## Synthesis and Characterisation of Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub>

Mikhail Sofin, Eva M. Peters, and Martin Jansen

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Reprints requests to Prof. Dr. M. Jansen. Fax: +49-(0)711-6891502. E-mail: m.jansen@fkf.mpg.de

Dedicated to Professor Albrecht Mewis on the occasion of his 60th birthday

*Z. Naturforsch.* **57b**, 1461–1463 (2002); received September 9, 2002

Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub> was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Co<sub>3</sub>O<sub>4</sub>, NaN<sub>3</sub>, NaNO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub>) were heated in a special regime up to 500 °C and annealed at this temperature for 50 h in silver crucibles. Single crystals have been grown by subsequent annealing of the powder at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dry Ar. According to the X-ray analysis of the crystal structure (*P4/mmm*, *Z* = 1, *a* = 4.6467(4), *c* = 8.2577(6) Å). Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub> is isostructural with Na<sub>5</sub>[NiO<sub>2</sub>]CO<sub>3</sub> and contains Co<sup>1+</sup>, which is coordinated by two oxygen atoms forming a dumb-bell. Na<sub>5</sub>CoCO<sub>5</sub> decomposes at 600 °C to Na<sub>3</sub>CoO<sub>2</sub> and Na<sub>2</sub>CO<sub>3</sub>.

*Key words:* Cobalt(I), Crystal Structure, Azide/ Nitrate Route

## Introduction

At exploring the synthetic potential of the azide/ nitrate route [1] for the preparation of alkalioxometalates we have tried to prepare representatives containing two different types of complex anions. As the first case we have selected Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub>, since recently the corresponding nickel compound [2] had been obtained through the conventional solid state reaction involving sodium oxide.

## **Results and Discussion**

 $Na_5[CoO_2]CO_3$  can be readily prepared by the azide/nitrate route [1] as a micro-crystalline powder. The ruby-red products are very sensitive to air and moisture. The DTA/TG analysis has shown that no chemical reactions or phase transitions occur during heating of the substance up to ~ 600 °C. At this temperature  $Na_5CoCO_5$  begins to decompose into  $Na_3CoO_2$  and  $Na_2CO_3$ .

The crystal structure of the novel sodium cobaltate carbonate (Fig. 1) was determined from single crystal data. Details of the refinement and crystallographic data are given in Tables 1 and 2. The characteristic feature of the structure is the linear  $CoO_2^{3-}$ -anion. The Co-O bond length is 1.755 Å and the O-Co-O angle is 180°. The structural features related to the cobaltate(I) anion are in a good agreement for all known alkali metals compounds [3-6]. According to the structure obtained from single crystal data (Table 2), the carbonate unit is orientationally disordered. The situation has been addressed appropriately by applying a split atom model. To confirm the presence of the carbonate ion, an IR spectrum of  $Na_5[CoO_2]CO_5$  has been recorded (Fig. 2, Table 3).



Fig. 1 Crystal structure of  $Na_5[CoO_2]CO_3$ . The octahedron in the central section of the picture corresponds to the orientationally disordered carbonate unit.

0932-0776/2002/1200-1461 \$06.00 © 2002 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com D

Table 1. X-ray and crystallographic data for Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub> (293 K).

| Crystal data                                                           |                                                                |
|------------------------------------------------------------------------|----------------------------------------------------------------|
| Crystal system                                                         | tetragonal                                                     |
| Space group, $Z$                                                       | P4/mmm (No. 123), 1                                            |
| Lattice constants (from X-                                             | a = 4.6467(4)                                                  |
| ray powder data) [Å]                                                   | c = 8.2577(6)                                                  |
| Calculated density [g/cm <sup>3</sup> ]                                | 2.474                                                          |
| Crystal shape, color                                                   | irregular, red                                                 |
| Crystal size, mm                                                       | $0.15 \times 0.1 \times 0.1$                                   |
| Structure refinement                                                   |                                                                |
| Method of refinement                                                   | Full-matrix least-squares on $F^2$                             |
| Parameters refined                                                     | 25                                                             |
| $R1 \ (F_0 > 4 \text{sig} F_0^2 / \text{all})$                         | 0.0436/0.0548                                                  |
| wR2                                                                    | 0.1107                                                         |
| weight                                                                 | $w = 1/(\sigma^2(F_0^2) + (0.0476 \cdot P)^2 + 0.44 \cdot P),$ |
| -<br>-                                                                 | where $P = (\max(F_0^2, 0) + 2 \cdot F_c^2)/3$                 |
| $\Delta \varrho_{\min}, \varrho_{\max} \left[ e^{-/\hat{A}^3} \right]$ | - 1.20/1.14                                                    |
| Data collection                                                        |                                                                |
| Diffractometer                                                         | Bruker AXS, APEX SMART-CCD                                     |
| Monochromator                                                          | Graphite                                                       |
| Mo-K <sub><math>\alpha</math></sub> Radiation, [ $\lambda$ ]           | 0.71073 Å                                                      |
| 20 Range for data collection                                           | $2\theta < 75.0^{\circ}$                                       |
| Range of <i>h</i> , <i>k</i> , <i>l</i>                                | -6 < h < 6, -7 < k < 6, -11 < l < 10                           |
| Total no. reflection                                                   | 1635                                                           |
| Unique reflections                                                     | 225                                                            |
| Observed reflections                                                   | 1635                                                           |
| Absorption coefficient, $\mu$ [mm <sup>-1</sup> ]                      | 2.67                                                           |
| F(000)                                                                 | 122                                                            |
|                                                                        |                                                                |

