respective carbonyl substitution complex Cp*ReX(CO)-(p-N₂C₆H₄OMe) with no production of the expected dinitrogen complex.⁹ These results, unlike those obtained for the related manganese complexes, could not be completely explained by a nucleophilic displacement mechanism but, instead, were suggestive of at least a competitive radical process.

It was clear from the synthetic results just presented that the chemistry associated with the conversion of the aryldiazenido ligand to the dinitrogen ligand, especially at a rhenium metal center, was complex and warranted further investigation. A general route to a wide variety of rhenium dinitrogen complexes has now been developed, the details of which are described in this paper. It is shown that chemical or electrochemical reduction of the cationic rhenium aryldiazenido complexes generates the corresponding neutral dinitrogen complexes of the type $Cp'Re(L_1)(L_2)(N_2)$ ((a) $Cp' = Cp, L_1 = L_2 = CO$ (1a);⁴⁻⁶ (b) Cp' = Cp*, L₁ = CO, L₂ = PMe₃ (3a)¹⁰ or P(OMe)₃ (4a);¹⁰ and (c) Cp' = Cp*, L₁ = L₂ = CO (2a),¹⁰ PMe₃ (5a), dmpe (6a), or P(OMe)₃ (7a)) (Chart 1) cleanly, quickly, and in high yield. The mechanism of this conversion is discussed. While the dinitrogen complexes 1a-4a have been described previously,^{6,10} some of the characterizing data obtained for these compounds when they have been synthesized by methods used in this study are included for authentication purposes and for a ready comparison with those dinitrogen compounds 5a-7a that have been synthesized for the first time in this work.

Results

Synthesis and Characterization of Dinitrogen **Complexes.** (a) **Reactions Involving Hydride Sources.** The hydride sources LiAlH₄ and NaBH₄ were reacted with the cationic rhenium aryldiazenido complexes $[Cp*Re(CO)_2(p-N_2C_6H_4OMe)][BF_4]$ (2b) and $[Cp*Re(PMe_3)_2(p-N_2C_6H_4OMe)][BF_4]$ (5b). Treatment of a solution of 5b in methanol with either LiAlH₄ or NaBH₄ produced no reaction over several hours even after a large excess of the hydride source was added. By contrast, treatment of a solution of **2b** in methanol with excess solid LiAlH₄ afforded the known methoxycarbonyl complex Cp*Re(CO)(COOMe)(p-N₂C₆H₄OMe),⁹ which was characterized by IR and ¹H NMR spectroscopy. This was most likely formed as a result of methoxide being generated "in situ" from the reaction of LiAlH₄ with methanol, and the compound could be synthesized quantitatively by addition of NaOMe to a solution of **2b** in methanol, as reported previously.⁹ The dinitrogen complex 2a was not formed in this reaction.

However, addition of excess NaBH₄, as a solid, to a solution of 2b in methanol at room temperature instead resulted in the initial formation of a deep red solution. The reaction then progressed further, with loss of the red color and formation of a vellow solution containing the dinitrogen complex 2a. Similar results were obtained when this reaction was repeated using acetone as the solvent, in agreement with earlier studies.¹⁰⁻¹² GC analysis of the reaction mixture indicated that anisole (C_6H_5OMe) was also a product. An IR spectrum of the red solution which was formed immediately after the addition of $NaBH_4$ to a solution of **2b** in acetone at room temperature showed the complete disappearance of 2b and the presence of two new strong absorptions of similar intensity at 1917 and 1852 cm^{-1} assigned to $\nu(CO)$ of the intermediate species. IR spectra acquired every 5 min showed that the absorptions corresponding to the intermediate smoothly disappeared as the bands due to the dinitrogen complex 2a gradually appeared, and **2a** was the final product.

The synthesis of the red solution was repeated at 195 K using acetone- d_6 as the solvent. A ¹H NMR spectrum of this solution acquired at 233 K demonstrated the disappearance of 2b and the presence of resonances attributable to Cp^{*} and *p*-methoxyphenyl groups plus a broad singlet at δ 15.68 integrating to one proton. No signal upfield from TMS (in the hydride region) was observed. The intermediate species was reprepared at 195 K by adding NaBH₄ to an acetone- d_6 solution of the dicarbonyl aryldiazenido complex $2b^{-15}N_{\alpha}$, which was specifically ¹⁵N-labeled at the rhenium-bound nitrogen atom (N_{α}) . A ¹H NMR spectrum of this solution acquired at 233 K exhibited, in addition to the typical resonances expected for the Cp* and the methoxyphenyl group, a doublet at δ 15.68 ($J_{\rm NH} = 69$ Hz) integrating to one proton. A ¹⁵N NMR spectrum of this solution obtained at this temperature also showed a doublet at δ -46.7 with the same coupling constant. The downfield doublet at δ 15.68 ($J_{\rm NH} = 69$ Hz) observed in the low-temperature ¹H NMR spectrum and the doublet at

⁽¹⁰⁾ Klahn, A. H.; Sutton, D. Organometallics 1989, 8, 198.
(11) Einstein, F. W. B.; Klahn-Oliva, A. H.; Sutton, D.; Tyers, K. G.

⁽¹¹⁾ Einstein, F. W. B.; Klahn-Oliva, A. H.; Sutton, D.; Tyers, K. G. Organometallics **1986**, 5, 53.

⁽¹²⁾ Klahn-Oliva, Á. H. Ph.D. Thesis, Simon Fraser University, Burnaby, British Columbia, Canada, 1986.

Formation of Ligated N₂ from Re-Bound Aryldiazenide

 δ -46.7 ($J_{\rm NH}$ = 69 Hz) detected in the low-temperature ^{15}N spectrum are confirmation of a one-bond $^{15}N-H$ coupling. Therefore, since the ^{15}N label was introduced at the rhenium-bound nitrogen atom (N_{\alpha}) exclusively, the intermediate was unambiguously assigned as the aryldiazene complex Cp*Re(CO)_2(p-^{15}NH^{14}NC_6H_4OMe).

A ¹³C{¹H} NMR spectrum of this complex recorded at 233 K in acetone- d_6 exhibited, in addition to the typical resonances for the Cp* and aryldiazene groups, a single resonance in the carbonyl region at δ 208.32 indicative of two symmetry-equivalent CO ligands. To verify that a second resonance was not hidden under the solvent resonance, the ¹³C{¹H} NMR spectrum was reacquired at 233 K in methanol- d_4 ; the resulting spectrum was identical to that obtained previously using acetone- d_6 .

(b) Reactions Involving the Triphenylmethyl Radical (Ph₃C[•]). Addition of excess Ph₃C, formed from the reduction of Ph₃CCl with zinc dust in THF, to a solution of the cationic dicarbonyl aryldiazenido complexes 1b or 2b in CH₂Cl₂ at room temperature afforded the corresponding neutral dinitrogen complexes 1a and 2a, respectively, in moderate yield. In both cases the production of the dinitrogen complex was accompanied by the formation of a white precipitate that was identified by melting point, ¹H NMR spectroscopy, and elemental analysis as Ph₃COOCPh₃, formed by oxidation of the Ph₃C radical. Using freshly distilled and scrupulously degassed solvents and high-purity Ar as the inert atmosphere prevented the formation of this peroxide.

A gas chromatogram of the volatiles, which were removed under vacuum prior to the purification of the dinitrogen complexes, indicated the presence of anisole. Notably, no evidence to support the formation of the radical combination products $Ph_3CC_6H_4OMe$ or Ph_3 - $CCPh_3$ was obtained. However, ¹H NMR spectroscopy and elemental analysis confirmed the presence of $[Ph_3C]$ - $[BF_4]$.

Interestingly, the addition of even a large excess of the triphenylmethyl radical to a solution of the aryldiazenido complexes 3b-7b in CH_2Cl_2 did not yield the dinitrogen complexes 3a-7a. The starting aryldiazenido complexes were recovered quantitatively even after the mixtures were stirred for 24 h.

(c) Reactions Involving Cobaltocene or Sodium. Addition of excess cobaltocene (Cp_2C_0) to a solution of the dicarbonyl aryldiazenido complexes 1b and 2b in acetone at room temperature gave the corresponding neutral dinitrogen complexes 1a and 2a in excellent yield. Unlike the triphenylmethyl radical chemistry mentioned above, Cp_2C_0 was also effective in reducing the cationic carbonyl trimethylphosphite aryldiazenido complex 4b to the dinitrogen complex 4a in good yield. Again, anisole, confirmed by gas chromatography, was also formed in each of these reactions. The salt [Cp_2 -Co][BF₄] was also detected as a byproduct by ¹H NMR spectroscopy.

Notably, when this procedure was repeated for the remaining carbonyl trimethylphosphine or bis(phosphorus ligand) aryldiazenido complexes 3b or 5b-7b, the corresponding dinitrogen complexes were not produced.

