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Abstract. A novel ionic liquid (IL) based on catalytic functional metal rhenium, [Smim][ReO4] (1-heptyl-3-

methyl-imidazolium perrhenate) was synthesized and characterized. Density and surface tension values of the

IL were determined at different temperatures, and the volume and surface properties were calculated and

discussed, respectively. Furthermore, the synthesized ionic liquid [Smim][ReO4] was used as a green solvent

and catalyst for homogeneous catalyzed epoxidation of olefin with urea hydrogen peroxide (UHP) oxidant.

The effect of factors of catalyst, oxidant, reaction time, and reaction temperature was discussed. The con-

version of cyclohexene and cyclooctene is over 99% at optimum conditions. The IL [Smim][ReO4] as catalyst

and solvent are characterized by high efficiency, long service life and recoverability, which is a better green

homogeneous catalyst for epoxidation of olefins.
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1. Introduction

Ionic liquids (ILs) have attracted attention in research

owing to their special characters such as non-volatile,

high thermal stability, designable structure, environ-

mentally friendly, recoverable, and exhibit good dis-

solving ability for many inorganic and organic

substances.1–5 The introduction of structural func-

tionalities on the cationic or anionic part has made it

possible to design ‘task-specific ILs’ with targeted

properties.6 Recently, ILs use in increasingly diverse

applications such as fuel cells,7,8 plasticizers,9 lubri-

cants,10 ionogels,11 extractants12 and catalysts,13 etc.

Ecological concerns have given rise to extensive

academic research,14 and the introduction of ILs in

industrial applications is well underway.5 The prop-

erties and interactions with other species of ILs such as

molecular species or metal complexes to better play

their specific role in catalysis. Especially, the contri-

bution ILs make to homogeneous catalysis has more to

do with the enhancement of catalytic performances

and the possibility of catalyst separation and recycling

by immobilization in the IL-phase than with environ-

mental concerns.

Epoxidation of olefins stands out as a crucial class

of reactions and is of great interest in academic

research and industry due to the production of various

important fine chemicals and intermediates.15–20 The

hydrogen peroxide21–24 and molybdenum-based com-

pounds25–27 are commonly used as catalysts for

epoxidation processes. Along with the continuously

study, the researchers found that the polyoxometalate

could epoxidize olefins with aqueous hydrogen per-

oxide at a much more rapid rate in ionic liquids than

that in classical organic solvents.28,29 Rhenium con-

taining compounds have the potential to catalyze the

epoxidation of olefins with high efficiency,30–33 par-

ticularly methyltrioxorhenium(VII) (MTO).34 Mean-

while, ILs as catalyst have also proved to be versatile

in oxidation reactions, especially epoxidation of ole-

fins,35 so the researchers have been introduced the

nucleophilic anions into imidazolium salts.36–38
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To take advantage of the excellent properties of rhe-

nium catalyst and ILs, we design and synthesis the

novel IL-containing catalytic functional metal, which

is stable to water and air, then the physicochemical of

[Smim][ReO4] and its catalytic properties were

studied.

2. Experimental

2.1 Materials

N-methylimidazole (RG) was purchased Suzhou

Meihua Daily Chemical Co., Ltd. (Jiangsu, China).

Ammonium perrhenate (RG) was bought Hunan rhe-

nium alloy material Co., Ltd. (Hunan, China). 1-Bro-

moheptane (RG), ethyl acetate (AR), sodium

hydroxide (AR), urea hydrogen peroxide (RG),

cyclohexene (RG), cyclooctene (RG), epoxy cyclo-

hexane (RG), Karl Fischer reagents without pyridine

(AR) and epoxy cyclooctane (GC) were purchased

Sinopharm Chemical Reagent Co., Ltd. (Shanghai,

China). Ultrapure water was prepared by multiple

distillations.

2.2 Preparation and characterization of the ionic
liquid

Scheme 1 is a schematic of this synthetic route.

According to the literature,39,40 a slight excess of

1-Bromoheptane was added dropwise to the N-
methylimidazole, and the mixed solution was stirred

under cooling for 24 h at 70 �C. Then, the mixture was

washed by the mixture of ethyl acetate and acetonitrile

for 3 times and evaporated under reduced pressure at

80 �C. The precursor of 1-heptyl-3-methyl-imida-

zolium bromide [Smim]Br was prepared and the yield

of dark brown viscous liquid was approximately 85%.

