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Abstract: A new regioselective pathway to substituted dibenzo-
furan derivatives is described here. According to this procedure
substituted 1-acetoxy-3-alkoxycarbonyl dibenzofurans are obtained
by treatment of 6-(2-methoxyaryl)-3-alkoxycarbonylhex-3-en-5-
ynoic acids with acetic anhydride in the presence of sodium acetate.
The latter acids are prepared from the easily available substituted
o-iodo-anisoles by Sonogashira coupling with propargylic alcohol
and Wittig reaction as the key steps. The described benzannulation
reaction proceeds in regioselective fashion and a range of sub-
stituents are tolerated. Its synthetic utility is demonstrated by a new
synthesis of cannabifuran, a naturally occurring dibenzofuran.
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Fused aromatic heterocycles are attractive targets of or-
ganic synthesis because of their biological activities and
their wide occurrence in nature.

In this context, the dibenzofuran system was found in
several natural products1 arising from plant and lichens
reported to have phytoalexin,1a–c antifungal and anti-
biotic1d–f properties. These results have prompted the
development of versatile and regioselective synthetic
routes to benzofurans and dibenzofurans2 with functional
groups at specific positions.

Numerous methods for the preparation of dibenzofurans
have been reported. The ring closure of substituted diaryl
ethers,3 the acid catalyzed intramolecular cyclization of
hydroxylated biphenyls4 and the direct functionalization
of dibenzofuran framework5 are the most employed strat-
egies. However, the main restriction of these approaches
lies in the harsh reaction conditions, the low yields, and
the use of expensive catalysts. Therefore, an increasing
number of milder approaches based on annulation6 reac-
tions have received growing attention.

We have successfully developed the benzannulation reac-
tion of 3-alkoxycarbonyl-3,5-hexadienoic acids7 and of 3-
alkoxycarbonylhex-3-en-5-ynoic acids8 to give the 4-sub-
stituted 3-hydroxy-benzoic acid derivatives and the 4-
substituted 3,5-dihydroxybenzoic acid derivatives, re-
spectively. We envisage that the latter process (Scheme 1)
is suitable also for the preparation of dibenzofurans. In-
deed, we found that the treatment of 3-alkoxycarbonyl-

hex-3-en-5-ynoic acids with acetic anhydride and sodium
acetate affords the phenolic derivatives 3.

This process probably involves the ynenylketene 2,
formed from mixed anhydride 1, which may be cyclized
through electrophilic attack and nucleophilic addition to
the triple bond. If the substituent in position 6 of the ynoic
acid shows the o-methoxyaryl framework, the phenolic
oxygen acts as nucleophile and gives addition to the triple
bond with concomitant evolution of methyl acetate. The
products of the latter process are the 1-acetoxy-3-alkoxy-
carbonyl dibenzofurans 4a–f where both the furan ring
and the phenolic ring are building up by benzannulation
reaction.

Herein is documented the efficiency of this synthetic route
starting from a variety of 6-substituted-3-alkoxycarbonyl-
hex-3-en-5-ynoic acids 9a–f. These latter compounds
were obtained in three steps from the easily available sub-
stituted o-iodoanisoles9 5a–f (Scheme 2).

Scheme 1 Proposed pathways to 4-substituted 3,5-diacetoxy-
benzoates and 1-acetoxy-3-alkoxycarbonyl dibenzofurans.
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Scheme 2 Reagents and conditions: a) Propargyl alcohol (2 equiv),
Et3N (3 equiv), CuI (0.01 equiv), (Ph3P)2PdCl2 (0.01 equiv); b) MnO2,
CH2Cl2, 8 h at r.t.; c) 7a–f, 8, toluene/CHCl3, r.t., 4 h; d) Ac2O (10
equiv.) and NaOAc (2 equiv), hydroquinone (0.05 equiv), then hea-
ting 1 h at reflux.

Sonogashira coupling10 of 5a–f with propargylic alcohol
afforded alcohols 6a–f, which were smoothly oxidized
with MnO2 to the corresponding aldehydes 7a–f in quan-
titative yields. The following Wittig reaction with tri-
phenyl-(a-ethoxycarbonyl-b-carboxyethyl)phosphonium
ylide 811 gave regioselectively12 the suitable 6-(o-meth-
oxyaryl)-3-alkoxycarbonylhex-3-en-5-ynoic acids 9a–f in
yields ranging from 80% to 89% (Table 1). The conver-
sion of 9a–f into benzannulated dibenzofurans was estab-
lished by treatment13 of the latter acids with an excess of
acetic anhydride (10 equiv) in presence of sodium acetate
(2 equiv) and hydroquinone (0.05 equiv) heating at reflux
for one hour. The 1-acetoxy-3-alkoxycarbonyl dibenzo-
furans 4a–f were obtained regioselectively in very good
yields (87–97%). The examination of the substitution
pattern of the aromatic ring of the acids 9a–f shows the
flexibility of this synthetic method: alkoxy, alkyl, nitro,
carboxyalkyl, halo and aryl groups were unaffected under
the reaction conditions.

