Synthesis of a new class of 2-anilino substituted nicotinyl arylsulfonylhydrazides as potential anticancer and antibacterial agents

Ahmed Kamal,* M. Naseer A. Khan, K. Srinivasa Reddy and K. Rohini
Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 30 August 2006; revised 11 October 2006; accepted 14 October 2006
Available online 18 October 2006

Abstract

A series of N^{\prime}-1-[2-anilino-3-pyridyl]carbonyl-1-benzenesulfonohydrazide derivatives (7a-i) was synthesized and five of them were selected by the National Cancer Institute (NCI) and evaluated for their in vitro anticancer activity. Three of the investigated compounds $\mathbf{7 d}, 7 \mathbf{f}$ and $\mathbf{7 g}$ exhibited significant anticancer activity in the primary assay and further tested against a panel of 60 human tumour cell lines. Compound 7 g showed 50% growth inhibitory activity in leukaemia, melanoma, lung cancer, colon cancer, renal cancer and breast cancer cells with GI_{50} value of $3.2-9.6 \mu \mathrm{M}$. The synthesized compounds ($\mathbf{7 a}-\mathbf{i}$) were also evaluated for their antibacterial activity against various Gram-positive and Gram-negative strains of bacteria. Most of these compounds showed better inhibitory activity in comparison to the standard drugs. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

An elaborate search of new anticancer agents has primarily been triggered by the unveiling of new molecular targets on which they intervene, followed by the discovery of novel classes of compounds that interact with such targets. ${ }^{1,2}$ Sulfonamides constitute an important class of compounds that exhibit a broad spectrum of biological activities like antibacterial, ${ }^{3}$ antitumour, ${ }^{4-9}$ diuretic, ${ }^{6,10}$ hypoglycaemic, ${ }^{11}$ etc. A number of sulfonamides have also been screened particularly for their antitumour activity, which led to the discovery of a novel sulfonamide N-[2-[(4-hydroxyphenyl)amino]-3-pyridi-nyl]-4-methoxybenzenesulfonamide (E7010), which inhibits tubulin polymerisation ${ }^{12}$ (Fig. 1). This compound causes cell cycle arrest and apoptosis in M phase and is shown to exhibit microtubule assembly owing to its reversible binding to the colchicine binding site on tubulin. ${ }^{13,14}$ Compound E7010 also exhibited good in vivo antitumour activity against various rodent tumour and human tumour xenografts ${ }^{12}$ and presently undergoing the stages of clinical trials.

[^0]It has been shown in the literature that sulfonylhydrazide analogues have potential for cancer chemotherapy. ${ }^{16}$ Further, sulfonamides incorporating hydrazino moieties have also been recently reported to possess carbonic anhydrase inhibition. ${ }^{17}$ Based on these findings an attempt has been made in the present study to incorporate a sulfonylhydrazide moeity to the 2-anilino pyridyl structural component of E7010. Moreover, nicotinylarylsulfonylhydrazides potentiated barbiturate necrosis and depressed exploratory behaviour in mice and high dose showed analgesic activity. ${ }^{18}$ Therefore, a new family of 2-anilinonicotinyl arylsulfonylhydrazides have been designed and synthesized to evaluate their antitumour activity. In continuation to our efforts for identifying a variety of biological targets of sulfonamides and sulfonylhydrazides, we have investigated the antibacterial activities of these compounds as well.

2. Chemistry

Acid-catalysed esterification of 2-chloronicotinic acid (1) in ethanol afforded 2-chloro nicotinic acid ethylester (2). The substituted anilines ($\mathbf{3 a - e}$) were refluxed with ethylester (2) in ethylene glycol to give the coupled product of 2-anilino nicotinic acid esters ($\mathbf{4 a - e}$), ${ }^{19}$ which on treatment with hydrazine hydrate in ethanol gave 2-anilino nicotinic acidhydrazides (5a-e) in quantitative

Sulfanilamide

E7010

Acylsulfonamide

Sulfonamide- hydrazino derivative

Figure 1. Chemical structures of sulfanilamide, E7010, acylsulfonamide, sulfonamide-hydrazino derivative and 2-anilino substituted nicotinyl arylsulfonyl hydrazide.
yields. ${ }^{20}$ Substituted arylsulfonyl chlorides ($\mathbf{6 a}-\mathbf{f}$) were synthesized according to the literature procedure. ${ }^{21}$ The synthesis of the final products $7 \mathbf{a}-\mathbf{i}$ was carried out by the reaction of arylsulfonyl chlorides $(\mathbf{6 a - f})$ and hydrazides (5a-e) in pyridine ${ }^{22}$ (Scheme 1).

3. Results and discussions

3.1. Antitumour activity

Amongst the substituted 2-anilino nicotinylarylsulfonylhydrazide derivatives synthesized, compounds 7b, 7c, 7d, 7f and $7 \mathbf{g}$ were chosen by National Cancer Institute (NCI) as prototypes for preliminary test and were evaluated in three cell lines one dose prescreen ${ }^{23-25}$ comprising of MCF-7 (breast), NCI-H460 (lung) and SF-268 (CNS) cell lines. These have been in use by DTP (Development Therapeutic Program) for several years to evaluate combinatorial libraries and have proven to be an effective test of agents, which exhibited some capability level to inhibit the growth of human tumour cells in culture. The compounds were added at a single concentration $\left(10^{-4} \mathrm{M}\right)$ and the culture was incubated for 48 h . End point determinations were made with a protein binding dye, sulforhodamine B (SRB). Results for each compound were reported as percentage test cell growth compared with untreated control cells (PTC) as illustrated in Table 1. Compounds, which reduce the growth of any one of the cell lines to 32% or less, were selected for further evaluation in the full panel of $60 \mathrm{hu}-$ man tumour cell lines. Compound 7d has shown 0% of growth inhibition against all the three cell lines. Similarly, $7 \mathbf{f}$ and $7 \mathbf{g}$ presented the 1% and 31% of growth inhibition for the NCI-H460 cell line, respectively.

However, compounds 7b and 7c have not reduced the growth of any cell lines by 32% or less. Therefore, only three compounds 7d, 7f and 7 g have been selected for 60 -cell line panel assay. Compounds 7d, 7f and 7 g were further evaluated at 10 -fold dilutions of five concentrations ranging from 10^{-4} to $10^{-8} \mathrm{M}$ against 60 different human tumour cell lines organized in subpanels representing melanoma, leukaemia and cancers of breast, prostate, lung, colon, ovary, CNS and kidney. The details of the cell lines used are shown in Table 2 and the experimental procedures have been described in the literature in detail. ${ }^{24,26-28}$ Three dose response parameters were calculated for each experimental agent: the compound concentration required to carry 50% of net cell growth $\left(\mathrm{GI}_{50}\right)$ which signifies the growth inhibitory power of the test agents; the compound concentrations resulting in total growth inhibition (TGI) which signifies the cytostatic effect of the test agent; and the concentration of the compound leading to the 50% of net cell death $\left(\mathrm{LC}_{50}\right)$ which signifies the cytotoxic effect of the test agent. The $\log _{10} \mathrm{GI}_{50}, \log _{10}$ TGI and $\log _{10} \mathrm{LC}_{50}$ were then determined defined as the means of the $\log _{10}$'s of the individual GI_{50}, TGI and LC_{50} value as shown in Table 2, respectively. Compounds having $\log _{10} \mathrm{GI}_{50}$ values -4 and <-4 were declared to be active. The mean graph points (MG_MID) represent average values for each of the mentioned parameters and indicate the average sensitivity of all cell lines to each tested compound.