Then, [Smim]Br and 1.2 equivalent of ammonium

perrhenate (NH4ReO4) were added to acetone under

nitrogen and stirred at indoor temperature for 48 h.

The NH4Br constantly precipitated as the reaction

proceeds, which is insoluble in acetone. The slurry

was then filtrated by a Büchner funnel, and NH4Br and

residual NH4ReO4 were removed. Finally, the IL was

obtained by removal of acetone, recrystallizing three

times with acetonitrile and ethyl acetate mixed solu-

tion, and then dried under vacuum for 24 h. The final

product is yellow ionic liquid [Smim][ReO4].

Structure of the [Smim][ReO4] was confirmed by
1H-NMR spectroscopy, elemental analysis, differential

scanning calorimetry (DSC) and Raman spectra (see

the Supplementary Information), respectively. 1H-

NMR (CDCl3, 300 MHz, 298 K): d = 8.855 (s, 1H, -

NCHN-), 7.373-7.419 (d, 2H, -NCH = CHN-), 4.229
(t, 2H, -NCH2CH2-), 4.022 (s, 3H, -NCH3), 1.921 (m,

2H, -NCH2CH2CH2-), 1.315 (m, 8H, -NCH2CH2-

CH2CH2CH2CH2CH3), 0.878 ppm (t, 3H, -CH2CH3).

Anal. Calcd for C11H22N2ReO4: C, 30.55; H, 5.10;

N, 6.48. The data of DSC showed that [Smim][ReO4]

had no melting point, the glass transition temperature

(Tg) was – 69.4 �C. The Raman characteristic peaks of

ReO4
- in [Smim][ReO4] were 332.68 cm-1 and

962.04 cm-1, which were consistent with the refer-

ence values of 331 cm-1 and 971 cm-1.15 The water

content of the [Smim][ReO4] is 500 ppm, which was

determined by a Karl Fischer moisture titrator (ZSD-2

type).

2.3 Measurement of density and surface tension

The density of the ultrapure water was measured by a

Westphal balance in a temperature range from

(293.15 ± 0.01) to (343.15 ± 0.01) K. The results

were in good agreement with the literature values,41

and then the density of the [Smim][ReO4] was mea-

sured by the same method within the experimental

error ± 0.0002 g�cm-3.

By use of the tensiometer of the forced bubble

method (DPAW type produced by Sang Li Electronic

Co.), the surface tension of the sample was measured

in the corresponding temperature range as the density,

which is within 0.1 mJ�m-2 from the literature

value.41

2.4 Establishment of a catalytic system

Generally, the oxidant H2O2 was used in the epoxi-

dation of olefins, however, the presence of free

CH3(CH2)6Br N N

H3C C7H15

NH4ReO4 ReO4N N

H3C

N N

H3C C7H15

Br

Scheme 1. Schematic of the synthesis for ionic liquid [Smim][ReO4].
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hydrogen ions H? in the system caused the epoxy

compound to ring-open to produce diol, which led to

the decrease of the selectivity of the reaction.42 To

increase the yield and selectivity of the epoxidation of

olefins, the UHP was used as an oxidant, which had a

good oxidation effect without producing diol, and the

selectivity almost up to 100%.43

To evaluate the catalytic effect of rhenium ionic liq-

uid [Smim][ReO4] on epoxidation of olefin, the syn-

thesized ionic liquid [Smim][ReO4] was selected as a

green solvent and catalyst, cyclohexene and cyclooc-

tene were used as reaction substrates, and the UHP was

selected as an oxidant in this paper for homogeneous

catalyzed epoxidation of olefin. The reaction products

were detected by gas chromatography (GC).

3. Results and Discussion

3.1 Volume and surface properties
of [Smim][ReO4]

The values of density and surface tension within their

experimental expanded uncertainty ± 0.0006 g�cm-3

and ± 0.3 mJ�m-2 at 0.95 confidence level for IL

[Smim][ReO4] are listed in Table 1, respectively.

The molecular volume, Vm, of [Smim][ReO4] at

298.15 K, was calculated from the following equation:

Vm ¼ M=ðN � qÞ ð1Þ

where the molar mass M of [Smim][ReO4] is

431.552 g�mol-1 and N is Avogadro constant. The

calculated value of Vm is listed in Table 2.