Treatment of a solution of **2b** in liquid ammonia/THF with sodium metal did not give the dinitrogen complex **2a** but instead the known⁹ neutral carbamoyl complex

 Table 1. Cyclic Voltammetric Cathodic Peak

 Potentials for Complexes 1b-7b^a

complex	$\overline{E_{p}^{c}(V)}$
$\label{eq:constraint} \begin{array}{l} [CpRe(CO)_2(p-N_2C_6H_4OMe)][BF_4] \mbox{ (1b)} \\ [Cp^*Re(CO)_2(p-N_2C_6H_4OMe)][BF_4] \mbox{ (2b)} \\ [Cp^*Re(CO)(PMe_3)(p-N_2C_6H_4OMe)][BF_4] \mbox{ (3b)} \\ [Cp^*Re(CO)\{P(OMe)_3\}(p-N_2C_6H_4OMe)][BF_4] \mbox{ (3b)} \\ [Cp^*Re(PMe_3)_2(p-N_2C_6H_4OMe)][BF_4] \mbox{ (3b)} \\ [Cp^*Re(dmpe)(p-N_2C_6H_4OMe)][BF_4] \mbox{ (3b)} \\ [Cp^*Re\{P(OMe)_3\}_2(p-N_2C_6H_4OMe)][BF_4] \mbox{ (3b)} \\ [Cp^*Re\{P(OMe)_3\}_2(p-N_2C_6H_4OMe)][BF_4] \mbox{ (3b)} \\ [Cp^*Re\{P(OMe)_3\}_2(p-N_2C_6H_4OMe)][BF_4] \mbox{ (3b)} \\ \end{array}$	$-0.46 \\ -0.62 \\ -1.24 \\ -0.98 \\ -1.89 \\ -1.74 \\ -1.41$

 a Recorded for 1.0 mM solutions of the complexes in acetonitrile at a Pt electrode with 0.2 M TEAP as the supporting electrolyte; scan rate 0.2 V/s; potentials are vs. SCE.

Cp*Re(CO)(CONH₂)(p-N₂C₆H₄OMe) was produced, identified by IR and ¹H NMR spectroscopy. This complex was confirmed to result when **2b** was added as a solid to liquid NH₃ in the absence of Na, as reported previously.⁹ Ammonia is therefore a poor choice of solvent for the sodium reactions because it reacts with 2b quickly and completely to form the carbamoyl complex before the addition of Na, and no further reaction ensues. Repeating the Na/NH_3 reduction with 5b did not yield the dinitrogen complex 5a either; instead, the dihydride complex trans-Cp*Re(PMe₃)₂H₂ was produced and characterized by ¹H and ³¹P{¹H} NMR spectroscopy.^{13a} Sonication of a mixture of sodium metal and 2b in THF afforded the dinitrogen complex 2a in poor yield. However, addition of a solution of 2b in THF to sodium amalgam at room temperature gave exclusively the dinitrogen complex 2a in excellent yield. More importantly, treatment of any of the aryldiazenido complexes 1b or 3b-7b with Na/Hg afforded the neutral dinitrogen complexes 1a or 3a-7a, respectively, in good yield. Once again, anisole was determined by gas chromatography to accompany the production of the dinitrogen complexes.

(d) Electrochemical Reduction. The cyclic voltammograms of 1b-7b in MeCN, recorded at a scan rate of 0.2 V/s, displayed in each case a single cathodic wave between -0.46 and -1.89 V vs. SCE but no observable return anodic wave, indicating a chemically irreversible process (Table 1).

The cyclic voltammograms of the cationic dicarbonyl aryldiazenido complexes 1b and 2b (Figure 1(a)) showed no signs of approaching electrochemical reversibility as the scan rate was increased to 1.0 V/s. However, at this scan rate a return anodic wave was clearly resolved for the cationic carbonyl phosphine and phosphite complexes 3b and 4b (Figure 1(b)). Unfortunately, it was not possible with the limited scan rates available with the electrochemical equipment at SFU to employ scan rates faster than 1.0 V/s to see whether a well-defined reversible wave form could be achieved for 3b, 4b, or any of the other cationic complexes. However, Richards and Bard successfully employed fast scan rate cyclic voltammetry and scanning electrochemical microscopy (SECM) to examine in more detail the electrochemical behavior of $[Cp*Re(CO)_2(p-N_2C_6H_4OMe)][BF_4]$ (2b).^{13b} The cyclic voltammogram of 2b exhibited a reversible wave with a cathodic peak potential of -0.66 V with respect to a silver quasireference electrode at a scan rate of 10 V/s. The anodic wave was first resolved at this

^{(13) (}a) Herrmann, W. A.; Theiler, H. G.; Hertdweck, E.; Kiprof, P. J. J. Organomet. Chem. **1989**, 367, 291. (b) Richards, T. C.; Bard, A. J.; Cusanelli, A.; Sutton, D. Organometallics **1994**, 13, 757.

Figure 1. Cyclic voltammograms of (a) **2b** and (b) **3b** (1.0 mM MeCN solution; 0.2 M TEAP; Pt working electrode). scan rate and became well-defined at 50 V/s. Digital simulation of these cyclic voltammograms assuming an electrochemical E_rC_i mechanism afforded a rate constant $k_c = 145 \pm 10 \text{ s}^{-1}$ for the decomposition of the

reduced species to products. The validity of this rate constant was substantiated by SECM which also produced a value of 145 s⁻¹ for k_c .^{13b}

The controlled potential electrolysis (CPE) of solutions of the cationic aryldiazenido complexes 1b-3b and 5b in acetonitrile (5 mM) was performed at a large Pt gauze electrode with tetraethylammonium perchlorate (TEAP, 0.2 M) as the supporting electrolyte. When the amount of charge consumed at the end of the CPE experiment was monitored, a value for the number of electrons involved in the overall reduction reaction was determined for 1b-3b.^{13b} Exhaustive CPE of 1b-3b (60 min) at a potential sufficiently more negative than their respective cathodic peak potentials vs. SCE (Table 1) indicated the consumption of 1 equiv of electrons in all cases. Monitoring the progress of the electrolysis of 1b-**3b** by IR spectroscopy^{13b} showed the clean production of the corresponding neutral dinitrogen complexes 1a-3a, respectively, in good yield and complete disappearance of 1b-3b. Upon completion of the electrolysis, solvent and volatiles were removed by vacuum, and a gas chromatogram of the condensate confirmed the presence of anisole. The results from the CPE studies of the cationic bis(trimethylphosphine) aryldiazenido complex **5b** were inconclusive, since **5b** proved to be very air-sensitive and was easily oxidized to the known trioxo complex Cp*ReO₃¹⁴ prior to or during the CPE measurements, despite all efforts to maintain an inert atmosphere in the CPE cell.

Discussion

Synthesis and Characterization of Dinitrogen **Complexes.** In this study, a wide variety of Cp and Cp* rhenium aryldiazenido complexes has been converted to the corresponding dinitrogen complexes of general formula $Cp'Re(L_1)(L_2)(N_2)$ ((a) Cp' = Cp, $L_1 =$ $L_2 = CO (1a);^{4-6}$ (b) $Cp' = Cp^*$, $L_1 = CO$, $L_2 = PMe_3$ (3a)¹⁰ or P(OMe)₃ (4a);¹⁰ and (c) $Cp' = Cp^*$, $L_1 = L_2 =$ CO (2a),¹⁰ PMe₃ (5a), dmpe (6a), or P(OMe)₃ (7a)) (Chart 1) by the use of NaBH₄, Ph₃C, Cp₂Co, Na/Hg, or electrochemical reduction. Some of these compounds have been made from aryldiazenido complexes previously by employing reagents that included, among others, NaBH₄, BuⁿLi, or iodide^{6,10-12} but reagents used here, such as Na/Hg or Cp₂Co, are superior in terms of yield, mild conditions, or ease of workup. Individual reagents are discussed separately below. In addition, we did attempt to synthesize 3a-7a by oxidative removal of a carbonyl ligand in 2a with PhIO or Me₃-NO in a coordinating solvent such as MeCN, followed by subsequent substitution of the ligated solvent by phosphine or phosphite, but this was not successful.

The dinitrogen complexes 1a-7a were obtained as analytically and spectroscopically pure pale yellow solids that are very soluble in the majority of organic solvents. As solids, complexes 1a-4a can be exposed to air for short periods of time without appreciable deterioration and can be stored indefinitely at 263 K under an atmosphere of N₂; solutions are more air-sensitive.¹⁰ The bis(phosphorus ligand) dinitrogen complexes **5a** and **7a** and the bidentate phosphine dinitrogen complex **6a**, either in solution or as solids, are very air-sensitive, and

^{(14) (}a) Klahn-Oliva, A. H.; Sutton, D. Organometallics **1984**, *3*, 1313. (b) Herrmann, W. A.; Serrano, R; Bock, H. Angew. Chem., Int. Ed. Engl. **1984**, *23*, 383.