From Table 2, we can conclude that, all the active compounds in this test showed broad-spectrum antitumour activity against the nine tumour subpanels tested, and demonstrated significant activity in the in vitro antitumour screening expressed by MG-MID $\log _{10} \mathrm{GI}_{50}$ value

Scheme 1. Reagents and conditions: (i) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, reflux, 3 h ; (ii) ethylene glycol, $160{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (iii) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, reflux, 2 h ; (iv) pyridine, $0^{\circ} \mathrm{C}$, rt.

Table 1. Primary in vitro growth inhibition assay results at $10^{-4} \mathrm{M}$ concentration

Compound	PTC $^{\text {a }}$			60-Tumour cell line selection
	MCF-7 $^{\mathrm{b}}$	NCI-H460		
7b (NSC: 736601)	102	84	106	N
7c (NSC: 736600)	111	62	123	N
7d (NSC: 736599$)$	0	0	0	Y
7f (NSC: 736602)	44	1	34	Y
7g (NSC: 737147)	52	31	60	Y

Y , yes selected; N , not selected.
${ }^{\text {a }}$ PTC, percent test cell growth compared with untreated control cells.
${ }^{\mathrm{b}}$ Breast cell line.
${ }^{\mathrm{c}}$ Lung cell line.
${ }^{\mathrm{d}}$ CNS cell line.
of $-4.55,-4.67$ and -4.73 of compounds $7 \mathbf{d}, 7 \mathbf{f}$ and $7 \mathbf{g}$, respectively, whereas compounds $\mathbf{7 b}$ and $\mathbf{7 c}$ were inactive $\left(\log _{10} \mathrm{GI}_{50}>-4\right)$. Substitution of para methoxy on 2-anilino ring, para methyl on aryl sulfonyl ring (7b, $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{X}=\mathrm{CH}_{3}$) and para fluoro on both the 2-anilino as well as aryl sulfonyl rings $\left(7 \mathrm{c}, \mathrm{R}_{1}=\mathrm{F}\right.$, $\mathrm{X}=\mathrm{F}$) has reduced the activity. $\log _{10} \mathrm{GI}_{50}$ value of compound 7 d is -4.50 and -4.54 in the breast cancer cell lines (MCF-7 and MDA-MB-231, respectively), whereas this value in case of $E 7010$ is -6.14 and -5.07 for the same cell lines. ${ }^{15}$ Substitution of chloro
group on the para position of 2-anilino ring, and aryl sulfonyl ring at ortho and para positions, respectively, $\left(7 f, \mathrm{R}_{1}=\mathrm{Cl}, \mathrm{X}=\mathrm{Y}=\mathrm{Cl}\right)$ also exhibits similar $\log _{10}$ GI_{50} value for these cell lines, that is, -4.45 and -4.72, however the activity is enhanced particularly in case of leukaemia CCRF-CEM cell line $\left(\log _{10} \mathrm{GI}_{50}\right.$ -5.18 ; GI_{50} is $6.62 \mu \mathrm{M}$). In case of compound $7 \mathbf{g} \log _{10}$ GI_{50} value is -5.36 and -4.38 in the breast cancer cell lines (MCF-7 and MDA-MB-231 cell lines, respectively) and also demonstrated significant activity in other cell lines.

Table 2. Inhibition of in vitro cancer cell lines by selected 2 -anilino substituted nicotinyl arylsulfonylhydrazides $7 \mathbf{7 d}, 7 \mathbf{f}$ and $7 \mathbf{g}^{\mathrm{a}}$

Panel cell line	Response parameters: (A) $\log _{10} \mathrm{GI}_{50}{ }^{\text {b }}$ (M), (B) $\log _{10} \mathrm{TGI}^{\mathrm{c}}$ (M), (C) $\log _{10} \mathrm{LC}_{50}{ }^{\text {d }}$ (M) and MG_MID ${ }^{\text {e }}$								
	Compound 7d			Compound 7f			Compound 7g		
	A	B	C	A	B	C	A	B	C
Leukaemia									
CCRF-CEM	-4.68	>-4.00	>-4.00	-5.18	>-4.00	>-4.00	-4.67	>-4.00	>-4.00
HL-60 (TB)	-4.60	-4.21	>-4.00	-4.62	-4.35	-4.08	-5.01	>-4.00	>-4.00
K-562	-4.70	-4.08	>-4.00	-4.89	-4.59	-4.30	-5.07	>-4.00	>-4.00
MOLT-4	-4.64	>-4.00	>-4.00	-4.71	-4.24	>-4.00	-4.30	>-4.00	>-4.00
RPMI-8226	nt	nt	nt	-4.75	-4.27	>-4.00	-4.54	>-4.00	>-4.00
SR	-4.64	-4.17	>-4.00	-4.83	-4.42	-4.01	-5.20	>-4.00	>-4.00
Non-small cell lung cancer									
A549/ATCC	-4.76	-4.39	-4.01	-4.61	-4.15	>-4.00	-4.49	>-4.00	>-4.00
EKVX	-453	>-4.00	>-4.00	4.58	>-4.00	>-4.00	-4.31	>-4.00	>-4.00
HOP-62	-4.51	-4.07	>-4.00	-4.78	-4.42	-4.07	>-4.00	>-4.00	>-4.00
HOP-92	-4.81	-4.44	-4.07	-4.83	-4.39	>-4.00	>-4.00	>-4.00	>-4.00
NCI-H226	-4.53	-4.01	>-4.00	-4.62	-4.23	>-4.00	-4.37	>-4.00	>-4.00
NCI-H23	-4.44	>-4.00	>-4.00	-4.76	-4.37	>-4.00	nt	nt	nt
NCI-H322M	-4.51	>-4.00	>-4.00	-4.83	-4.39	>-4.00	>-4.00	>-4.00	>-4.00
NCI-H460	-4.50	>-4.00	>-4.00	-4.45	-4.00	>-4.00	-5.33	>-4.00	>-4.00
NCI H522	nt	nt	nt	nt	nt	nt	-5.19	>-4.00	>-4.00
Colon cancer									
COLO 205	-4.79	-4.29	>-4.00	-4.92	4.61	-4.31	-4.99	-4.24	>-4.00
HCC-2998	-4.52	>-4.00	>-4.00	-4.87	-4.54	-4.21	-5.08	>-4.00	>-4.00
HCT-116	-4.52	>-4.00	>-4.00	-4.81	-4.54	-4.27	-5.14	>-4.00	>-4.00
HCT-15	-4.57	>-4.08	>-4.00	-4.48	>-4.00	-4.00	-4.86	>-4.00	>-4.00
HT29	-4.66	-4.24	>-4.00	-4.64	-4.27	>-4.00	-5.40	>-4.00	>-4.00
KM12	-4.64	-4.31	>-4.00	-4.86	-4.54	-4.23	-5.38	>-4.00	>-4.00
SW-620	-4.54	>-4.00	>-4.00	-4.55	>-4.00	>-4.00	-5.12	>-4.00	>-4.00
CNS cancer									
SF-268	-4.34	>-4.00	>-4.00	-4.44	4.00	>-4.00	-4.66	>-4.00	>-4.00
SF-295	-4.43	>-4.00	>-4.00	-4.52	4.11	>-4.00	-5.46	>-4.00	>-4.00
SF-539	-4.58	-4.13	>-4.00	-4.72	4.35	>-4.00	-4.81	-4.12	>-4.00
SNB-19	-4.53	>-4.00	>-4.00	-4.57	4.00	>-4.00	-4.85	>-4.00	>-4.00
SNB-75	-4.59	>-4.00	>-4.00	-4.65	4.07	>-4.00	-5.26	>-4.00	>-4.00
U251	-4.54	>-4.00	>-4.00	-4.46	-4.00	>-4.00	-4.62	>-4.00	>-4.00
Melanoma									
LOX IMVI	-4.49	>-4.00	>-4.00	-4.68	-4.33	>-4.00	-4.62	>-4.00	>-4.00
MALME 3M	-4.46	>-4.00	>-4.00	-4.95	-4.46	>-4.00	>-4.00	>-4.00	>-4.00
M14	-4.33	>-4.00	>-4.00	-4.72	-4.41	-4.10	-4.94	>-4.00	>-4.00
SK-MEL-2	-4.37	>-4.00	>-4.00	-4.73	-4.37	-4.01	nt	nt	nt
SK-MEL-28	-4.05	>-4.00	>-4.00	-4.45	>-4.00	>-4.00	-4.63	>-4.00	>-4.00
SK-MEL-5	-4.60	-4.07	>-4.00	-4.85	-4.53	-4.21	-5.25	>-4.00	>-4.00
UACC-257	-4.93	-4.28	>-4.00	-4.64	-4.22	>-4.00	-4.05	>-4.00	>-4.00
UACC-62	-4.34	>-4.00	>-4.00	-4.66	-4.12	>-4.00	-5.05	>-4.00	>-4.00
Ovarian cancer									
IGROV1	nt	nt	nt	nt	nt	nt	-4.56	>-4.00	>-4.00
OVCAR-3	-4.53	-4.02	>-4.00	-4.69	>-4.00	>-4.00	-5.43	>-4.00	>-4.00
OVCAR-4	-4.42	>-4.00	>-4.00	-4.54	>-4.00	>-4.00	-4.35	>-4.00	>-4.00
OVCAR-5	-4.28	>-4.00	>-4.00	-4.58	-4.11	>-4.00	nt	nt	nt
OVCAR-8	-4.57	>-4.00	>-4.00	-4.57	-4.13	>-4.00	-4.44	>-4.00	>-4.00
SK-OV-3	-4.42	>-4.00	>-4.00	-4.77	-4.28	>-4.00	-4.24	>-4.00	>-4.00
Renal cancer									
786-0	-4.64	-4.27	>-4.00	-4.71	-4.31	>-4.00	-4.32	>-4.00	>-4.00
A498	-4.76	-4.44	-4.11	-4.60	-4.32	-4.04	-4.73	>-4.00	>-4.00
ACHN	-4.34	>-4.00	>-4.00	-4.53	-4.03	>-4.00	-4.28	-4.12	>-4.00
CAKI-1	-4.51	>-4.00	>-4.00	-4.70	-4.23	>-4.00	-5.04	>-4.00	>-4.00
RXF 393	-4.94	-4.56	-4.18	-4.77	-4.36	>-4.00	-4.43	>-4.00	>-4.00
SN12C	-4.75	-4.50	-4.24	-4.50	>-4.00	>-4.00	-4.23	>-4.00	>-4.00
TK-10	-4.47	>-4.00	>-4.00	-4.54	-4.07	>-4.00	-4.60	>-4.00	>-4.00
UO-31	nt	nt	nt	-4.43	>-4.00	>-4.00	-4.04	>-4.00	>-4.00