The standard entropy, S0, and lattice energy, UPOT,

of [Smim][ReO4] were calculated by Glasser empirical

equation, respectively:

S0ð298Þ=ðJ � K�1 �mol�1Þ ¼ 1246:5ðVm=nm
3Þ þ 29:5

ð2Þ

UPOT=kJ �mol�1 ¼ 1981:2 q=Mð Þ1=3þ103:8 ð3Þ

The calculated value of S0(298) and UPOT are also

listed in Table 2. From Table 2, it is seen that the

UPOT of [Smim][ReO4] is much less than that of fused

salt for fused CsI,41 UPOT = 613 kJ�mol-1, which is

the lowest crystal energy among alkali-chlorides. The

low crystal energy is the underlying reason for form-

ing ionic liquid at room temperature.

The contribution of per methylene (-CH2-) to the

molecular volume, standard entropy and lattice energy

were obtained by plotting Vm, S0(298) and UPOT

against the number (n) of carbons in alkyl chain with

the [Smim][ReO4] and reference data, respectively.

The contribution values are also listed in Table 2,

which are in accordance with the reference values,

respectively.

The measured values of c were fitted against T by

the least square to linear empirical equation:

c ¼ A0�Sa � T ð4Þ

where A0 is an empirical parameter, the negative of

slope in Figure 1 is the entropy of surface formation,

Sa = – (qc/qT)p = 50.0 9 10-3 mJ�K-1�m-2 for

[Smim][ReO4] at 298.15 K.

Table 1. Values of density, q, and surface tension, c, of IL [Smim][ReO4] in the temperature range of 293.15-343.15 Ka,
pressure p = 0.1 MPab.

T (K) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15

q (g.cm-3) 1.7340 1.7297 1.7243 1.7200 1.7145 1.7100 1.7062 1.7021 1.6980 1.6937 1.6900
c (mJ�m-2) 37.8 37.6 37.4 37.1 36.9 36.7 36.4 36.1 35.9 35.6 35.3

Standard uncertainties (0.68 level of confidence):
au(T) = ± 0.01 K for density and surface tension, bu(p) = ± 0.002 MPa.

Table 2. The values of volume properties and surface properties of [Smim][ReO4] and the
contribution of per methylene (-CH2-) at 298.15 K.

Vm (nm3) S0 (J�K-1�mol-1) UPOT (kJ�mol-1)

[Smim][ReO4] 0.4144 546.0 419
a-CH2- 0.0275 34.2 9
-CH2- 0.0275b 33.9b 10c

aCalculated by the experimental value of [Smim][ReO4];
breference 40 and 44; creference 45.
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Additionally, the Gibbs energy of surface formation

Ea likewise may be obtained from the surface tension

measured in this work:

Ea ¼ c�T oc=oTð Þp ð5Þ

The calculated values of Ea are 52.5 mJ�m-2 for

[Smim][ReO4] at 298.15 K.

In comparison with fused salt for fused NaNO3, Ea

(298.15 K) = 146 mJ�m-2, the value of Ea for

[Smim][ReO4] is much lower and is close to that of

organic liquid, such as 67 mJ�m-2 (for benzene) and

51.1 mJ�m-2 (for n-octane).46 This fact shows that

interaction energy between ions in [Smim][ReO4] is

less than that in fused salts.

3.2 The interstice model for [Smim][ReO4]

According to the definition of thermal expansion

coefficient, a, of the IL:

a ¼ 1=Vð Þ oV=oTð Þp¼ � o ln q=oTð Þp ð6Þ

Here, plotting of values of ln q against T (see

Figure 2), and its empirical linear equation is:

ln q ¼ b�a � T ð7Þ

where b is an empirical constant, the negative value of

slope is thermal expansion coefficient, a = – (qln q/
qT)p = 5.17 9 10-4, and the experimental value of

a(exp.) is listed in Table 3.

Based on the classical statistical mechanics, the

interstice model for pure ILs was put forward.47 The

interstice volume is expressed by the following

equation:

v ¼ 0:6791ðkb � T=cÞ3=2 ð8Þ

where v and kb are the average interstice volume and

Boltzmann constant, respectively. The average value

of interstice volume was calculated by the above

equation and listed in Table 3. All the interstices in the

interstice model include the volume of IL, V, consists
of the inherent volume, Vi, and total volume,P

v ¼ 2N � v.