Table 2. III. II. I III. and Of III NUIL Data for the Dimitiogen complexes ta	Table 2.	IR, ¹ H	I. ³¹ P{ ¹ H}	. and ${}^{13}C{}^{1}$	H} NMR Data	for the Dinitro	gen Complexes 1a-
---	----------	--------------------	-------------------------------------	------------------------	-------------	-----------------	-------------------

complex	$\operatorname{IR}(\operatorname{cm}^{-1})^a$	¹ H NMR δ(Cp*) ^b	³¹ P{ ¹ H} NMR ^c	¹³ C{ ¹ H} NMR δ(CO) ^b
1a	2145 v(NN); 1973, 1919 v(CO)	5.23 s		195.79 s
$1a^{15}N_{\alpha}$	2110 v(NN); 1973, 1919 v(CO)			
2a	2125 ν (NN); 1954, 1902 ν (CO)	2.09 s		200.09 s
$2a^{-15}N_{\alpha}$	$2092 \nu(NN); 1954, 1902 \nu(CO)$		00.04	
3a 0 15) I	$2044 \nu(NN); 1865 \nu(CO)$	2.00 d (J = 0.7)	-29.86	207.18 d (J = 7)
$3a^{-13}N_{\alpha}$	$2011 \nu(NN); 1865 \nu(CO)$	$\mathbf{P} \mathbf{P} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{P} \mathbf{P} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	100 10	004003/(1-10)
4a 4a 15N	2078, 2066 ν (NN); 1877 ν (CO)	2.04 a (J = 0.8)	139.12	204.96 d (J = 12)
4a*ιν _α 50	$2045, 2035 \nu(NN); 1877 \nu(CO)$ 1975 $\nu(NN)$	$1.88 \pm (J = 0.7)$	-35.31	
59. ¹⁵ N.	$1943 \nu(NN)$	1.00 t (0 - 0.7)	00.01	
5a- ¹⁵ N ₆	$1943 \nu(NN)$			
6a	1977 $\nu(NN)$	1.92 s	-16.88	
7a	2014 v(NN)	1.87 t (J = 0.8)	138.80	

^a In hexane. ^b In CDCl₃ for 1a-4a and in acetone- d_6 for 5a-7a; referenced to TMS; J given in Hz; δ given in ppm. ^c In CDCl₃ for 1a-4a and in acetone- d_6 for 5a-7a; referenced to 85% H₃PO₄; δ given in ppm.

exposure to air for even short periods of time results in the oxidation of these complexes to the known trioxo complex Cp^*ReO_3 .¹⁴ The trioxo complex was confirmed by bubbling O_2 (g) through a solution of the dinitrogen complexes **5a**-**7a** in hexane for 5 min and then analyzing the product formed by ¹H NMR and mass spectroscopy. The mechanism for this conversion is not known, and is currently under investigation in our laboratory.

From the IR spectra of the dinitrogen complexes **1a**-**7a**, recorded in hexane, $\nu(NN)$ was observed as a strong absorption in the 2145-1975 cm⁻¹ region (Table 2). The assignment of $\nu(NN)$ was confirmed by ¹⁵N isotopic substitution at the rhenium-bound nitrogen atom $(N_{\boldsymbol{\alpha}})$ in 1a-5a. In all cases an isotopic shift to lower wavenumber, by ca. 33 cm⁻¹, was observed for ν (NN). Data obtained in this study agree well with previously obtained values for 1a-4a.^{6,10} The two resolved $\nu(NN)$ absorptions reported¹⁰ for the carbonyl trimethylphosphite dinitrogen complex 4a and accounted for by the presence of conformational isomers brought about by the specific orientation of the Me group of the $P(OMe)_3$ ligand were observed for the material synthesized in this work by different procedures. In contrast to this result, the bis(trimethylphosphite) dinitrogen complex **7a** exhibited only a single IR absorption for $\nu(NN)$.

For complexes 1a-7a the relative electronic properties of the Cp, Cp*, or phosphorus ligands are borne out by changes in $\nu(CO)$ or, more dramatically, by changes in $\nu(NN)$ (Table 2). The greater the σ -donor (or poorer the π -acceptor) ability of these ligands, the higher the degree of charge delocalization into the carbonyl or dinitrogen antibonding orbitals and the lower $\nu(CO)$ or $\nu(NN)$. Values for $\nu(NN)$ and, where applicable, for ν (CO), follow the order Cp > Cp* in comparable compounds, in agreement with the general view that Cp* is a better electron-donating ligand than Cp, and these findings are similar to those reported for the chromium dicarbonyl dinitrogen complexes $(\eta$ -aryl)Cr(CO)₂(N₂) $(aryl = C_6H_6, C_6H_3Me_3, or C_6Me_6)$.^{15a} Furthermore, the values follow the order of the coligands (CO)[P(OMe)_3] $(4a) > (CO)(PMe_3)$ $(3a) > [P(OMe)_3]_2$ (7a) > dmpe (6a) $\approx (PMe_3)_2$ (5a), which correlates with increasing σ -donor ability (or decreasing π -acceptor ability) of the phosphorus ligand. Taken together, these results conform to the view that PMe₃ is a significantly better electrondonating ligand $[\Delta \nu(NN) = 81 \text{ cm}^{-1} \text{ on going from } 2a$ to 3a] than P(OMe)₃ [$\Delta \nu$ (NN) = ca. 53 cm⁻¹ on going from 2a to 4a].

The ¹H NMR spectra for complexes 1a-4a exhibited the typical resonances expected for the Cp, Cp*, and phosphorus groups. The only observation of note was that the Cp* resonance in the carbonyl phosphine and phosphite complexes 3a and 4a was, as reported previously,¹⁰ split into a doublet with $J_{\rm H-P}$ couplings of 0.7 and 0.8 Hz, respectively, which supports the presence of a single phosphorus ligand in these complexes (Table 2). For complexes 5a-7a, the ¹H NMR spectra showed some notable features. The Cp* resonance for both the bis(trimethylphosphine) dinitrogen complex 5a and for the bis(trimethylphosphite) dinitrogen complex 7a appeared as a triplet, indicating that the Cp* methyls were observably coupled to two equivalent phosphorus ligands. Interestingly, for the bidentate phosphine dinitrogen complex 6a only a singlet Cp* resonance was observed. In **5a** the resonance at δ 1.48 assigned to the PMe₃ protons was observed to be a virtual doublet integrating to 18H. The apparent coupling constant $(^{2}J_{H-P} +$ ${}^{4}J_{\rm H-P}$), given by the separation between the two outside peaks, was 7.4 Hz. In 7a the resonance at δ 3.45 assigned to the P(OMe)₃ protons was also observed to be a virtual doublet, integrating to 18H with a coupling constant $({}^{3}J_{H-P} + {}^{5}J_{H-P})$ of 11.5 Hz.

The ${}^{31}P{}^{1}H$ NMR spectra of complexes 3a-7a, in each case, displayed a single resonance in the normal region for a coordinated phosphine or phosphite (Table 2), which also indicates that in the bis(phosphorus ligand) complexes 5a-7a the phosphorus ligands are equivalent by symmetry. The ¹³C{¹H} NMR spectra of complexes **1a-4a** showed a carbonyl carbon resonance in the region 195.79-207.18 ppm; a singlet was observed for 1a and 2a and a doublet for the phosphorus ligand complexes **3a** and **4a** with $J_{C-P} = 7$ and 12 Hz, respectively. The single resonance observed for $\delta(CO)$ for the dicarbonyl dinitrogen complexes 1a and 2a indicates that these two CO ligands are also symmetry equivalent. As has been indicated earlier,¹⁰ the ¹⁵N NMR spectra of some of these dinitrogen complexes, such as 1a and 2a, when labeled with ^{15}N at the α position show that the label is scrambled into the β position. The data provided here are for the pure $^{15}N_{\alpha}$ isotopomer synthesized and quickly isolated below ambient temperature; full details of the isomerization study will be included in a separate paper.^{15b} Further characterization of the dinitrogen complexes 1a-7a was provided by mass spectroscopy. In all cases the molec-

^{(15) (}a) Sellmann, D.; Maisel, G. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1972, 27, 465. (b) For a preliminary account see: Cusanelli, A.; Sutton, D. J. Chem. Soc., Chem. Commun. 1989, 1719.

ular ion M^+ was observed as a weak peak and was always accompanied by a fragment corresponding to loss of the dinitrogen ligand.

Reactions Using NaBH₄. Several years ago, the reaction of the aryldiazenido complexes [CpRe(CO)₂(p- $N_2C_6H_4R$][BF₄] (R = Me, OMe, NEt₂) and [CpRe(CO)₂- $\{N_2C_6H_3(3,5-Me_2)\}]$ [BF4] with NaBH4 was reported from this laboratory.¹⁶ The product in each case was the highly colored corresponding aryldiazene (NH=NAr) complex formed by nucleophilic attack of hydride at the metal-bound nitrogen N_{α} and was unambiguously identified as such by the NH resonance in the complex with $R = NEt_2$ which occurred as a doublet in the ${}^{15}N_{\alpha}$ labeled isotopomer. The aryldiazene complex was thermally unstable resulting in the production of the dinitrogen complex $CpRe(CO)_2(N_2)$ (1a) and the corresponding arene. When a Cp* analogue, namely [Cp*Re- $(CO)_2(p-N_2C_6H_4OMe)][BF_4]$ (2b) was reacted with NaBH₄ the transient red product formed en route to the dinitrogen compound **2a** was considered by analogy to be the aryldiazene complex Cp*Re(CO)₂(p-NHNC₆H₄-OMe).^{11,12} It was not, however, characterized except for the IR spectrum ($\nu(CO) = 1914$, 1850 cm⁻¹ in acetone). Now, this compound has been completely characterized as part of this study.