Table 2 (continued)

Panel cell line	Response parameters: (A) $\log _{10} \mathrm{GI}_{50}{ }^{\mathrm{b}}$ (M), (B) $\log _{10} \mathrm{TGI}^{\mathrm{c}}$ (M), (C) $\log _{10} \mathrm{LC}_{50}{ }^{\text {d }}$ (M) and MG_MID ${ }^{\text {e }}$								
	Compound 7d			Compound 7f			Compound 7g		
	A	B	C	A	B	C	A	B	C
Prostate cancer									
PC-3	-4.83	-4.49	-4.16	-4.63	-4.09	>-4.00	-4.53	>-4.00	>-4.00
DU-145	-4.64	-4.26	>-4.00	-4.38	>-4.00	>-4.00	-4.46	>-4.00	>-4.00
Breast cancer								>-4.00	>-4.00
MCF-7	-4.50	>-4.00	>-4.00	-4.45	>-4.00	>-4.00	-5.36	>-4.00	>-4.00
NCI/ADR-RES	-4.40	>-4.00	>-4.00	-4.63	-4.12	>-4.00	nt	nt	nt
MDA-MB-231/ATCC	-4.54	>-4.00	>-4.00	-4.72	-4.30	>-4.00	-4.38	>-4.00	>-4.00
HS 578T	-4.55	>-4.00	>-4.00	-4.75	-4.38	-4.01	-4.62	>-4.00	>-4.00
MDA-MB-435	-4.07	>-4.00	>-4.00	-4.56	-4.09	>-4.00	-5.49	>-4.00	>-4.00
BT-549	-4.44	-4.00	>-4.00	-4.78	-4.46	-4.14	-4.60	>-4.00	>-4.00
T-47D	-4.73	>-4.01	>-4.00	-4.97	-4.29	>-4.00	-5.20	>-4.00	>-4.00
MG_MID	-4.55	-4.10	-4.01	-4.67	-4.23	-4.03	-4.73	-4.01	-4.00

${ }^{\text {a }}$ Data obtained from the NCI's in vitro disease-oriented human tumour cells screen.
${ }^{\mathrm{b}} \log _{10} \mathrm{GI}_{50}=\log$ of molar concentration that inhibits 50% net cell growth.
${ }^{c} \log _{10} \mathrm{TGI}=\log$ of molar concentration that produces a total growth inhibition.
${ }^{\mathrm{d}} \log _{10} \mathrm{LC}_{50}=\log$ of molar concentration that leads to 50% net cell death.
${ }^{\mathrm{e}}$ MG-MID $=$ mean graph midpoint $=$ arithmetical mean value for all tested cell lines.

Table 3. 2-Anilino nicotinyl arylsulfonylhydrazide derivatives (7a-i) and related $\log P$ and $\log C$ values ${ }^{\text {a }}$

Compound	R_{1}	R_{2}	X	Y	$\log P$	$\log S(\mathrm{mg} / \mathrm{L})$
7 a	Cl	H	CH_{3}	H	2.88	5.70
7b	OCH_{3}	H	CH_{3}	H	2.41	8.81
7c	F	H	F	H	3.11	9.90
7d	Cl	Cl	F	H	4.11	2.64
7e	F	H	Cl	H	3.23	5.97
7 f	Cl	H	Cl	Cl	4.33	2.72
7 g	Cl	H	NHCOCH_{3}	H	2.79	11.68
7h	F	H	NHCOCH_{3}	H	2.50	21.19
7 i	H	H	H	H	1.47	22.00

${ }^{\mathrm{a}}$ Determination of $\log \mathrm{P}$ and $\log \mathrm{C}$ values described in text.

Table 4. In vitro antibacterial activity of 2-anilino substituted nicotinylsulfonylhydrazides (7a-i)

Compound	MIC ($\mu \mathrm{g} / \mathrm{mL}$)				
	E. coli $^{\text {a }}$ MTCC 448	P.aeruginosa ${ }^{\text {a }}$ MTCC 424	S. epidermidis ${ }^{\text {b }}$ MTCC 435	B. subtilis ${ }^{\text {b }}$ MTCC 441	Vibrio species ${ }^{\text {a }}$
7 a	16	>25	14	9	23
7b	15	>25	17	8	19
7c	13	>25	20	10	22
7d	15	>25	21	9	20
7 C	18	>25	16	10	21
7 f	20	>25	17	15	14
7 g	18	>25	22	17	18
7h	20	>25	19	16	22
7 i	20	>25	21	17	20
SA	>128	>512	>512	>128	>512
SZ	15	22	20	18	13

SA, sulfanilamide; SZ, sulfadiazine.
${ }^{\text {a }}$ Gram-negative.
${ }^{\mathrm{b}}$ Gram-positive.