V ¼ Vi þ 2N � v ð9Þ

Most of the materials undergo a (10-15.9) % vol-

ume expansion in the process from the solid to the

liquid state.48,49 The volume fraction of interstice for

[Smim][ReO4],
P

v=V ¼ 11:86%, is within the range

of volume expansion, that is to say, the interstice

model is suitable for the calculation of interstice vol-

ume for pure ILs. If the expansion of IL volume only

results from the expansion of the interstices when

temperature changes, then calculation expression of

thermal expansion coefficients, a, was derived from

the interstice model:

a ¼ 1=Vð Þ � ðoV=oTÞp ¼ 3N � v=V � T ð10Þ

The value of a(cal.) was calculated by Eq. (10) for IL

[Smim][ReO4] at 298.15 K. From Table 3, the mag-

nitude order of the calculated value is in good agree-

ment with its matching experimental value, a(exp.). It
means that the interstice model for pure ILs is rea-

sonable and rational.

3.3 Catalytic properties for the IL

Epoxidation of olefins stands out as a crucial class of

reactions and is of great interest in academic research

Figure 1. Plot of c vs. T of [Smim][ReO4].
Figure 2. Plot of lnq vs. T of [Smim][ReO4].

   23 Page 4 of 9 J. Chem. Sci.          (2021) 133:23 



and industry due to the production of various impor-

tant fine chemicals and intermediates. Rhenium con-

taining compounds have the potential to catalyze the

epoxidation of olefins with high efficiency. In this

section, the IL [Smim][ReO4] was used as catalyst and

solvent. At a given temperature, a certain amount of IL

was added to the catalytic evaluation unit, then oxidant

UHP was added and stirred slowly until all UHP dis-

solved, and the cyclohexene or cyclooctene as the

substrate, respectively, after that the homogeneously

catalyzed epoxidation of olefin was established. The

mixture was quickly stirred under cooling for a certain

period until the oxidation reaction finished, which was

extracted with n-hexane for 3 times at 50 �C. Finally,
the upper clear liquid was detected by gas chro-

matography and the results were calculated by nor-

malization method. Figure 3 is the reaction equation

of olefin epoxidation in IL [Smim][ReO4].

Orthogonal experimental was designed by the

influence of catalyst of [Smim][ReO4], oxidant of

UHP, reaction time and temperature on the yields,

which is shown in Figure 4.

Figure 4 is shown that the influence degree of the

four factors for the yields as follows: the substrate was

used as the cyclohexene or cyclooctene, these factors

decreased in the order of reaction temperature[ re-

action time[ oxidant (UHP) dosage[ catalyst

([Smim][ReO4]) dosage or reaction time[ reaction

temperature[ oxidant (UHP) dosage[ catalyst

([Smim][ReO4]) dosage, respectively.

According to the above orthogonal experimental

results, further detailed conditional optimization

experiments were done (Table 4). And, the results are

similar to those of the orthogonal experiment.

In general, the yields of olefin epoxidation will

gradually increase with increasing the reaction tem-

perature and time, and the amount of IL and UHP,

respectively, but it does not mean the higher the better.

For instance, the higher reaction temperature will

affect the thermal stability of UHP. The yields little

increase with increasing time, when reached more than

96% or 98%. Besides, the solubility of UHP in IL is

limited and the homogeneous catalytic system will be

destroyed by excessing it. When the content of

[Smim][ReO4] is 0.4 mL, the concentration of catalyst

and active center in the reaction system was low,

which led to poor catalytic efficiency. Additionally,

the IL [Smim][ReO4] is not only the catalyst but also

solvent in this reaction system. The substance was not

dissolved sufficiently in the relatively less solvent that

results in a slow reaction rate and relatively low yield.

At the same time, increasing the content of IL will

increase and improve the catalytic efficiency, but

excess IL will reduce the concentration of reactants,

which is of no advantage to the reaction. Herein, the

concentration of the catalyst reached saturation state as

the amount of [Smim][ReO4] is more than 0.6 mL, at

which point the yield is independent of the catalyst

concentration. Moreover, the reactant was diluted by

the excess solvent and the concentration was reduced,

resulting in the reaction rate and yields were relative

reduced.