The IR spectrum of the aryldiazene complex formed in situ from the addition of $NaBH_4$ to 2b in acetone at low temperature showed two $\nu(CO)$ absorptions (1917 and 1852 cm^{-1} in acetone), which were lowered substantially from the corresponding positions in the aryldiazenido complex 2b (2054 and 1995 cm⁻¹ in acetone). The $\nu(NN)$ band for the aryldiazene complex was not observed in solution spectra, nor was the $\nu(NH)$ absorption. Notably, even ¹⁵N isotopic substitution of the rhenium-bound nitrogen atom (N_{α}) in the aryldiazene complex Cp*Re(CO)₂(p-¹⁵NH¹⁴NC₆H₄OMe) did not lead to observable absorptions assignable to $\nu(NN)$ or $\nu(NH)$ in the solution spectra.

The ¹H NMR spectrum readily demonstrated the presence of the aryldiazene ligand. The NH resonance occurs well downfield (δ 15.68) and is at the lower end of the range (ca. δ 11-15) observed for many other aryldiazenes,¹⁷⁻¹⁹ and the resonance was split into a sharp doublet $(J_{15}_{NH} = 69 \text{ Hz})$ in the spectrum of the $^{15}N_{\alpha}$ derivative Cp*Re(CO)₂(p- $^{15}NH^{14}NC_{6}H_{4}OMe)$. This coupling constant is in agreement with $J_{15}_{\rm NH}$ values reported for other aryldiazene complexes, such as [PtCl- $(\text{PEt}_3)_2(p^{-15}\text{NH}^{14}\text{NC}_6\text{H}_4\text{F})][\text{BF}_4] (J = 77 \text{ Hz}),^{17} [\text{RuCl}^{-15}\text{NH}^{14}\text{NC}_6\text{H}_4\text{F})]$ $(^{15}NH^{14}NPh)(CO)_2(PPh_3)_2][ClO_4] (J = 65 Hz),^{18} and$ $[W(CO)_2(NO)(PPh_3)_2(^{15}NH^{14}NPh)][PF_6] (J = 63 Hz),^{19}$ and is appropriate for metal-bound sp²-hybridized nitrogen.

The actual bonding mode of the ligand (i.e., end-on (η^1) or side-on (η^2) bonded) cannot be unambiguously deduced. The observed single resonance at δ 208.32 in the carbonyl region in the ¹³C{¹H} NMR spectrum at 233 K is not consistent with a η^2 -aryldiazene with the NN axis parallel to the Cp* plane but would be consistent if the aryldiazene lies perpendicular to the Cp* plane and in a plane equating the two CO ligands,

or is rotating. A η^1 -aryldiazene ligand freely rotating about the Re-N bond would also result in equivalent carbonyl groups. Since the $\delta(NH)$ ¹H NMR resonance is observed in the region where $\delta(NH)$ for crystallographically-determined η^1 -aryldiazene complexes resonates, it is likely that the aryldiazene is η^1 in this complex.¹⁸ To date, all previously reported aryldiazene complexes have been shown or are believed to be η^{1} bonded to the metal. It should be noted, however, that the closely related diphenyldiazene complex CpRe(CO)2- (N_2Ph_2) is η^2 -bonded in the crystal structure, and undergoes rapid $\eta^1 - \eta^2$ interconversion in solution.²⁰

It has been previously observed that reaction of the carbonyl trimethylphosphine complex [Cp*Re(CO)- $(PMe_3)(p-N_2C_6H_4OMe)][BF_4]$ (3b) with NaBH₄ resulted in no formation of an aryldiazene ligand; instead, there was substitution of PMe₃ to yield the hydrido complex $Cp*ReH(CO)(p-N_2C_6H_4OMe)$.¹⁰ Here, we find that replacement of both CO ligands by PMe₃ appears to render the complex inert to hydride attack, as neither the corresponding aryldiazene, dinitrogen or hydrido complex was observed. Treatment of the bis(trimethylphosphine) complex 5b with NaBH₄ resulted in no reaction. It is reasoned that an increase in the electron-donating ability of the ligand, as each CO group is replaced by PMe₃, causes an increase of electron density at the metal center which in turn leads to greater metal $d-\pi^*$ -(NNAr) back-bonding (reflected in the trend in ν (NN) values). The result is that the rhenium center and the rhenium-bound nitrogen atom in 5b are made less susceptible to nucleophilic attack by hydride.

Reactions Using Triphenylmethyl or Cobaltocene. The cationic dicarbonyl aryldiazenido complexes $[Cp'Re(CO)_2(p-N_2C_6H_4OMe)][BF_4](Cp' = Cp (1b))$ or Cp^{*} (2b)) were converted to the corresponding neutral dinitrogen complexes 1a and 2a at room temperature by reaction with a THF solution containing an excess of the triphenylmethyl radical. However, this reagent was completely ineffective when reacted with the phosphorus-substituted aryldiazenido complexes 3b-7b. Reactions with Cp_2Co also resulted in the instantaneous formation of the dinitrogen complexes 1a and 2a in excellent yield, and this reagent was also effective in the case of the trimethylphosphite complex 4b. However, it was not capable of reducing the remaining aryldiazenido complexes 3b or 5b-7b to the dinitrogen complexes.

The formation of anisole and [Ph₃C][BF₄] or [Cp₂Co]-[BF₄], respectively, in the reactions with Ph₃C or Cp₂-Co is consistent with an electron transfer mechanism, resulting in the formation of a 19-electron neutral aryldiazenido complex intermediate Cp'Re(CO)(L)(N₂-Ar) $(L = CO \text{ or } P(OMe)_3)$. This is then visualized to decompose by CN bond homolysis to give the dinitrogen complex and an aryl radical which rapidly abstracts a hydrogen atom from the solvent to give anisole. No quantitative determination of the yields of anisole, [Ph₃C][BF₄], or [Cp₂Co][BF₄] was carried out. An attempt to observe by ESR the intermediate 19-electron radical in solution in the reaction of Ph₃C with the

⁽¹⁶⁾ Barrientos-Penna, C. F.; Einstein, F. W. B.; Jones, T.; Sutton,

⁽¹⁶⁾ Barrientos Feina, C. T., Enistein, T. W. Z., Ostor, T., Const, J., C. M., D. Inorg. Chem. 1982, 21, 2578.
(17) Parshall, G. W. J. Am. Chem. Soc. 1967, 89, 1822.
(18) Haymore, B. L.; Ibers, J. A. J. Am. Chem. Soc. 1975, 97, 5369.
(19) Smith, M. R.; Hillhouse, G. L. J. Am. Chem. Soc. 1988, 110, 1000 4066.

⁽²⁰⁾ Einstein, F. W. B.; Sutton, D.; Tyers, K. G. Inorg. Chem. 1987, 26, 111.

aryldiazenido complex **2b** was unsuccessful at room temperature and at 195 K.

Reactions Using Sodium Amalgam. The results with Ph_3C and Cp_2Co suggested that the inability to reduce the majority of the phosphine-substituted complexes such as **5b**-**7b** resulted from the complexes having reduction potentials for the reduction to the neutral aryldiazenido complex intermediate that are considerably more negative than are accessible with these reagents. Therefore, the use of the more powerful reductant sodium was examined. In agreement, sodium amalgam in THF was effective in reducing all of the aryldiazenido complexes **1b**-**7b** to the dinitrogen complexes **1a**-**7a**. We now consider this to be the most convenient and preferred reagent for production of all these rhenium dinitrogen complexes from the aryldiazenido complexes in excellent yield.

Electrochemical Methods. The suggestion that a one-electron chemical reduction was responsible for the conversion of the cationic aryldiazenido ligand to the neutral dinitrogen moiety was quantitatively corroborated by electrochemical measurements conducted on the complexes 1b-7b. The cyclic voltammograms of these complexes displayed in each case a single irreversible cathodic wave, which was an indication of the relative reduction potential required to convert 1b-7b to the corresponding neutral aryldiazenido complexes (Table 1).

The values of the cathodic peak potential reflect the expected electronic properties of the Cp, Cp*, or phosphorus ligands. For example, the Cp dicarbonyl complex 1b has a smaller negative value for the potential (-0.46 V) than the Cp* analogue **2b** (-0.62 V). Furthermore, the potentials for the remaining aryldiazenido complexes follow the order of the coligands $(PMe_3)_2$ (5b, -1.89 V > dmpe (6b, -1.74 V) > [P(OMe)₃]₂ (7b, -1.41 $V > (CO)(PMe_3)$ (3b, -1.24 V) > (CO)[P(OMe)_3] (4b, -0.98 V). Taken together, these results suggest that an increase in the σ -donor ability (or decrease in the π -acceptor ability) of an ancillary ligand leads to an increasingly negative value for the potential. These results satisfactorily account for the ability of sodium amalgam to reduce all of the aryldiazenido complexes and for Cp₂Co and Ph₃C to reduce only selected ones. The reduction potential of Cp₂Co is reported to be only ca. -0.9 V vs. SCE in CH₂Cl₂,²¹ whereas the reduction potential of sodium is ca. -3.0 V vs. SCE.²² The reduction potential of Ph₃C, to the best of our knowledge, has not been reported in the literature. The fact that Ph₃C was capable of reducing only the dicarbonyl complexes 1b and 2b suggests that the reduction capacity of Ph₃C is of the order of the potential determined for the Cp* dicarbonyl aryldiazenido complex 2b (ca. -0.62 V).