We focused on making sulfonylhydrazide compounds based upon E7010 which was found to possess interesting in vitro anticancer activity ${ }^{14}$ ($\mathrm{IC}_{50} 0.06-0.8 \mu \mathrm{~g} / \mathrm{ml}$) and also in vivo studies. ${ }^{12}$ The sulfonamide moiety located between two aromatic rings was fixed as a basic
motif, and the NH group at the ortho position of the sulfonamide was considered a key functionality to afford substantial anti-proliferative activity in cell-based assay. ${ }^{5,14,29}$ We thus planned to introduce an extra amide moiety between two aromatic rings in the basic skeleton
of E7010 with different substituents on the two aromatic rings to explore the possibility of a potential antitumour agent.

Prediction of lipophilicity $(\log P)$ and aqueous solubility ($\log S$) of compounds $7 \mathbf{a}-\mathbf{i}$ was calculated using ALOGPS 2.1 software. ${ }^{30,31}$ These compounds showed lipophilicity with $\log P$ values in the range of 1.47-4.33 (Table 3) and aqueous solubility with $\log S$ values in the range of $2.72-22 \mathrm{mg} / \mathrm{L}$ in comparison with E7010 and sulfadiazine with $\log P$ and $\log S$ values of, respectively, 3.4; $30 \mathrm{mg} / \mathrm{L}$ and $0.25 ; 600 \mathrm{mg} / \mathrm{L}$. These studies indicate that the aqueous solubility of these compounds is almost similar to that of E7010.

3.2. Antibacterial activity

The compounds 7a-i were also evaluated for their efficacy as antibacterials in vitro by disc diffusion method against various bacterial strains. The antibacterial activity has been compared to some standard antibacterial agents like sulfanilamide and sulfadiazine that contain a p-amino benzene sulfonamide moiety. From the results in Table 4 compound 7 c showed significant inhibition against Escherichia coli. This may be due to the presence of fluorine atoms on para positions of 2-anilino ring and arylsulfonyl ring of the nicotinyl hydrazide. Most of the compounds showed significant in vitro activity against Staphylococcus epidermidis and Bacillus subtilis. Compound 7b was most active against B. subtilis. All other compounds exhibited mild to moderate activity compared to sulfadiazine against vibrio species and none of the compounds were better than sulfadiazine against Pseudomonos aeruginosa (Table 4).

4. Conclusion

The synthesis and screening of anticancer and antibacterial activities of a novel series of 2-anilino substituted nicotinyl arylsulfonyl hydrazides have been investigated. Compounds $\mathbf{7 d}$, $7 \mathbf{f}$ and $\mathbf{7 g}$ were screened against 60 hu man cancer cell lines and exhibited broad spectrum of activity against almost all the cancer cell lines and in case of certain cancer cell lines the activity was comparable to E7010. Furthermore, most of the compounds showed better activity than the controls in antibacterial screening except against P. aeruginosa.

5. Experimental

5.1. General

Melting points were determined with an electrothermal melting point apparatus and are reported uncorrected. IR spectra (KBr) were measured with a Thermo Nicolet Nexus 670 Spectrometer (v in cm^{-1}). ${ }^{1} \mathrm{H}$ NMRs were recorded on a Bruker UXNMR/XWIN-NMR (200 MHz) or Varian VXR-Unity (400 MHz) with TMS (0 ppm) as an internal standard. Coupling constants are reported in Hertz (Hz). EI mass spectra were recorded on a VG-7070H Micromass mass spectrometer
at $200^{\circ} \mathrm{C}, 70 \mathrm{eV}$, with a trap current of $200 \mu \mathrm{~A}$ and 4 kV of acceleration voltage. FAB mass spectra were recorded on a LSIMS-VG-AUTOSPEC Micromass spectrometer. LC-MS were recorded on the instrument LC-MSD-Trap-SL. Analytical TLC of all reactions was performed on Merck Prepared plates (silica gel 60 F 254 on glass). Column chromatography was performed using Acme silica gel. Yields were not optimized. Substituted arylsulfonylchlorides were synthesized from the reported procedures. ${ }^{21}$ Starting materials were purchased from Sigma-Aldrich. All solvents and reagents were used without further purification unless otherwise specified. Micro analytical data (C, H and N) agreed with the proposed structures within $\pm 0.4 \%$ of the theoretical values. All the standard organisms used in the antibacterial screening were obtained from Hi-media Laboratories, India.

6. General procedures

6.1. Synthesis of ethylester of 2-chloronicotinic acid (2)

2-Chloronicotinic acid ($4 \mathrm{~g}, 0.025 \mathrm{~mol}$) and $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ were taken in absolute ethanol and refluxed for 3 h . Then the reaction mixture was cooled to room temperature and the solvent was evaporated and extracted in ethyl acetate, washed with brine solution and then concentrated in vacuo.

6.2. General procedure for the synthesis of substituted 2anilino nicotino ester (4a-e)

2-Chloro nicotinoethylester ($\mathbf{2}, 10 \mathrm{mmol}$) and substituted anilines ($\mathbf{3 a - d}, 10 \mathrm{mmol}$) were heated in ethylene glycol up to $160^{\circ} \mathrm{C}$ with stirring for 6 h . Then the reaction mixture was cooled to room temperature and the compound was extracted in ethyl acetate from the aqueous layer and purified by column chromatography (silica gel 60-120).
6.2.1. Ethyl 2-(4-chloroanilino)nicotinate (4a). Compound $2(185 \mathrm{mg}, 1 \mathrm{mmol})$ and 4-chloro aniline (3a, $127 \mathrm{mg}, 1 \mathrm{mmol}$) were taken in ethylene glycol and refluxed at $160^{\circ} \mathrm{C}$ for 6 h . Then the reaction mixture was cooled and extracted in ethyl acetate $(4 \times 25 \mathrm{~mL})$ from the aqueous layer and concentrated in vacuo. The compound was further purified by column chromatography using $60-120$ silica gel (ethyl acetate/hexane, 1:9). Yield $75 \% ; \operatorname{mp} 98-100^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.26$ (br s, 1 H), 8.34 (q, $J=2.66 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=8.30 \mathrm{~Hz}, 2.66,1 \mathrm{H}), 7.67$ $(\mathrm{d}, J=9.065 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=9.06 \mathrm{~Hz}, 2 \mathrm{H}), 6.70$ (dd, $J=7.55,4.52 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.55 \mathrm{~Hz}, 2 \mathrm{H})$, 1.42 ($\mathrm{t}, J=7.55 \mathrm{~Hz}, 3 \mathrm{H}$); EI MS m/z 276; IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 1253,1528,1586,1620(\mathrm{C}-\mathrm{N}), 1685$ $(\mathrm{C}=\mathrm{O})$, 2986, 3196, 3264 (NH). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, 60.77 ; H, 4.73 ; N, 10.12. Found: C, 60.81 ; H, 4.72; N, 10.09.
6.2.2. Ethyl 2-(4-methoxyanilino)nicotinate (4b). Yield $80 \% ; \mathrm{mp} 88-90^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.00(\mathrm{~s}, \quad 1 \mathrm{H}), \quad 8.32 \quad(\mathrm{dd}, \quad J=4.68$,
$2.34 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=7.81,2.34 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}$, $J=7.03,2.34 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=7.03,2.34 \mathrm{~Hz}, 2 \mathrm{H})$, $6,64(\mathrm{dd}, J=7.81,4.68 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, ~ J=7.03 \mathrm{~Hz}$, $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.03 \mathrm{~Hz}, 3 \mathrm{H})$; EI MS m/z 272; IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 1244,1507,1580,1621(\mathrm{C}-$ $\mathrm{N}), 1686(\mathrm{C}=\mathrm{O}), 2829,2927,2969,3002,3317(\mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; $\mathrm{H}, 5.92 ; \mathrm{N}$, 10.29. Found: C, 66.11; H, 5.90; N, 10.32.
6.2.3. Ethyl 2-(4-fluoroanilino)nicotinate (4c). Yield 75\%; mp 67-69 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ +DMSO$\left.d_{6}\right): \delta 10.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=4.69,2.01 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22$ (dd, $J=8.04,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.00(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=7.37,4.69 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (q, $J=7.37 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, ~ J=7.37 \mathrm{~Hz}, 3 \mathrm{H}) ;$ EI MS m / z 260; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2}$: C, 64.61; H, 5.03; N, 10.76. Found: C, 64.56; H, 5.01; N, 10.72.
6.2.4. Ethyl 2-(2,4-dichloroanilino)nicotinate (4d). Yield 80% mp $\quad 96-98{ }^{\circ} \mathrm{C} ; \quad{ }^{1} \mathrm{H} \quad$ NMR $\quad(200 \mathrm{MHz}$, $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.66$ (br s, 1 H), $8.38(\mathrm{q}, 2.35$, $1 \mathrm{H}), \quad 8.27(\mathrm{dd}, \quad J=7.86, \quad 2.35 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 7.40(\mathrm{~d}$, $J=2.35 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.35 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=2.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.07,3.93 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (q, $J=7.07 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.07 \mathrm{~Hz}, 3 \mathrm{H})$; EI MS m / z 311; IR (KBr) $\left(v_{\text {max }} / \mathrm{cm}^{-1}\right): 1253,1292,1514,1592$ (C-N), 1696 ($\mathrm{C}=\mathrm{O}$), 3310 (NH). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 54.04; H, 3.89; N, 9.00. Found: C, 54.01; H, 3.91; N, 9.05.
6.2.5. Ethyl 2-anilinonicotinate (4e). Yield 75%; mp 54 $56{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$): δ 10.22 (br s, 1H), 8.34 (dd, $J=4.71,1.57 \mathrm{~Hz}, 1 \mathrm{H}$), 8.20 (dd, $J=7.86,2.35 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}$, $2 \mathrm{H}), \quad 7.00(\mathrm{dt}, \quad J=7.07,1.57 \mathrm{~Hz}, \quad 1 \mathrm{H}), 6.66(\mathrm{dd}$, $J=7.86,4.71 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.07 \mathrm{~Hz}, 2 \mathrm{H}), 1.43$ (t, $J=7.07 \mathrm{~Hz}, 3 \mathrm{H}$); EI MS m/z 242; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.41; H, 5.82; N, 11.56. Found: C, 69.37; H, 5.80; N, 11.52.