Table 2. Atomic coordinates and anisotropic displacement parameters (in Å<sup>2</sup>·10<sup>4</sup>) for Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub>.

| Atom                                      | Position                                                                       | x                                                                                                           | у                    | z                                                     | U <sub>11</sub>                                  | U <sub>22</sub>                                  | U <sub>33</sub>                                                           |
|-------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|
| Co1<br>Na1<br>Na2<br>O1<br>O2<br>O3<br>C1 | 1a<br>1b<br>4i<br>2 g<br>2h <sup>a</sup><br>40 <sup>a</sup><br>1d <sup>b</sup> | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$ | 001/201/20.195(3)1/2 | 0<br>0.5<br>0.2403(3)<br>0.2125(6)<br>0.345(2)<br>0.5 | 174(6)362(16)678(20)183(15)670(79)503(84)614(78) | 174(6)362(16)142(11)183(15)670(79)435(76)614(78) | 149(7)<br>182(19)<br>384(13)<br>179(21)<br>723(125)<br>530(79)<br>452(92) |

 $U_{12} = U_{13} = U_{23} = 0$  for all atoms;

<sup>a</sup> site occupation factor: 0.5;

<sup>b</sup> disordered, average site position.

## **Experimental Section**

Starting materials for the preparation of Na<sub>5</sub>-[CoO<sub>2</sub>]CO<sub>3</sub> were sodium azide (Aldrich, 99.5%), sodium nitrate (Aldrich, 99%), sodium carbonate (Merck, 99.9%) and cobalt oxide Co<sub>3</sub>O<sub>4</sub>. Cobalt oxide Co<sub>3</sub>O<sub>4</sub> was prepared by heating Co(C<sub>2</sub>O<sub>4</sub>)  $\cdot$  2H<sub>2</sub>O in a flow of oxygen at 375 °C for 40 h. The starting materials (NaN<sub>3</sub>, NaNO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> and Co<sub>3</sub>O<sub>4</sub>) were mixed in the ratio required according to the equation

<sup>1</sup> 25 NaN<sub>3</sub> + 2 NaNO<sub>3</sub> + 9 Na<sub>2</sub>CO<sub>3</sub> + 3 Co<sub>3</sub>O<sub>4</sub> = 9 Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub> + 38.5 N<sub>2</sub>, milled in a planet ball mill, pressed in pellets under  $10^5$  N, dried under

vacuum  $(10^{-3} \text{ mBar})$  at 150 °C for 12 h and placed under argon in a tightly closed steel vessel provided with a silver inlay [1]. In a flow of dry argon the following temperature profile was applied:  $25 \rightarrow 260$  °C (100 K/h);  $260 \rightarrow 380$  °C (5 K/h),  $380 \rightarrow 500$  °C (10 K/h) and subsequent annealing for 50 h at 500 °C. The red powder obtained is extremely sensitive to air. It was sealed in glass ampoules under argon atmosphere. All following manipulations with this substance were also performed in inert atmospheres of purified argon or nitrogen. The X-ray investigation on powder



Fig. 2 IR spectrum of Na<sub>5</sub>[CoO<sub>2</sub>]CO<sub>3</sub> (in KBr).

Table 3. Vibrational data (in  $cm^{-1}$ ) and assignment for  $Na_5[COO_2]CO_3$  at 293 K.

| modes                            | Wawenumber |  |  |
|----------------------------------|------------|--|--|
| $\frac{1}{2\nu_3}$               | 2875       |  |  |
| $v_1 + v_2$                      | 2499       |  |  |
| $2\nu_1$                         | 2121       |  |  |
| $\nu_1 + \nu_4$                  | 1779/1750  |  |  |
| $\nu_3$                          | 1427       |  |  |
| $\nu_1$                          | 1043       |  |  |
| $\nu_2$                          | 881        |  |  |
| $\nu_{\rm as}({\rm CoO_2^{3-}})$ | 736        |  |  |
| $\nu_4$                          | 685        |  |  |
| $\nu$ (Na-O)                     | 523        |  |  |

was performed on a STOE Stadi P diffractometer with Co-K<sub>a1</sub> radiation ( $\lambda = 1.78896$  Å) at room temperature using a position sensitive detector and a curved germanium monochromator. The powder diffraction data are given in Table 4. Single crystals have been grown by subsequent annealing of the as prepared powder at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dry Ar. Single crystals for X-ray diffraction have been selected in Ar atmosphere using a microscope attached to a glove-box.