Further evidence to support an electron transfer mechanism for the observed transformation of the aryldiazenido moiety to the respective dinitrogen derivative is provided by the results of fast scan rate cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) conducted by Richards and Bard and reported elsewhere.^{13b} These measurements provide a first-order rate constant of $k_c = 145 \text{ s}^{-1}$ for the decomposition of the 19-electron intermediate in the case of $Cp*Re(CO)_2(p-N_2C_6H_4OMe)$. The CPE study lends further support to an electrochemical E_rC_i mechanism. Exhaustive controlled potential electrolysis of 2b (60 min) at -0.62 V versus SCE indicated the consumption of 1 equiv of electrons. This result is clearly consistent with the production of the neutral 19-electron complex and its subsequent decomposition. In addition, exhaustive CPE of the Cp dicarbonyl complex 1b and the Cp* carbonyl trimethylphosphine complex 3b also established these reactions to be clean one-electron processes, and in all three cases IR monitoring showed the conversion of the aryldiazenido complex to the dinitrogen complex and GC analysis revealed anisole as a product, demonstrating the similarity of the chemical and electrochemical processes.

Conclusion

We have shown that chemical or electrochemical reduction of the cationic rhenium aryldiazenido complexes $[Cp'Re(L_1)(L_2)(p-N_2C_6H_4OMe)][BF_4]$ (1b-7b) generates the corresponding neutral dinitrogen complexes 1a-7a of the type $Cp'Re(L_1)(L_2)(N_2)$ ((a) $Cp' = Cp, L_1$ = L_2 = CO (1a); (b) Cp' = Cp*, L_1 = CO, L_2 = PMe₃ (3a) or $P(OMe)_3$ (4a); and (c) $Cp' = Cp^*$, $L_1 = L_2 = CO$ (2a), PMe₃ (5a), dmpe (6a), or P(OMe)₃ (7a)). Evidence has been presented in support of a proposed mechanism that involves one-electron reduction of the aryldiazenido complex cation in 1b-7b to the neutral 19-electron intermediate $Cp'Re(L_1)(L_2)(p-N_2C_6H_4OMe)$, followed by C-N bond homolysis to give 1a-7a plus the *p*-methoxyphenyl radical that, in turn, yields anisole by hydrogen atom abstraction from the solvent. The measured cathodic wave peak potentials of 1b-7b have been found to be a good indication of whether chemical reduction by the various reductants studied is successful in producing 1a-7a. The mechanism of NaBH₄ reduction of **2b** has been shown to be different from the oneelectron reduction. The intermediate aryldiazene complex Cp*Re(CO)₂(p-NHNC₆H₄OMe) is formed first and is thermally unstable, yielding the dinitrogen complex **2a** and anisole. This is not a general reaction for all of the aryldiazenido complexes studied, however. For example, no reaction occurs between NaBH₄ and the bis PMe_3 complex **5b**.

Experimental Section

General Methods. All manipulations were performed under nitrogen or argon by using standard Schlenk, drybox, or vacuum line techniques unless stated otherwise. Drybox manipulations were carried out in a nitrogen-filled Vacuum Atmospheres HE-493 Dri-Lab with attached Dri-Train.

All NMR data were recorded on a Bruker AMX 400 instrument at operating frequencies of 400.1, 162.0, 100.6, 40.5, and 28.9 MHz for ¹H, ³¹P, ¹³C, ¹⁵N, and ¹⁴N nuclei, respectively. ¹H and ¹³C NMR chemical shifts are reported in ppm downfield (positive) of tetramethylsilane. ³¹P NMR chemical shifts are referenced to 85% H₃PO₄. ¹⁴N and ¹⁵N NMR chemical shifts are referenced to external nitromethane (MeNO₂). Acetone d_6 and methanol- d_4 were used as solvents for all the lowtemperature NMR work. The term "virtual doublet" refers to

⁽²¹⁾ Herrmann, W. A.; Albach, R. W.; Behm, J. J. Chem. Soc., Chem. Commun. 1991, 367.

⁽²²⁾ Bard, A. J.; Fan, F.-R. F.; Mirkin, M. V. In *Electroanalytical Chemistry*; Bard, A. J., Ed.; Marcel Dekker: New York, 1993; Vol. 18, p 243.

the non-first-order multiplet (filled-in doublet)²³ which is seen in some of the ¹H NMR spectra; the apparent coupling constant is given by the separation between the two outside peaks. Electron spin resonance (ESR) spectra were recorded both at room temperature and at low temperature on a Varian E-4 instrument. Gas chromatography of the solutions after chemical and electrochemical reductions were complete was performed on a Hewlett-Packard 5890 A Series gas chromatograph containing a DB-1 capillary column and equipped with a Hewlett-Packard 3392 A integrator. Identification of the chromatographic peak for anisole was made by comparison with that of the authentic compound.

The details for the preparation and purification of the cationic rhenium aryldiazenido complexes have been provided elsewhere.^{10,24} Methanol and acetone were distilled from calcium sulfate under nitrogen and used immediately. Hexamethylphosphoramide (HMPA) (Aldrich Chemical Co.) was distilled from calcium hydride and stored over 4 Å molecular sieves, which had been activated by drying under vacuum at 573 K for several days. Anisole (Fisher Scientific Co.) was used as received. Sodium metal (BDH Chemicals Ltd.) was washed with hexane prior to use and was freshly cut. Mercury (Aldrich) was cleaned by filtration through fine filter paper and distilled under vacuum. Ammonia gas (Linde Union Carbide) was used as purchased. Sodium borohydride (BDH) and lithium aluminum hydride (Alfa Products, Ventron Division) were used as purchased and were stored under nitrogen. The triphenylmethyl radical (Ph_3C^{\bullet}) was synthesized by zinc reduction of triphenvlchloromethane (Ph₃CCl)²⁵ which was prepared by reaction of triphenylmethanol (Ph₃COH) (Aldrich) with acetyl chloride.²⁶ Cobaltocene (Cp₂Co) was prepared by reaction of anhydrous cobalt(II) chloride (Alfa) with sodium cyclopentadienide prepared from sodium and dicyclopentadiene (Aldrich)²⁷ and was sublimed under vacuum onto a dry ice-cooled cold finger before use.

Preparation of $CpRe(CO)_2(N_2)$ (1a) and $1a^{-15}N_{\alpha}$. A 5-fold stoichiometric excess of Cp₂Co was dissolved in a minimum amount of acetone (5 mL) and then added via syringe to a solution of the cationic dicarbonyl complex 1b or $1b^{-15}N_{\alpha}$ (100 mg, 0.189 mmol) in acetone (10 mL) at room temperature. The IR spectrum of this mixture recorded immediately after the cobaltocene addition showed the total disappearance of the cationic complex and only the presence of absorptions due to the dinitrogen complex 1a or $1a^{-15}N_{\alpha}$. Diethyl ether (20 mL) was added to precipitate $[Cp_2Co][BF_4]$, and the mixture was stirred for 30 min. The solution was filtered through a short column of Celite, and the solvent was removed under vacuum to give a pale brown oil. The oil was absorbed by a small amount of neutral alumina and dried under vacuum, and the mixture was chromatographed on alumina. Elution with hexane afforded 1a or $1a^{-15}N_{\alpha}$ as a pale yellow colored microcrystalline solid in 87% yield (55 mg, 0.16 mmol). IR (hexane): 2145 cm⁻¹ ν (NN) (2110 cm⁻¹ for ¹⁵N_alabeled complex); 1973, 1919 cm⁻¹ ν (CO). ¹H NMR (CDCl₃): δ 5.23 (s, 5H, Cp). ¹³C{¹H} NMR (CDCl₃): δ 93.72 (s, Cp), 195.79 (s, CO). ¹⁵N NMR (acetone- d_6): $\delta - 120.9$ (s, ¹⁵N_a). ¹⁴N NMR (acetone- d_6): $\delta -120$ (s, ${}^{14}N_{\alpha}$), -26 (s, ${}^{14}N_{\beta}$). MS (EI): m/z 336 (337 in **1a-**¹⁵ N_{α}) (M⁺), 308 (M⁺ - N₂). Anal. Calcd: C, 25.06; H, 1.49; N, 8.35. Found: C, 24.97; H, 1.71; N, 8.43.