6.3. General procedure for the synthesis of substituted 2anilino nicotino hydrazides (5a-e)

2-Anilinonicotinoethylesters ($\mathbf{4 a - e}, 1 \mathrm{mmol}$) were refluxed with hydrazine hydrate (5 mmol) in ethanol for 2 h . The reaction mixture was cooled and left for overnight, crystals were obtained, filtered and washed with ethanol to give pure compounds (5a-e).
6.3.1. 2-(4-Chloroanilino)-3-pyridinecarbohydrazide (5a). The title compound was obtained from compound 4 a ($276 \mathrm{mg}, 1 \mathrm{mmol}$) and hydrazine hydrate $(0.25 \mathrm{~mL}$, 5 mmol) as described in Section 6.3 Yellow crystalline needles, yield 70%; mp $195-197{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 8.25$ (dd, $J=4.46,1.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{~d}, J=8.92 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.92,2 \mathrm{H}), 6.71$ (dd, $J=7.43,5.20 .1 \mathrm{H}$); EI MS $m / z 262$; IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 1247,1420,1460,1512(\mathrm{C}-\mathrm{N}), 1606$ $(\mathrm{C}=\mathrm{O}), 3024, \quad 3196$ (NH). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}$: C, $54.87 ; \mathrm{H}, 4.22$; N, 21.33. Found: C, 54.82; H, 4.24; N, 21.30.
6.3.2. 2-(4-Methoxyanilino)-3-pyridinecarbohydrazide (5b). Yield 78%; mp $150-152{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.20$ (br s, 1 H), 8.20 (dd, $J=4.58,1.52 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (dd. $J=7.63,1.52 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.16 \mathrm{~Hz} 2 \mathrm{H}), 6.80(\mathrm{~d}, J=9.16 \mathrm{~Hz}$, $2 \mathrm{H}), 6.60(\mathrm{~m}, 1 \mathrm{H})$; EI MS m / z 258; IR (KBr) $\left(v_{\max } /\right.$ cm^{-1}): 1247, 1420, 1460, $1508(\mathrm{C}-\mathrm{N}), 1606(\mathrm{C}=\mathrm{O})$, 3024 (methyl), 3196, 3328 (NH). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 60.46; H, 5.46; N, 21.69. Found: C, $60.50 ; \mathrm{H}, 5.44 ; \mathrm{N}, 21.65$.
6.3.3. 2-(4-Fluoroanilino)-3-pyridinecarbohydrazide (5c). Yield 75%; mp $159-161^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta 10.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.22(\mathrm{dd}$, $J=5.00,1.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, \quad J=7.86,1.43 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{dd}, J=9.29,5.00 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 2 \mathrm{H})$, 6.70 (dd, $J=7.86,5.00 \mathrm{~Hz}, 1 \mathrm{H}$); EI MS m/z 246; IR $(\mathrm{KBr})\left(v_{\max } / \mathrm{cm}^{-1}\right): 1253,1410,1504,1527(\mathrm{C}-\mathrm{N}), 1609$ $(\mathrm{C}=\mathrm{O})$, 3071, 3128, 3314 (NH). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FN}_{4} \mathrm{O}: \mathrm{C}, 58.53 ; \mathrm{H}, 4.50 ; \mathrm{N}, 22.75$. Found: C, 58.59; H, 4.48; N, 22.72.
6.3.4. 2-(2,4-Dichloroanilino)-3-pyridinecarbohydrazide (5d). Yield 80%; mp $197-199{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 11.20(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=7.92 \mathrm{~Hz}$, $1 \mathrm{H}), 8.30(\mathrm{~d}, J=5.28 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.92 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36 (s, 1H), 7.18 (dd, $J=9.24,2.64 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}$, $J=7.92,5.28 \mathrm{~Hz}, 1 \mathrm{H}$); EI MS m/z 297; IR (KBr) ($v_{\max }$) $\left.\mathrm{cm}^{-1}\right): 1257,1464,1513(\mathrm{C}-\mathrm{N}), 1591(\mathrm{C}=\mathrm{O}), 3312(\mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{4} \mathrm{O}: \mathrm{C}, 48.51 ; \mathrm{H}, 3.39$; N , 18.86. Found: C, 48.47 ; H, 3.37; N, 18.89.
6.3.5. 2-Anilino-3-pyridinecarbohydrazide (5e). Yield 75\%; mp $125-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ +DMSO$\left.d_{6}\right): \delta 10.75(\mathrm{~s}, 1 \mathrm{H}), 9.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=5.25$, $1.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=7.50,1.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, ~ J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}$, $J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=7.50,5.25 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{EI}$ MS m / z 228; IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 1256,1441,1581$ $(\mathrm{C}-\mathrm{N}), 1644(\mathrm{C}=\mathrm{O}), 3021,3308(\mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{IN}_{4} \mathrm{O}: \mathrm{C}, 63.15 ; \mathrm{H}, 5.30 ; \mathrm{N}, 24.55$. Found: C, 63.11; H, 5.32; N, 24.51.