In view of these results we decided to test our method in
the synthesis of natural dibenzofurans and we selected as
our target the minor cannabis constituent cannabifuran1h

15 (Scheme 3). The latter compound was previously pre-
pared by a variety of methods including acid catalyzed in-
tramolecular cyclization of biphenyls,4c,d transformation
of the natural cannabidiol in the dibenzofuran14 frame-
work and cycloaddition or benzannulation of benzofuran
derivatives.6c,f,g In this work we propose a different syn-
thetic approach in which both the furan ring and one aro-
matic ring are formed in a single annulation step.
Retrosynthetic analysis suggests that the acid 13 should
yield 1-acetoxy-3-ethoxycarbonyl-6-methyl-9-isopropyl
dibenzofuran 14 that shows the right functionalization for
conversion to cannabifuran.

Scheme 3 Reagents and conditions: a) Hexamethylenetetramine,
glycerol, H3BO3, paraformaldehyde; b) K2CO3, Me2SO4, acetone, re-
flux, 6 h; c) Ph3P, CBr4, Zn, CH2Cl2; d) BuLi (2 equiv), then formal-
dehyde; e) MnO2, CHCl3, reflux, 5 h; f) 8, toluene, r.t., 3 h; g) Ac2O
(10 equiv), NaOAc (2 equiv), hydroquinone (0.05 equiv), then hea-
ting 1 h at reflux; h) LiAlH4, THF; i) DDQ, dioxane, r.t., 24 h; j) BuLi,
THF; k) Pd/C, EtOH, H2, 3 atm, HCl cat., 2 d.

Therefore, we designed the synthesis of 13 starting from
the commercially available carvacrol 10. The latter phenol
was submitted to regioselective Duff formylation15 and
the resulting substituted salicylaldehyde was protected by
transformation in its ether 11 by methylation with dimeth-
yl sulphate. The following formyl–ethynyl conversion16

was performed by chain extension of the aldehyde by one
carbon to form the corresponding dibromoolefin. This
was treated with two equivalents of BuLi to give the relat-
ed lithium acetylide. The reaction of the latter salt with
formaldehyde gave propyn-ol 12,17 which was submitted
to the MnO2 oxidation–Wittig homologation procedure
described above to afford the desired acid 13.

As expected, treatment of 13 with acetic anhydride in the
presence of sodium acetate and hydroquinone gave diben-
zofuran 14 as a single regioisomer. It is noteworthy that
though the yield of the latter conversion was good (77%)
it was not quite complete as reported for compound 4a–f.
We assume that the intermediate ynenylketene should be
close to the bulky isopropyl group to achieve the adequate
conformation for the annulation process. According to our
explanation the above mentioned reaction was not effect-
ed by the activating or deactivating effect of the substitu-
ents on the aromatic ring (compounds 4a–f) and was
faintly depressed by the steric hindrance of the groups
placed in position ortho to the ethynyl group (compound
14).

Finally, we converted the dibenzofuran 14 in the canna-
bifuran 15 by modification of some reported procedures.6g
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Reduction of 14 with LiAlH4 followed by the DDQ
oxidation18 of the resulting benzyl alcohol gave directly
the corresponding 1-hydroxy-3-formyl dibenzofuran
without protection–deprotection manipulation of phenolic
hydroxyl group. The following treatment with BuLi and
hydrogenolysis of the resulting carbinol gave the title
compound in good yield (52% over four steps).

In conclusion, we have described a new preparative meth-
od to 1-acetoxy-3-alkoxycarbonyl dibenzofurans starting
from substituted o-iodoanisoles. Our approach is effi-
cient, experimentally simple and the starting materials are
easily available. This route shows some advantages over
the classical processes as demonstrated in the synthesis of
the natural dibenzofuran cannabifuran.
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Entry Aldehydes 7 Acids 9 Wittig 
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Dibenzofuran 4 Benzannulation 
(yields, %)a

a 89 92

b 87 97

c 89 93

d 85 95

e 80 89

f 88 87

a After chromatography and/or crystallization.
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