Preparation of $Cp^*Re(CO)_2(N_2)$ (2a) and $2a^{-15}N_{\alpha}$. A 5-fold stoichiometric excess of Cp₂Co was dissolved in a minimum amount of acetone (5 mL) and then added via syringe to a solution of the cationic dicarbonyl complex 2b or $2b^{-15}N_{\alpha}$ (100 mg, 0.167 mmol) in acetone (10 mL) at room temperature. The IR spectrum of this mixture recorded immediately after the cobaltocene addition showed the total disappearance of the cationic complex and only the presence of absorptions corresponding to the dinitrogen complex 2a or $2a\ensuremath{^{15}N_\alpha}\xspace.$ Purification following the procedure used for complex 1a gave 2a or $2a \cdot 15N_{\alpha}$ as a pale yellow colored microcrystalline solid in 89% yield (60 mg, 0.15 mmol). IR (hexane): 2125 cm⁻¹ ν (NN) (2092 cm⁻¹ for ¹⁵N_a-labeled complex); 1954, 1902 cm⁻¹ ν (CO). ¹H NMR (CDCl₃): δ 2.09 (s, 15H, Cp^{*}). ¹³C{¹H} NMR (CDCl₃): δ 10.38 (s, C₅Me₅), 96.27 (s, C₅Me₅), 200.09 (s, CO). ¹⁵N NMR (acetone- d_6): δ -110.8 (s, ¹⁵N_a). ¹⁴N NMR (acetone- $\begin{array}{l} d_6): \ \delta \ -110 \ (s, \ ^{14}N_{\alpha}), \ -26 \ (s, \ ^{14}N_{\beta}). \ MS \ (EI): \ m/z \ 406 \ (407 \ in \ 2a^{-15}N_{\alpha}) \ (M^+), \ 378 \ (M^+ - N_2). \ Anal. \ Calcd: \ C, \ 35.55; \ H, \ 3.70; \end{array}$ N, 6.91. Found: C, 35.52; H, 3.74; N, 6.98.

Preparation of Cp*Re(CO)(PMe₃)(N₂) (3a) and 3a-¹⁵N_a. A sodium amalgam was prepared by adding small freshly cut pieces of sodium metal (5-fold stoichiometric excess) to a pool of mercury (5 mL) under argon with gentle stirring. The orange-brown solution of the cationic carbonyl phosphine complex 3b or 3b-15N_a (100 mg, 0.155 mmol) in THF (10 mL) was then added via syringe to the sodium amalgam at room temperature, and the mixture was vigorously stirred for 30 min. An IR spectrum of the resulting yellow-brown solution recorded at this time showed the total disappearance of the cationic complex and only the presence of absorptions corresponding to the dinitrogen complex 3a or 3a-¹⁵ N_{α} . The solution was filtered through a short column of Celite, and the solvent was removed under vacuum to give a pale brown oil. The oil was absorbed by a small amount of neutral alumina and dried under vacuum, and the mixture was chromatographed on alumina. Elution with hexane afforded 3a or $3a^{-15}N_{\alpha}$ as a pale yellow colored microcrystalline solid in 82% yield (58 mg, 0.13 mmol). IR (hexane): 2044 cm⁻¹ ν (NN) (2011 cm⁻¹ for ¹⁵N_alabeled complex); 1865 cm⁻¹ ν (CO). ¹H NMR (CDCl₃): δ 1.57 (d, 9H, PMe₃, $J_{H-P} = 8.7$ Hz), 2.00 (d, 15H, Cp*, $J_{H-P} = 0.7$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 10.76 (s, C₅Me₅), 20.67 (d, PMe₃, $J_{C-P} = 33$ Hz), 93.29 (s, C_5Me_5), 207.18 (d, CO, $J_{C-P} = 7$ Hz). ³¹P{¹H} NMR (CDCl₃): δ -29.86 (s, PMe₃). ¹⁵N NMR (acetone d_6): $\delta -91.3$ (s, ${}^{15}N_{\alpha}$). ${}^{15}N$ NMR (CD₃CN): $\delta -93.2$ (s, ${}^{15}N_{\alpha}$). ^{14}N NMR (acetone-d₆): δ -91 (s, $^{14}N_{\alpha}),$ -30 (s, $^{14}N_{\beta}).$ MS (EI): m/z 454 (M⁺), 426 (M⁺ - N₂). Anal. Calcd: C, 37.08; H, 5.30; N, 6.16. Found: C, 36.92; H, 5.42; N, 6.28.

Preparation of $Cp^{*}Re(CO)\{P(OMe)_{3}\}(N_{2})$ (4a) and 4a- $^{15}N_{\alpha}$. A procedure similar to that described for the preparation of 2a was used. The carbonyl phosphite dinitrogen complex 4a or 4a-¹⁵N_a was obtained in 79% yield as a pale yellow microcrystalline solid (57 mg, 0.11 mmol). IR (hexane): 2078, 2066 cm⁻¹ ν (NN) (2045, 2033 cm⁻¹ for ¹⁵N_a-labeled complex); 1877 cm⁻¹ ν (CO). ¹H NMR (CDCl₃): δ 2.04 (d, 15H, Cp*, J_{H-P} = 0.8 Hz), 3.52 (d, 9H, P(OMe)₃, $J_{H-P} = 12.1$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 10.31 (s, C₅Me₅), 51.27 (s, P(OMe)₃), 94.15 (s, C_5Me_5), 204.96 (d, CO, $J_{C-P} = 12$ Hz). ³¹P{¹H} NMR (CDCl₃): δ 139.12 (s, P(OMe)₃). ¹⁵N NMR (acetone- d_6): δ -99.4 (s, ${}^{15}N_{\alpha}$). ${}^{15}N$ NMR (CD₃CN): δ -100.8 (s, ${}^{15}N_{\alpha}$). ${}^{14}N$ NMR (acetone- d_6): $\delta -99$ (s, ${}^{14}N_{\alpha}$), -29 (s, ${}^{14}N_{\beta}$). MS (EI): m/z502 (M⁺), 474 (M⁺ - N₂). Anal. Calcd: C, 33.46; H, 4.78; N, 5.57. Found: C, 33.37; H, 4.89; N, 5.69.

Preparation of $Cp^*Re(PMe_3)_2(N_2)$ (5a), 5a-¹⁵N_a, and 5a-¹⁵N_{θ}. A procedure similar to that described for the preparation of **3a** was used. The bis(trimethylphosphine) dinitrogen complex, 5a, 5a-¹⁵N_a, or 5a-¹⁵N_{β} (synthesized from [Cp*Re- $(PMe_3)_2(p-N^{15}NC_6H_5)][BF_4])$, was obtained in 74% yield as a pale yellow microcrystalline solid (53 mg, 0.11 mmol). IR (hexane): 1975 cm⁻¹ ν (NN) (1943 cm⁻¹ for ¹⁵N_a- or ¹⁵N_b-labeled complex). ¹H NMR (acetone- d_6): δ 1.48 (virtual doublet, 18H, PMe₃, $J_{app} = 7.4$ Hz), 1.88 (t, 15H, Cp*, $J_{H-P} = 0.7$ Hz). ³¹P-{¹H} NMR (acetone- d_6): δ -35.31 (s, PMe₃). ¹⁵N NMR (acetone- d_6): δ -82.1 (s, ¹⁵N_{α}), -51.7 (s, ¹⁵N_{β}). ¹⁴N NMR (acetone- d_6): $\delta - 82$ (s, ¹⁴N_a), -49 (s, ¹⁴N_b). MS (EI): m/z 502 (M^+) , 474 $(M^+ - N_2)$. Anal. Calcd: C, 38.31; H, 6.58; N, 5.59. Found: C, 38.01; H, 6.92; N, 5.87.

^{(23) (}a) Wenzel, T. T.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 4856. (b) Tilley, D. T.; Grubbs, R. H.; Bercaw, J. E. Organometallics 1984. 3. 274.

⁽²⁴⁾ Cusanelli, A.; Batchelor, R. J.; Einstein, F. W. B.; Sutton, D.

 ⁽²⁴⁾ Cusaneni, A., Batchelor, R. S., Enistein, F. W. B., Sutton, D.
 Organometallics 1994, 13, 5096.
 (25) Sabacky, M. J.; Johnson, C. S.; Smith, R. G.; Gutowsky, H. S.;
 Martin, J. C. J. Am. Chem. Soc. 1967, 89, 2054.
 (26) Bachmann, W. E. Org. Syntheses 1943, 23, 100.

⁽²⁷⁾ Wilkinson, G.; Cotton, F. A.; Birmingham, J. M. J. Inorg. Nucl. Chem. 1956, 2, 95.

Preparation of Cp*Re(dmpe)(N₂) (6a). A procedure similar to that described for the preparation of **3a** was used. The bidentate phosphine dinitrogen complex **6a** was obtained in 79% yield as a pale yellow microcrystalline solid (57 mg, 0.11 mmol). IR (hexane): 1977 cm⁻¹ ν (NN). ¹H NMR (acetone- d_6): δ 1.33 (d, 6H, PMe₂CH₂CH₂Me₂P, $J_{H-P} = 7.9$ Hz), 1.35 (m, 4H, PMe₂CH₂CH₂Me₂P), 1.42 (d, 6H, PMe₂CH₂-CH₂Me₂P, $J_{H-P} = 7.8$ Hz), 1.92 (s, 15H, Cp*). ³¹P{¹H} NMR (acetone- d_6): δ -16.88 (s, dmpe). MS (EI): m/z 500 (M⁺), 472 (M⁺ - N₂). Anal. Calcd: C, 38.46; H, 6.21; N, 5.61. Found: C, 38.22; H, 6.37; N, 5.81.