6.4. General procedure for the synthesis of compounds $7 \mathbf{a}-\mathbf{i}$

To a stirred solution of substituted 2-anilino nicotino hydrazides (5a-e) (1 mmol) in pyridine (10 mL), substituted aryl sulfonylchlorides (1.2 mmol) were added at $0^{\circ} \mathrm{C}$. Then the resulting mixture was stirred at room temperature for $4-5 \mathrm{~h}$ and then the reaction mixture was diluted with 1 M HCl and extracted in ethyl acetate ($4 \times 25 \mathrm{~mL}$) from the aqueous layer. The combined layer was washed with sodium bicarbonate solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting products were purified by column chromatography employing EtOA/Hexane as an eluent.
6.4.1. \boldsymbol{N}^{\prime}-1-[2-(4-Chloroanilino)-3-pyridyl]carbonyl-4-methyl-1-benzenesulfonohydrazide (7a). The title compound
was obtained from 2-(4-chloroanilino)-3-pyridinecarbohydrazide $(5 a, \quad 263 \mathrm{mg}, \quad 1 \mathrm{mmol})$ and 4-methyl benzenesulfonyl chloride ($\mathbf{6 a}, 228 \mathrm{mg}, 1.2 \mathrm{mmol}$) as described in Section 6.4.

Yield 68%; mp $241-243{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.96(1 \mathrm{H}, \mathrm{d}, J=4.46 \mathrm{~Hz}), 9.79$ (br s, 1H), $9.36(\mathrm{~d}, J=4.46 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}$, $J=5.20,1.48 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, \quad J=7.43,1.48 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, ~ J=8.17 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.176 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20$ (dd, $J=15.61,8.92 \mathrm{~Hz}, 4 \mathrm{H}), 6.71(\mathrm{dd}$, $J=8.17,5.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$; FABMS m/z 417 $(\mathrm{M}+1)^{+} ; \mathrm{IR}(\mathrm{KBr})\left(v_{\max } / \mathrm{cm}^{-1}\right): 1150,1328\left(\mathrm{SO}_{2}\right), 1248$ (C-N), 1521, 1602, $1648(\mathrm{C}=\mathrm{O}), 1721,3036$ (methyl), 3323 (NH). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 54.74$; H, 4.11; N, 13.44. Found: C, 54.79; H, 4.21; N, 13.35.
6.4.2. $\quad N^{\prime}$-1-[2-(4-Methoxyanilino)-3-pyridyl]carbonyl-4-methyl-1-benzenesulfonohydrazide (7b). The title compound was obtained from 2-(4-methoxyanilino)-3pyridinecarbohydrazide ($\mathbf{5 b}, 258 \mathrm{mg}, 1 \mathrm{mmol}$) and 4methyl benzenesulfonyl chloride ($\mathbf{6 a}, 228 \mathrm{mg}, 1.2 \mathrm{mmol}$) as described in Section 6.4.

Yield 75%; mp $159-161{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- $\left.d_{6}\right): \delta 10.80(1 \mathrm{H}, \mathrm{d}, J=4.29 \mathrm{~Hz}), 9.49$ $(\mathrm{d}, J=4.29 \mathrm{~Hz}, 1 \mathrm{H}), 9.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.11(\mathrm{dd}$, $J=3.57 \mathrm{~Hz}, 1.43,1 \mathrm{H}), 7.92(1 \mathrm{H}, \mathrm{dd}, J=7.15,1.43,1 \mathrm{H})$, 7.70 (dd, $J=7.86,0.71 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.58 \mathrm{~Hz}$, 2,$), 7.18(\mathrm{~d}, J=7.86 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 2 \mathrm{H})$, $6.58(\mathrm{dd}, J=5.00,7.86 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, 3H); FABMS m/z $413(\mathrm{M}+1)^{+}$; IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right)$: 1163, $1337\left(\mathrm{SO}_{2}\right), 1245(\mathrm{C}-\mathrm{N}), 1517,1603,1659(\mathrm{C}=\mathrm{O})$, 1740, 2854, 2924 (methyl), 3213, 3325 (NH). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 58.24 ; \mathrm{H}, 4.89$; N, 13.58. Found: C, 58.31; H, 4.84; N, 13.62.
6.4.3. N^{\prime}-1-[2-(4-Fluoroanilino)-3-pyridyl]carbonyl-4-fluo-ro-1-benzenesulfonohydrazide (7c). The title compound was obtained from 2-(4-fluoroanilino)-3-pyridinecarbohydrazide ($\mathbf{5 c}, 246 \mathrm{mg}, 1 \mathrm{mmol}$) and 4-fluoro benzenesulfonyl chloride $(\mathbf{6 b}, \quad 232 \mathrm{mg}, \quad 1.2 \mathrm{mmol})$ as described in Section 6.4.

Yield 70%; mp $225-227{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.92(\mathrm{~d}, J=3.18 \mathrm{~Hz}, 1 \mathrm{H}), 9.78$ (br s, 1H), $9.73(\mathrm{~d}, J=3.18 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}$, $J=4.77,1.59 \mathrm{~Hz}, \quad 1 \mathrm{H}), 8.02(\mathrm{dd}, J=7.95,1.59 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94(\mathrm{dd}, \quad J=8.76,4.77 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (dd, $J=8.76,4.77 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (t, $J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=7.96,4.77 \mathrm{~Hz}, 1 \mathrm{H})$; FABMS $m / z 405(\mathrm{M}+1)^{+}$; IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 1154$, $1344\left(\mathrm{SO}_{2}\right), 1256(\mathrm{C}-\mathrm{N}), 1506,1585,1691(\mathrm{C}=\mathrm{O})$, $3030(\mathrm{Ar}-\mathrm{H})$, 3232, 3355 (NH). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 53.46 ; \mathrm{H}, 3.49$; N, 13.85. Found: C, $53.51 ; \mathrm{H}, 3.46$; N, 13.76 .
6.4.4. $\quad N^{\prime}$-1-[2-(2,4-Dichloroanilino)-3-pyridyl]carbonyl-4-fluoro-1-benzenesulfono-hydrazide (7d). The title compound was obtained from 2-(2,4-dichloroanilino)-3-pyridinecarbohydrazide ($\mathbf{5 d}, 297 \mathrm{mg}, 1 \mathrm{mmol}$) and 4fluoro benzenesulfonyl chloride ($\mathbf{6 b}, 232 \mathrm{mg}, 1.2 \mathrm{mmol}$) as described in Section 6.4.

Yield 75%; mp $237-239{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.96$ (d, $J=5.00,1 \mathrm{H}$), 10.29 (br $\mathrm{s}, 1 \mathrm{H}), 9.42(\mathrm{~d}, J=5.00,1 \mathrm{H}), 8.52(\mathrm{~d}, J=9.29 .1 \mathrm{H})$, $8.22(\mathrm{dd}, J=5.00,1.43,1 \mathrm{H}), 8.08(\mathrm{dd}, J=7.86$, $1.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.58,5.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}$, $J=2.14 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.14 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}$, $J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=7.86,4.29 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{LC}-$ MS $m / z 454.9\left(\mathrm{M}^{+}\right), 476.9\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; IR (KBr) $\left(v_{\max } /\right.$ $\left.\mathrm{cm}^{-1}\right): 1164,1326\left(\mathrm{SO}_{2}\right), 1247(\mathrm{C}-\mathrm{N}), 1500,1604,1660$ $(\mathrm{C}=\mathrm{O}), 3103(\mathrm{Ar}-\mathrm{H}), 3268,3355(\mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 47.49 ; \mathrm{H}, 2.88 ; \mathrm{N}, 12.31$. Found: C, 47.52; H, 2.86; N, 12.28.
6.4.5. N^{\prime}-1-[2-(4-Fluoroanilino)-3-pyridyl]carbonyl-4-chlo-ro-1-benzenesulfonohydrazide (7e). The title compound was obtained from 2-(4-fluoroanilino)-3-pyridinecarbohydrazide ($5 \mathrm{c}, 246 \mathrm{mg}, 1 \mathrm{mmol}$) and 4-chloro benzenesulfony lchloride ($\mathbf{6 c}, 252 \mathrm{mg}, 1.2 \mathrm{mmol}$) as described in Section 6.4.