Table 4. Powder diffraction data of  $Na_5[CoO_2]CO_3$  (d > 1.4 Å).

|   | / |   |        |                                      |
|---|---|---|--------|--------------------------------------|
| h | k | l | d [Å]  | <i>I</i> / <i>I</i> <sub>0</sub> [%] |
| 0 | 0 | 1 | 8.2721 | 3.7                                  |
| 1 | 0 | 0 | 4.6495 | 54.4                                 |
| 1 | 0 | 1 | 4.0515 | 100.0                                |
| 1 | 1 | 0 | 3.2866 | 9.7                                  |
| 1 | 0 | 2 | 3.0874 | 8.0                                  |
| 1 | 1 | 1 | 3.0538 | 3.1                                  |
| 0 | 0 | 3 | 2.7535 | 1.3                                  |
| 1 | 1 | 2 | 2.5716 | 77.8                                 |
| 1 | 0 | 3 | 2.3673 | 0.9                                  |
| 2 | 0 | 0 | 2.3238 | 81.4                                 |
| 2 | 0 | 1 | 2.2371 | 1.9                                  |
| 1 | 1 | 3 | 2.1104 | 2.7                                  |
| 2 | 1 | 0 | 2.0785 | 22.1                                 |
| 0 | 0 | 4 | 2.0648 | 21.4                                 |
| 2 | 0 | 2 | 2.0252 | 2.1                                  |
| 2 | 1 | 1 | 2.0156 | 7.0                                  |
| 1 | 0 | 4 | 1.8869 | 12.4                                 |
| 2 | 1 | 2 | 1.8564 | 7.1                                  |
| 1 | 1 | 4 | 1.7480 | 1.2                                  |
| 0 | 0 | 5 | 1.6517 | 0.8                                  |
| 2 | 2 | 0 | 1.6430 | 13.3                                 |
| 2 | 2 | 1 | 1.6116 | 1.5                                  |
| 1 | 0 | 5 | 1.5563 | 3.4                                  |
| 3 | 0 | 0 | 1.5496 | 0.4                                  |
| 2 | 0 | 4 | 1.5433 | 18.9                                 |
| 2 | 2 | 2 | 1.5266 | 1.0                                  |
| 3 | 0 | 1 | 1.5224 | 2.6                                  |
| 3 | 1 | Ō | 1.4691 | 1.2                                  |
| 2 | 1 | 4 | 1.4647 | 11.5                                 |
| 3 | Ō | 2 | 1.4501 | 1.4                                  |
| 3 | 1 | 1 | 1.4465 | 0.6                                  |
| - | - | - |        | 0.0                                  |

The crystal structure of the sodium carbonate oxocobaltate was determined from X-ray single crystal data. The lattice constants were refined from powder data. Details of structural refinement and crystallographic data are given in Table 1. Infrared experiments were carried out on powder samples in KBr discs (handled under Ar) on a Bruker IFS 113v spectrometer. Thermal analyses were carried out using a DTA/TG device (STA 409, Netzsch) coupled with a quadrupole mass spectrometer (QMG 421, Balzers, Wetzlar). The probe (m = 26.5 mg) was heated at a rate of 10 K/min in a corundum crucible under dry argon.

- [1] D. Trinschek, M. Jansen, Angew. Chem. 111, 234 (1999);
   Angew. Chem. Int. Ed. 38, 133 (1999).
- [2] A. Möller, Z. Anorg. Allg. Chem. **627**, 2625 (2001).
  [3] W. Burow, J. Birx, F. Bernhardt, R. Hoppe, Z. Anorg.
- Allg. Chem. **619**, 923 (1993).
- [4] F. Bernhardt, R. Hoppe, R. K. Kremer Z. Anorg. Allg. Chem. 620, 187 (1994).
- [5] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem. 619, 540 (1993).
- [6] M. Sofin, M. Jansen Z. Anorg. Allg. Chem. 627, 2115 (2001).

Nachdruck – auch auszugsweise – nur mit schriftlicher Genehmigung des Verlages gestattet Satz und Druck: AZ Druck und Datentechnik GmbH, Kempten