Preparation of Cp*Re{**P(OMe)**₃}₂(**N**₂) (**7a**). A procedure similar to that described for the preparation of **3a** was used. The bis(trimethylphosphite) dinitrogen complex **7a** was obtained in 71% yield as a pale yellow microcrystalline solid (54 mg, 0.090 mmol). IR (hexane): 2014 cm⁻¹ ν (NN). ¹H NMR (acetone- d_6): δ 1.87 (t, 15H, Cp*, $J_{H-P} = 0.8$ Hz), 3.45 (virtual doublet, 18H, P(OMe)₃, $J_{app} = 11.5$ Hz). ³¹P{¹H} NMR (acetone- d_6): δ 138.80 (s, P(OMe)₃). MS (EI): m/z 598 (M⁺), 570 (M⁺ - N₂). Anal. Calcd: C, 32.15; H, 5.53; N, 4.69. Found: C, 31.79; H, 5.78; N, 4.93.

Reaction of [Cp*Re(CO)₂(p-N₂C₆H₄OMe)][BF₄] (2b) with LiAlH₄. A 2-fold stoichiometric excess of LiAlH₄ was added as a solid to a solution of the cationic dicarbonyl complex 2b (50 mg, 0.083 mmol) in methanol (10 mL) at room temperature. Upon addition, an immediate reaction occurred, with considerable gas evolution, and the color of the solution changed from red-brown to yellow. The solution was then filtered through a short column of Celite. Removal of the solvent under vacuum and subsequent extraction with hexane (3 × 20 mL) gave the methoxycarbonyl complex Cp*Re(CO)(COOMe)(p-N₂C₆H₄OMe) as a yellow solid in 89% yield (40 mg, 0.074 mmol). The dinitrogen complex 2a was not formed in this reaction. IR (MeOH): 1937 cm⁻¹ \nu(CO); 1632 cm⁻¹ \nu(NN); 1614 \nu(COOMe). ¹H NMR (CDCl₃): \delta 2.10 (s, 15H, Cp*), 3.66 (s, 3H, COOMe), 3.82 (s, 3H, OMe), 6.93 (d, 2H, C₆H₄), 7.45 (d, 2H, C₆H₄).

Reaction of [Cp*Re(CO)₂(p-N₂C₆H₄OMe)][BF₄] (2b) with NaBH₄. A 2-fold stoichiometric excess of NaBH₄ was added as a solid to a solution of the cationic dicarbonyl complex 2b (50 mg, 0.083 mmol) in acetone (10 mL) at room temperature. An instantaneous reaction took place, and the color of the solution changed from red-brown to deep red. An IR spectrum of this solution demonstrated the total disappearance of 2b and the presence of minor absorptions corresponding to the dinitrogen complex 2a which were also accompanied by major absorptions at 1917 and 1852 cm⁻¹. The solution was stirred for 1 h, during which time the color of the solution changed from red to yellow. An IR spectrum then obtained showed only the presence of 2a. The solvent was removed under vacuum to give a yellow oil. The oil was then absorbed by a small amount of neutral alumina and dried under vacuum, and the mixture was then chromatographed on alumina. Elution with hexane afforded 2a in 47% yield (16 mg, 0.039 mmol).

Low-Temperature ¹H, ¹³C{¹H}, and ¹⁵N NMR Experiments: Reaction of [Cp*Re(CO)₂(p-N₂C₆H₄OMe)][BF₄] (2b) or $2b^{-15}N_{\alpha}$ with NaBH₄. A solution of the cationic dicarbonyl complex 2b or $2b^{-15}N_{\alpha}$ in acetone- d_6 was transferred to an NMR tube (5 mm tube for ¹H and ¹³C{¹H}; 10 mm tube for ^{15}N) which was kept in a Schlenk tube under a positive pressure of argon. The Schlenk tube containing the NMR solution was then cooled to 195 K in a dry ice-acetone bath. With a strong purge of argon, addition of a 2-fold stoichiometric excess of solid NaBH₄ directly to the NMR tube lead to the formation of a deep red solution. The NMR tube was quickly removed from the cold temperature bath and placed into the Bruker AMX 400 spectrometer whose cooling unit had been previously set to 233 K. The NMR sample was equilibrated for 30 min at this temperature before spectral acquisition. An identical procedure was used for obtaining spectra for each of the NMR active nuclei. The species responsible for the red solution was assigned as the neutral aryldiazene complex Cp*Re(CO)₂(p-NHNC₆H₄OMe). IR (acetone): 1917, 1852 cm⁻¹ ν(CO). ¹H NMR (acetone- d_6 , 233 K): δ 2.02 (s, 15H, Cp^{*}), 3.83 (s, 3H, OMe), 6.97 (d, 2H, C₆H₄), 7.60 (d, 2H, C₆H₄), 15.68 (broad singlet, 1H, NH) (d, 1H, ¹⁵N_αH, J_{H-N} = 69 Hz). ¹³C-{¹H} NMR (acetone- d_6 , 233 K): δ 10.15 (s, C₅Me₅), 55.58 (s, OMe), 99.35 (s, C₅Me₅), 115.13, 120.99, 149.80, 160.03 (s, C₆H₄), 208.32 (s, CO). ¹³C{¹H} NMR (methanol- d_4 , 233 K): δ 10.19 (s, C₅Me₅), 55.61 (s, OMe), 99.41 (s, C₅Me₅), 115.32, 121.22, 149.97, 160.65 (s, C₆H₄), 208.79 (s, CO). ¹⁵N NMR (acetone- d_6 , 233 K): δ -46.7 (d, ¹⁵N_αH, J_{N-H} = 69 Hz).

Reaction of [Cp*Re(CO)₂(p-N₂C₆H₄OMe)][BF₄] (2b) with HMPA. The cationic dicarbonyl complex 2b (50 mg, 0.083 mmol) was added directly to neat hexamethylphosphoramide (HMPA) (10 mL) at room temperature. An IR spectrum recorded immediately after the addition showed the presence of absorptions corresponding to the starting material **2b** as well as the newly formed dinitrogen complex 2a. The solution was stirred for 24 h. No apparent color change was noted. An IR spectrum obtained at this time displayed the complete disappearance of the cationic complex and only the presence of absorptions due to 2a. The dinitrogen complex was extracted with diethyl ether (2 \times 20 mL), and the extractions were filtered through a column of Celite. The solvent was removed under vacuum to give a pale brown oil. The oil was then absorbed by a small amount of neutral alumina and dried under vacuum, and the mixture was chromatographed on alumina. Elution with hexane afforded 2a in 35% yield (12 mg, 0.029 mmol).

Reaction of [Cp*Re(CO)₂(p-N₂C₆H₄OMe)][BF₄] (2b) with PMe₃. A 10-fold stoichiometric excess of neat PMe₃ was added via syringe to a solution of the cationic dicarbonyl complex 2b (50 mg, 0.083 mmol) in acetone (10 mL) at room temperature. The solution was stirred for 30 min. No apparent color change was noted after this time. An IR spectrum of this solution showed the total disappearance of the cationic complex and only the presence of absorptions corresponding to the dinitrogen complex 2a. The solvent was then removed under vacuum, and the remaining pale brown oil was extracted with diethyl ether (2 \times 20 mL). The ether extractions were concentrated to ca. 2 mL under vacuum and chromatographed on a neutral alumina column. Elution with hexane produced 2a in 42% yield (14 mg, 0.035 mmol).

Reaction of [CpRe(CO)₂(p-N₂C₆H₄OMe)][BF₄] (1b) with **Ph₃C.** A solution of the triphenylmethyl (trityl) radical (Ph_3C) was prepared by reduction of the corresponding chloride Ph3-CCl with zinc dust in THF. A 10-fold stoichiometric excess of the yellow triphenylmethyl radical solution was then added by cannula to an orange-brown solution of the cationic dicarbonyl complex 1b (50 mg, 0.095 mmol) in CH_2Cl_2 (10 mL) at room temperature. The resulting orange solution was stirred for 30 min. An IR spectrum measured at this time showed the total disappearance of 1b and the presence of absorptions corresponding exclusively to the dinitrogen complex 1a. The solvent was then removed under vacuum, and the remaining pale brown oil was extracted with diethyl ether $(2 \times 20 \text{ mL})$. The ether extractions were concentrated to ca. 2 mL under vacuum and chromatographed on a neutral alumina column. Elution with hexane yielded la in 58% yield (18 mg, 0.055 mmol).

Reaction of $[Cp*Re(CO)_2(p-N_2C_6H_4OMe)][BF_4]$ (2b) with Ph₃C. A procedure identical to that described for the Cp analog 1b was used. The dinitrogen complex 2a was obtained in 63% yield (21 mg, 0.052 mmol).