Yield 70%; mp $\quad 232-235^{\circ} \mathrm{C}$ (charred); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}): 10.85$ (br s, $1 \mathrm{H}), 9.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.14$ (dd, $J=4.45,1.48,1 \mathrm{H}), 7.95$ (dd, $J=8.17,1.48,1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.17,2 \mathrm{H}), 7.38$ (m, 4H), $6.68(\mathrm{t}, J=8.91,2 \mathrm{H}), 6.60(\mathrm{dd}, J=8.17,4.45$, $1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 420.9\left(\mathrm{M}^{+}\right), 443\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; IR (KBr) $\left(v_{\text {max }} / \mathrm{cm}^{-1}\right): 1157,1337\left(\mathrm{SO}_{2}\right), 1253(\mathrm{C}-\mathrm{N}), 1506$, 1588, 1613, $1735(\mathrm{C}=\mathrm{O}), 3021$ ($\mathrm{Ar}-\mathrm{H}$), $3330(\mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClFN}_{4} \mathrm{O}_{3} \mathrm{~S}$: C, 51.37 ; $\mathrm{H}, 3.35$; N, 13.31. Found: C, 51.32; H, 3.37; N, 13.28.
6.4.6. $\quad N^{\prime}$-1-[2-(4-Chloroanilino)-3-pyridyl]carbonyl-2,4-dichloro-1-benzenesulfono-hydrazide (7f). The title compound was obtained from 2-(4-chloroanilino)-3pyridinecarbohydrazide ($5 \mathrm{a}, 263 \mathrm{mg}, 1 \mathrm{mmol}$) and 2,4dichloro benzenesulfonyl chloride (6d, 293 mg , 1.2 mmol) as described in Section 6.4.

Yield 70%; mp $215-216{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.85$ (br s, 1 H), 9.86 (br s, 1 H), $9.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.18$ (dd, $J=4.21,1.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ $(\mathrm{d}, J=1.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, $J=1.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, ~ J=8.43 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ (dd, $J=8.43,1.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 2 \mathrm{H})$, $6.64(\mathrm{dd}, \quad J=7.59,4.21 \mathrm{~Hz}, 1 \mathrm{H})$; FABMS $m / z 473$ $(\mathrm{M}+2)^{+} ; \mathrm{IR}(\mathrm{KBr})\left(v_{\max } / \mathrm{cm}^{-1}\right): 1162,1339\left(\mathrm{SO}_{2}\right), 1251$ (C-N), 1518, 1607, $1644(\mathrm{C}=\mathrm{O}), 1738,3020(\mathrm{Ar}-\mathrm{H})$, 3339 (NH). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$: C, 45.83; H, 2.78; N, 11.88. Found: C, 45.78; H, 2.76; N, 11.81 .
6.4.7. N-1-4-[(2-[2-(4-Chloroanilino)-3-pyridyl]carbonylhyd-razino)sulfonyllphenyl-acetamide (7g). The title compound was obtained from 2-(4-chloroanilino)-3-pyridinecarbohydrazide $(5 \mathrm{a}, 263 \mathrm{mg}, 1 \mathrm{mmol})$ and 4 -acetylamino benzenesulfonyl chloride ($6 \mathbf{e}, 280 \mathrm{mg}, 1.2 \mathrm{mmol}$) as described in Section 6.4.

Yield 65%; mp $245-247^{\circ} \mathrm{C}$ (charred); ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right): \delta 11.02(\mathrm{~d}, \quad J=3.37$, $1 \mathrm{H}), 10.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.04(\mathrm{~d}, J=3.37 \mathrm{~Hz}, 1 \mathrm{H}), 9.72$ (br s, 1 H$), 8.32(\mathrm{dd}, J=5.06 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}$, $J=7.59, \quad 1.68 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 7.74(\mathrm{~m}, \quad 4 \mathrm{H}), \quad 7.54(\mathrm{~d}$,
$J=8.43 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}$, $J=5.06,7.59 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;$ FABMS m/z 460 $(\mathrm{M}+1)$; IR $(\mathrm{KBr})\left(v_{\text {max }} / \mathrm{cm}^{-1}\right): 1171,1328\left(\mathrm{SO}_{2}\right), 1261$ (C-N), 1517, 1590, 1671 ($\mathrm{C}=\mathrm{O}$), 2854, 2923 (methyl), 3101 (Ar-H), 3220, 3306, 3384 (NH). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 52.23 ; \mathrm{H}, 3.94 ; \mathrm{N}, 15.23$. Found: C, $52.28 ; \mathrm{H}, 3.92 ; \mathrm{N}, 15.19$.
6.4.8. N-1-4-[(2-[2-(4-Fluoroanilino)-3-pyridyl]carbonylhyd-razino)sulfonyl|phenyl-acetamide (7h). The title compound was obtained from 2-(4-fluoroanilino)-3-pyridinecarbohydrazide $(5 \mathrm{c}, 246 \mathrm{mg}, 1 \mathrm{mmol})$ and 4 -acetylamino benzenesulfonyl chloride ($\mathbf{6 e}, \quad 280 \mathrm{mg}, 1.2 \mathrm{mmol}$) as described in Section 6.4.

Yield 60%; mp $215-216{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.88$ (d, $J=3.71 \mathrm{~Hz}, 1 \mathrm{H}$) 10.04 (br s, 1H), $9.70(\mathrm{~d}, J=3.17 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 8.16 (dd, $J=4.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=7.43,1.48 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{dd}, \quad J=8.91, \quad 14.12 \mathrm{~Hz}, 4 \mathrm{H}), 7.42$ (q, $J=4.45 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, \quad J=8.17,2 \mathrm{H}), 6.66(\mathrm{dd}$, $J=5.20,7.43 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;$ LC $-\mathrm{MS} \mathrm{m} / \mathrm{z} 444.0$ $\left(\mathrm{M}^{+}\right), 466.9\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{~S}$: C, 54.17; H, 4.09; N, 15.79. Found: C, 54.13; H, 4.10; N, 15.75 .
6.4.9. N^{\prime}-1-[(2-Anilino-3-pyridyl)carbonyl]-1-benzenesulfonohydrazide (7i). The title compound was obtained from 2-anilino-3-pyridinecarbohydrazide (5e, $228 \mathrm{mg}, 1 \mathrm{mmol}$) and benzenesulfonyl chloride ($\mathbf{6 f}, 0.15 \mathrm{ml}, 1.2 \mathrm{mmol}$) as described in Section 6.4.

Yield 78%; mp $172-174{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 10.86$ (br s, 1 H), $9.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $9.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=4.29,1.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (dd. $J=7.86, \quad 1.43 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 7.84 \quad(\mathrm{dd}, \quad J=7.86$, $1.43 \mathrm{~Hz}, 2 \mathrm{H}), \quad 7.40(\mathrm{t}, \quad J=7.86 \mathrm{~Hz} 5 \mathrm{H}), 7.16 \quad(\mathrm{t}$, $J=7.86 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.86 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}$, $J=5.00,7.86 \mathrm{~Hz}, 1 \mathrm{H})$; FABMS m/z $369(\mathrm{M}+1)^{+}$; IR $(\mathrm{KBr})\left(v_{\max } / \mathrm{cm}^{-1}\right): 1157,1335\left(\mathrm{SO}_{2}\right), 1253(\mathrm{C}-\mathrm{N})$, 1521, 1602, $1645(\mathrm{C}=\mathrm{O}), 3048(\mathrm{Ar}-\mathrm{H}), 3325(\mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$: C, $58.68 ; \mathrm{H}, 4.38$; N, 15.21. Found: C, $58.61 ;$ H, $4.40 ;$ N, 15.19 .