Based on previous work of our team and DFT cal-

culations,50 the transfer of perrhenate from the aque-

ous to hydrophobic organic phase should activate

H2O2 through H-bonding interactions, which in turn

favours oxygen transfer to an olefin. Because the

structure of the hydroxyl bond in UHP is similar to

that of H2O2, we predict the mechanism of the epox-

idation of olefins catalysed by [Smim][ReO4]. For

example, the mechanism diagram (Scheme 2)

describes the epoxidation of cyclohexene. In this

reaction, UHP is presumably associated with the IL

anion. Hydrogen bonds to the cation probably do not

form in the presence of a potent H-bond acceptor

(perrhenate anion). The addition of metal—oxo com-

plexes, such as [ReO4]
-, accelerates the reaction,

presumably through the formation of O3Re—O���H–
O—OH species, which activate the peroxide and,

hence, enable epoxidation.

Table 3. Parameters of interstice model for IL [Smim][ReO4], at 298.15 K.

1024 v (cm3)
P

v (cm3) V (cm3�mol-1) 102
P

v/V 104 a/K-1 (cal.) 104 a/K-1 (exp.)

24.58 29.59 249.5 11.86 5.97 5.17

O

O

UHP

[Smim][ReO4]

Figure 3. Olefin epoxidation in IL [Smim][ReO4].

J. Chem. Sci.          (2021) 133:23 Page 5 of 9    23 



The optimum reaction conditions were decided by

orthogonal experimental, as follows: oxidant (UHP)

dosage is 2.5 mmol, catalyst/solvent ([Smim][ReO4])

dosage is 0.6 mL, reaction temperature is 70 �C, and

reaction time is 3 h or 2 h for cyclohexene or

cyclooctene, respectively. To prove the universality of

the catalyst, we studied on the epoxidation of other

alkenes. These results are listed in Table 5, which

Figure 4. Four factors affect the yields for substrates of cyclohexene (black solid symbols) and cyclooctene (red hollow
symbols).

Table 4. Conditional optimization experiments of olefin epoxidation in IL [Smim][ReO4].

No. Substrate UHP/mmol [Smim][ReO4] (mL) T (�C) t (h) Y (%) S (%)

1 cyclohexene 2 0.6 70 3 98.35 [ 99
2 2.5 0.6 70 3 [ 99 [ 99
3 3 0.6 70 3 [ 99 [ 99
4 2.5 0.6 70 2.5 96.87 [ 99
5 2.5 0.6 70 3 [ 99 [ 99
6 2.5 0.6 70 3.5 [ 99 [ 99
7 2.5 0.6 65 3 97.64 [ 99
8 2.5 0.6 70 3 [ 99 [ 99
9 2.5 0.6 75 3 98.52 [ 99
10 2.5 0.55 70 3 97.45 [ 99
11 2.5 0.6 70 3 [ 99 [ 99
12 2.5 0.65 70 3 98.18 [ 99
13 cyclooctene 2 0.6 70 2 97.56 [ 99
14 2.5 0.6 70 2 [ 99 [ 99
15 3 0.6 70 2 [ 99 [ 99
16 2.5 0.6 70 1.5 95.93 [ 99
17 2.5 0.6 70 2 [ 99 [ 99
18 2.5 0.6 70 2.5 [ 99 [ 99
19 2.5 0.6 65 2 98.08 [ 99
20 2.5 0.6 70 2 [ 99 [ 99
21 2.5 0.6 75 2 97.89 [ 99
22 2.5 0.55 70 2 96.28 [ 99
23 2.5 0.6 70 2 [ 99 [ 99
24 2.5 0.65 70 2 98.37 [ 99

T: temperature, �C; t: reaction time, h; Y: yield; S: selectivity of target epoxide = (moles of
target epoxide formed)/(moles of all the products formed) 9 100%.

   23 Page 6 of 9 J. Chem. Sci.          (2021) 133:23 



shown that the reaction with the high conversion rate.

The reason for the relatively low conversion of other

alkenes may be that the terminal and open-chain ole-

fins are more difficult to epoxidize than cyclic ole-

fins.38 Based on the optimum reaction conditions, the

conversion and selectivity of cyclohexene and

cyclooctene are over 99%.