Reaction of [Cp*Re(CO)₂(p-N₂C₆H₄OMe)][BF₄] (2b) with Na/THF. A stoichiometric amount of sodium metal was added in small pieces to a solution of the cationic dicarbonyl complex **2b** (50 mg, 0.083 mmol) in THF (10 mL) at room temperature. The solution was then sonicated for 60 min. During this time the red-brown solution of **2b** became yellow-brown. An IR spectrum of this solution showed the complete disappearance of **2b** and the presence of minor absorptions corresponding to the dinitrogen complex **2a**. Major absorptions at 1929 and 1615 cm⁻¹ were present as well. Attempts to isolate this unknown neutral species were not successful due to its low stability to silica gel or neutral alumina columns. A partially purified sample obtained by extraction with hexane gave unsatisfactory ¹H NMR and mass spectra. Column chromatography using hexane as the elutant gave **2a** in 17% yield (6 mg, 0.014 mmol).

Reaction of $[Cp*Re(CO)_2(p-N_2C_6H_4OMe)][BF_4]$ (2b) with Na/NH₃. A two-necked flask was equipped with a dry ice condenser containing a dry ice-acetone mixture. The flask was also fitted with an ammonia gas line, so as to provide the solvent for the reaction by condensation, and a gas line to maintain a nitrogen atmosphere. The cationic dicarbonyl complex 2b (50 mg, 0.083 mmol) was then added to the colorless liquid ammonia (100 mL). To this solution was added a minimum amount of THF (10 mL) to completely solubilize 2b. A stoichiometric amount of sodium metal, as monitored by the color of the mixture (blue color indicates excess sodium), was then added in small pieces to the reaction flask. The mixture was stirred for 30 min. The ammonia was then allowed to escape, and the remaining THF solution was filtered through a short column of Celite. Removal of the solvent under vacuum and subsequent extraction with hexane $(3 \times$ 20 mL) gave the neutral carbamoyl complex Cp*Re(CO)- $(\text{CONH}_2)(p-N_2C_6H_4\text{OMe})$ as a vellow solid in 78% vield (34 mg. 0.065 mmol). The dinitrogen complex 2a was not formed in this reaction. IR (CH₂Cl₂): 1931 cm⁻¹ ν (CO); 1625 cm⁻¹ ν (NN); 1586 cm⁻¹ ν(CONH₂). ¹H NMR (CDCl₃): δ 2.12 (s, 15H, Cp*), 3.83 (s, 3H, OMe), 6.95 (d, 2H, $C_6H_4),$ 7.29 (d, 2H, $C_6H_4);$ $\delta_{N\text{-}H}$ was not observed.

Reaction of $[Cp*Re(PMe_3)_2(p-N_2C_6H_4OMe)][BF_4]$ (5b) with Na/NH₃. The bis(trimethylphosphine) complex 5b (50 mg, 0.072 mmol) was taken up in THF (10 mL) and then added to liquid ammonia (100 mL) as described above for 2b. A stoichiometric amount of sodium metal, as monitored by the color of the mixture, was added in small pieces to the reaction flask. The mixture was stirred for 30 min. The ammonia was then allowed to escape, and the remaining THF solution was filtered through a short column of Celite. The solvent was removed under vacuum, and the remaining yellow-brown oil was extracted with diethyl ether $(2 \times 20 \text{ mL})$. The ether extractions were concentrated to ca. 2 mL under vacuum and chromatographed on a neutral alumina column. Elution with hexane gave p-anisidine (NH₂C₆H₄OMe). This was verified by GC-MS and by comparison of its ¹H NMR spectrum to that of an authentic sample. Using diethyl ether as the elutant afforded the dihydrido complex trans-Cp*Re(PMe₃)₂H₂^{13a} as a yellow solid in 58% yield (20 mg, 0.042 mmol). (The dinitrogen complex 2a was not formed in this reaction). ¹H NMR (benzene- d_6): δ 2.04 (s, 15H, Cp*), 1.50 (virtual doublet, 18H, PMe₃, $J_{app} = 7.5$ Hz), -11.89 (t, 2H, ReH, $J_{H-P} = 43.5$ Hz). ³¹P{¹H} NMR (benzene- d_6): δ -37.57 (s, PMe₃).

Electrochemical Methods. Acetonitrile was distilled from calcium hydride under a nitrogen atmosphere and used immediately. The supporting electrolyte was electrometric grade tetraethylammonium perchlorate (TEAP) (Anachemia Science Inc.), which was purified by recrystallization from distilled water (2 times) and then dried under vacuum for 2 days.

Cyclic Voltammetry. Experiments were performed in a single-compartment cell. The working electrode was a stationary, mirror-polished, platinum (Pt) disk which measured 1 mm in diameter (Pine Instrument Co.). The Pt disk was surrounded by a cylindrical Teflon collar of 2.5 mm thickness. Before each experiment, the electrode was dipped sequentially in concentrated HNO₃, then in saturated FeSO₄ in 2 M H₂-SO₄, and finally rinsed thoroughly with distilled water; this procedure provided a consistent electrode surface. A Pt wire was used as the counter electrode. The reference electrode was either a silver wire in a saturated solution of silver chloride (Ag/AgCl) or a standard calomel electrode (SCE). Results are reported with respect to SCE.

The sample solutions were thoroughly deaerated with oxygen-free N_2 , and an N_2 atmosphere was maintained through-

out the voltammetric measurements. All experiments were carried out at room temperature and used solutions of 0.2 M TEAP (as the supporting electrolyte) in MeCN. Concentrations of analytes were 1.0 mM for all experiments. The scan rate was 0.2 V/s unless stated otherwise. The CV apparatus consisted of a Princeton Applied Research EG&G 175 programmer and an EG&G 170 potentiostat. Electrical responses were recorded on a Hewlett-Packard 7046A X-Y recorder. CV measurements were carried out as follows. An acetonitrile solution containing the electrolyte was placed in the cell and then deaerated with a continuous stream of nitrogen gas until a cyclic voltammogram of the solution showed no fluctuations in the current. A solution of the particular cationic rhenium aryldiazenido complex in a minimum amount of degassed acetonitrile was injected into the cell. A cyclic voltammogram of the solution using a potential range of +2.0 to -2.0 V was then recorded.

Controlled Potential Electrolysis. A two-compartment cell was used. A sintered-glass disk of fine porosity separated the counter and working compartments. The working electrode was a Pt gauze. A Pt counter electrode was positioned above the working electrode to obtain a uniform potential distribution. An Ag/AgCl or SCE reference electrode was positioned close to the working electrode. The CPE apparatus consisted of a Princeton Applied Research EG&G 175 programmer, an EG&G 170 potentiostat, and a EG&G 179 coulometer. CPE measurements and analysis of the products were carried out as follows. The electrolyte solution was placed in the working electrode compartment of the cell. A small amount of the same solution was added to the counter electrode compartment until the solution levels were equalized. The solution in the working compartment was then deaerated with nitrogen gas while being stirred continuously. Preelectrolysis was carried out until the background current became negligible. A 0.5 mL sample of the electrolyte solution was extracted by syringe, and an IR spectrum was collected. The spectrum would serve as a background for subsequent IR spectra. A solution of the particular cationic rhenium aryldiazenido complex in a minimum amount of degassed acetonitrile was then injected into the working compartment. A sample of the electrolysis solution was withdrawn, and an IR spectrum was recorded. The spectrum was then corrected by subtracting the background spectrum and was used as a reference from which to monitor the electrolysis. The electrolysis then proceeded at a given potential. At specific time intervals aliquots of the solution were withdrawn and analyzed by IR spectroscopy.

Preparation of the Dinitrogen Complexes 1a-3a by CPE. Controlled potential electrolysis (CPE) was carried out on the cationic rhenium aryldiazenido complexes 1b (53 mg, 0.10 mmol), 2b (60 mg, 0.10 mmol), and 3b (65 mg, 0.10 mmol) using the procedure just described at the appropriate reduction potential (as determined by CV). An IR spectrum recorded after the bulk electrolysis was complete showed the total disappearance of the cationic complex and only the presence of absorptions corresponding to the respective dinitrogen complexes 1a-3a. For 1a: IR (MeCN containing TEAP) 2141 $cm^{-1} \nu(NN)$; 1956, 1894 $cm^{-1} \nu(CO)$. For 2a: IR (MeCN containing TEAP) 2121 cm⁻¹ v(NN); 1939, 1879 cm⁻¹ v(CO). For **3a**: IR (MeCN containing TEAP) 2027 cm⁻¹ ν (NN); 1834 cm⁻¹ ν (CO). The solvent was removed under vacuum and the remaining solid was extracted with diethyl ether $(3 \times 20 \text{ mL})$. The ether extractions were concentrated to ca. 2 mL under vacuum, and chromatographed on a neutral alumina column. Elution with hexane yielded 1a in 73% yield (24 mg, 0.073 mmol), 2a in 78% yield (32 mg, 0.078 mmol), and 3a in 74% yield (34 mg, 0.074 mmol).

Acknowledgment. This work was supported by the Natural Sciences and Research Council of Canada. We thank Dr. S. Holdcroft for the use of electrochemical equipment and Dr. N. D. Lowe for help with cyclic voltammetry measurements.

OM950327M