7. Biological activity

7.1. In vitro anticancer screening

In vitro anticancer screening assays were performed according to NCI procedures. ${ }^{24,26-28}$

7.2. Antibacterial activity

All synthesized compounds were screened for their antibacterial activity against E. coli MTCC 448, P. aeruginosa MTCC 424, S. epidermidis MTCC 435, B. subtilis MTCC 441 and Vibrio species using Mueller-Hinton agar medium (Hi-Media Laboratories, India). Minimum inhibitory concentrations (MIC) were determined using Kirby-Bauer method. ${ }^{32}$ The MIC was considered to be the lowest concentration of the test substance exhibiting no visible growth of bacteria on the plate.

The test compounds were prepared with different concentrations using N, N-dimethylformamide (DMF). Discs of each concentrations were placed in triplicate in the medium inoculated with fresh bacteria separately $\left(1-5 \times 10^{4} \mathrm{cfu} \mathrm{mL}^{-1}\right)$. The incubation was carried out at $30^{\circ} \mathrm{C}$ for 18 h . Sulfanilamide and sulfadiazine were used as positive controls and solvent did not show inhibition.

Acknowledgements

We thank the Development Therapeutics Program of the National Cancer Institute, Bethesda, MD, USA, for providing the in vitro antitumour screening data and the authors M.N.A.K, K.S.R thank CSIR and the author K.R thanks UGC, New Delhi, India, for the award of research fellowships.

References and notes

1. Buolamwini, J. K. Curr. Opin. Chem. Biol. 1999, 3, 500.
2. Jones, D. A.; Fitzpatrick, F. A. Curr. Opin. Chem. Biol. 1999, 3, 71.
3. Drew, J. Science 2000, 287, 1960.
4. Supuran, C. T.; Casini, A.; Scozzafava, A.; Mastrolorenzo, A. Curr. Cancer Drug Targets 2002, 2, 55.
5. Owa, T.; Nagasu, T. Exp. Opin. Ther. Patents 2000, 10, 1725.
6. Supuran, C. T.; Scozzafava, A. Exp. Opin. Ther. Patents 2000, 10, 575.
7. Supuran, C. T.; Scozzafava, A. Curr. Med. Chem.Immunol., Endocrinol. Metab. Agents 2001, 1, 61.
8. Lobb, K. L.; Hipskind, P. A.; Aikins, J. A.; Alvarez, E.; Cheung, Y.; Considine, E. L.; De Dios, A.; Durst, G. L.; Ferritto, R.; Grossman, C. S.; Giera, D. D.; Hollister, B. A.; Huang, Z.; Iversen, P. W.; Law, K. L.; Tiechao, L. i.; Ho-Shen Lin Lopez, B.; Lopez, J. E.; Cabrejas, L. M. M.; Denis J McCann, D. J.; Molero, V.; Reilly, J. E.; Richett, M. E.; Shih, C.; Teicher, B.; Wikel, J. H.; White, W. T.; Mader, M. M. J. Med. Chem 2004, 47, 5367.
9. Medina, J. C.; Roche, D.; Shan, B.; Learned, R. M.; Frankmoelle, W. P.; Clark, D. L.; Rosen, T.; Jaen, J. C. Bioorg. Med. Chem. Lett. 1999, 9, 1843.
10. Maren, T. H. Annu. Rev. Pharmacol. Toxicol. 1976, 16, 309.
11. Boyd, A. E. Diabetes 1988, 37, 847.
12. Koyanagi, N.; Nagasu, T.; Fujita, F.; Watanabe, T.; Tsukahara, K.; Funahashi, Y.; Fujita, M.; Taguchi, T.; Yoshino, H.; Kitoh, K. Cancer Res. 1994, 54, 1702.
13. Yokoi, A.; Kuromitsu, J.; Kawai, T.; Nagasu, T.; Sugi, N. H.; Yoshimatsu, K.; Yoshino, H.; Owa, T. Mol. Cancer Ther. 2002, 1, 275.
14. Yoshimatsu, K.; Yamaguchi, A.; Yoshino, H.; Koyanagi, N.; Kitoh, K. Cancer Res. 1997, 57, 3208.
15. Nakatsu, N.; Yoshida, Y.; Yamazaki, K.; Nakamura, T.; Dan, S.; Fukui, Y.; Yamori, T. Mol. Cancer Ther. 2005, 4, 399.
16. Mokotoff, M.; Brynes, S.; Burckart, G. J. J. Med. Chem. 1978, 21, 45.
17. Supuran, C. T.; Winum, J. Y.; Dogne, J. M.; Casini, A.; de Leval, X.; Montero, J. L.; Scozzafava, A.; Vullo, D.; Innocenti, A. J. Med. Chem. 2005, 48, 2121.
18. Ariesan, V.; Marie, Mrs.; Cuparencu, B.; Safta, L. Therapie 1972, 27, 309 (Fr).
19. Jouhari, R.; Quinn, P. Heterocycles 1994, 38, 2243.
20. Fand, T. I.; Spoerri, P. E. J. Am. Chem. Soc. 1952, 74, 1345.
21. Huntress, E. H.; Carten, F. H. J. Am. Chem. Soc. 1940, 62, 511.
22. Halperin, J. A.; Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y. H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M. J. Med. Chem. 2004, 47, 4979.
23. Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbot, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R. Cancer Res. 1988, 48, 589.
24. Grever, M. R.; Schepartz, S. A.; Chabner, B. A. Semin. Oncol. 1992, 19, 622.
25. Boyd, M. R.; Paull, K. D. Drug Dev. Res. 1995, 34, 91.
26. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757.
27. Weinstein, J. N.; Myers, T. G.; Connor, P. M.; S. H.; Friend, Fornace, A. J., Jr.; Kohn, K. W.; Fojo, T.; Bates,
S. E.; Rubinstein, L. V.; Anderson, N. L.; Buolamwini, J. K.; van Osdol, W. W.; Monks, A. P.; Scudiero, D. A.; Sausville, E. A.; Zaharevitz, D. W.; Bunow, B.; Viswanadhan, V. N.; Johnson, G. S.; Wittes, R. E.; Paull, K. D. Science 1997, 275, 343.
28. Data concerning the NCI screening methods in detail are accessible from the NCI via the Internet from the following address: http://dtp.nci.nih.gov/branches/btb/ ivclsp.html.
29. Yoshino, H.; Ueda, N.; Niijima, J.; Sugumi, H.; Kotake, Y.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; Tsukahara, K.; Iijima, A.; Kitoh, K. J. Med. Chem. 1992, 35, 2496.
30. ALOGPS 2.1 software available at http://www.vcclab.org/ lab/alogps.
31. Tetko, I. V.; Tanchuk, V. Y. J. Chem. Inf. Comput. Sci. 2002, 42, 1136.
32. Prescott, L. M.; Harley, J. P.; Klein, D. A. Microbiology, 5th ed.; McGraw-Hill: New York, 2002, Chapter 35, pp 805-825.

[^0]: Keywords: 2-Anilino substituted nicotinyl arylsulfonylhydrazides; Anticancer agents; Antibacterial agents.

 * Corresponding author. Tel.: +91 40 27193157; fax: +91 40 27193189; e-mail: ahmedkamal@iict.res.in