Furthermore, the reusability of IL [Smim][ReO4]

was investigated. A certain amount of ultrapure water

was added in the lower liquid containing the

[Smim][ReO4], then the mixed solution was quickly

stirred for some time at room temperature and sepa-

rated after static. Repeat this operation 5 times, the

mixture containing [Smim][ReO4] and a small amount

of water was evaporated under reduced pressure at

80 �C. Subsequently, the [Smim][ReO4] could be

reused after drying under vacuum for 3 h.

From Figure 5, it is shown that the catalytic effi-

ciency of [Smim][ReO4] did not decrease significantly

after five times recycling, and the yields still reach

90%, while the selectivity of epoxides is up to 99%.

The yields decreased with increasing recycle times of

[Smim][ReO4], which is due to the loss of catalyst

during recovery.

Scheme 2. Mechanism of the epoxidation of olefins
catalysed by [Smim][ReO4].

Table 5. The optimum reaction conditions were selected by orthogonal experimental.

No Substrate Catalyst Oxidant T (�C) t (h) Y (%) S (%) Ref.

1 cyclohexene – UHP 70 3 9.2 3.1 This work
2 cyclooctene – UHP 70 2 10.3 2.8 This work
3 cyclohexene [Smim][ReO4] UHP 70 3 [ 99 [ 99 This work
4 cyclooctene [Smim][ReO4] UHP 70 2 [ 99 [ 99 This work
5 cyclooctene KReO4 H2O2 70 6 97 – 35

6 cyclooctene [Me3NHex][ReO4] H2O2 70 24 91 [ 99 38

7 cyclooctene [OMIM]2[WO4] H2O2 50 8 81 99 51

8 cyclohexene Mo-VPO TBHP 90 10 100 91 27

9 cyclohexene LDH/Ti(IV)-complex H2O2 70 6 95 84 20

10 cyclohexene SIP [HL1][ReO4] H2O2 70 8 89 99 36

11 Styrene [Smim][ReO4] UHP 70 6 73 54 This work
12 Allyl alcohol [Smim][ReO4] UHP 70 6 88 23 This work
13 1-Octene [Smim][ReO4] UHP 70 6 83 39 This work
14 1-Dodecene [Smim][ReO4] UHP 70 6 72 48 This work

The amount of substrate for cyclohexene and cyclooctene was 1 mmol, respectively; UHP: 2.5 mmol, [Smim][ReO4]:
0.6 mL T: temperature, �C; t: reaction time, h; Y: yield; S: selectivity of target epoxide = (moles of target epoxide formed)/
(moles of all the products formed) 9 100%.

Figure 5. The recycling efficiency of IL [Smim][ReO4]
affects the yields with the substrates of cyclohexene (blue)
and cyclooctene (pink).
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4. Conclusions

In this paper, we have synthesized and characterized

summarized the novel IL based on catalytic functional

metal rhenium, [Smim][ReO4] (1-heptyl-3-methyl-

imidazolium perrhenate). The physicochemical prop-

erties, such as density, q, surface tension, c, molecular

volume, Vm, standard entropy, S
0, lattice energy, UPOT,

the entropy of surface formation, Sa, and the Gibbs

energy of surface formation, Ea, were obtained and

discussed, respectively. Furthermore, the synthesized

ionic liquid [Smim][ReO4] was used as a green solvent

and catalyst for homogeneous catalyzed epoxidation

of olefin with UHP oxidant. The results showed that

the yield and selectivity of the reaction were up to

99%, and the catalytic efficiency of [Smim][ReO4] did

not decrease significantly after five times recycling.

Easy separation, recycle, nontoxicity and homoge-

neous catalysis are the main advantages of perrhenate

ionic liquids over other heterogeneous catalysts con-

taining organic solvents. Consequently, the perrhenate

ionic liquids will have wide industrial application

prospect.

Supplementary Information (SI)

Figures S1-S3 are available at www.ias.ac.in/chemsci.
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35. Schäffer J, Alber M, Korth W, Cokoja M and Jess A
2017 Ionic liquids as micellar agents in perrhenate-
catalysed olefin epoxidation ChemistrySelect 2 11891

36. Cokoja M, Markovits I I E, Anthofer M H, Poplata S,
Pöthig A, Morris D S, Tasker P A, Herrmann W A,
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