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A B S T R A C T   

A novel, efficient, and core/shell nanosphere catalyst (Fe3O4@C-NHCS-Au0) was successfully synthesized with a 
movable magnetite core encapsulated in a carbon shell. It was modified using APTES (3-amino
propyltriethoxysilane) to convert dithiocarbamate (DTC) functional group in the carbon surface though post- 
modification with CS2 (carbon disulfide). Au0-nanoparticles were decorated via DTC binder to improve the 
catalytic activity. It was applied as a high-efficiency nanocatalyst in promoting three-component A3 coupling 
reaction of alkynes, aldehydes, and amines for the synthesis of propargyl amines under the optimized condition.   

1. Introduction 

Magnetic nanoparticles of magnetite (Fe3O4) and its modified core- 
shell functionalized hybrid materials, are arguably the most exten
sively studied in chemistry and industry as a green recoverable 
magnetically catalyst for several organic transformations, e.g. prepara
tion of propargyl amines [1,2]. Functionalized magnetite can be easy the 
recovery of nanocatalysts effectively from the reaction media by an 
outer permanent magnetic field [3,4]. Nevertheless, the main limitation 
of the practical application of Fe3O4 is extremely susceptible to oxidative 
and acidic conditions [5,6]. Maintaining the stability of the magnetite is 
performed by coating an external protective layer to avoid coagulation 
mass and corrosion. To achieve this, an effective method is encapsu
lating Fe3O4 nanoparticles by a coating material from organic substance 
and polymer. Glucose, one of organic coating material can be used as a 
particle size reduction agent for Fe3O4 to manufacture Fe3O4@C 
core-shell nanostructures with a carbon shell and magnetic core [6]. 
Moreover, in the catalysis of many reactions, core-shell nanocatalysts 
are very effective [7]. Fe3O4@C core-shell nanoparticles have technical 

applications as a result of useful properties of carbon coating containing 
naturally porous structure and high stability under extreme conditions. 
These nanostructures are being utilized in different fields e.g. medicine, 
catalyst, magnetic resonance imaging (MRI), targeting drug delivery, 
immunoassay, biology, and separation approaches [8–12]. Common 
application of Fe3O4@C is because of their unique characteristics 
including great specific surface area, hydrophobic, small size, low 
toxicity, biocompatibility, chemically inert, great saturation magneti
zation level, and injectability in industrial uses [13]. 

The matrices of magnetic nanocomposite as both the support and the 
nanoparticles stabilizer provide a mechanism for preventing aggrega
tion. Also, magnetic separation instead of centrifugation or filtration 
decreases wasted catalyst and increases the recoverability [14–16]. 

In recent years, a large number of multicomponent reactions (MCRs) 
have been improved as a powerful and efficient tool for assembling 
complex molecules with significant biologic properties through the 
several simple and accessible precursors in a one-pot process [17]. 
Nowadays, the importance and usefulness of MCRs are well-known 
[18–20]. Among the various MCRs, 3-CR (three-component reaction) 
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of amines, aldehydes, and terminal alkynes (the A3 coupling reaction) is 
a powerful, useful, and selective way for the production of valuable 
propargylamine compounds [21]. Propargylamines have emerged as 
synthetically flexible important skeletons and main intermediates for 
the synthesis of many nitrogenous-including biologic active molecules, 
e.g. oxotremorine analogs, β-lactams, polyfunctional amino compounds, 
natural products e.g. fungicides, herbicides, and polymers, agricultural 
chemicals, pharmaceutical materials as the therapeutic agents of Alz
heimer’s and Parkinson’s disease [21–26]. 

The traditional procedure for propargylamine production is cata
lyzed A3-coupling using some transition metal that is performed by 
nucleophilic addition of Grignard reactants on imines or lithium ace
tylides [27]. However, reactants in this approach are very sensitive to 
moisture which requires highly regulated reaction conditions and so the 
use of the reactants in stoichiometric amounts. In the existence of more 
active groups of esters, this method is limited [1,28]. A3-coupling, 
catalytic C–H activation is an alternative eco-friendly and 
atom-economical process to manufacture of propargyl amines with the 
theoretical side product only water [29,30]. 

Recently, direct addition of terminal alkynes on C––N double bonds 
prepared from either amines and aldehydes or imines in one-pot method 
via activation of alkynes C–H bond by some noble transition- metal 
catalysts under both homogeneous by several salts and complexes such 
as gold,[21,31–33] copper,[21,34,35] silver,[21,33,36,37] zinc,[21,38, 
39] nickel,[40] iron,[41] mercury,[42] cobalt,[43] iridium,[44] ruthe
nium,[45] indium,[46] zirconium,[47] rhenium,[48], Polyoxovanadate 
[49] and so on and heterogeneous [50–58] supported (AgI, AuIII, CuI, 
etc) and (CuI, AgI, and AuI in ionic liquids) conditions have been suc
cessfully utilized to catalyze A3 coupling reaction. 

Dithiocarbamates, the soft sulfur donor ligands can be easily stabi
lized unusually high oxidation states of transition metals. Metal di
thiocarbamates have two advantages: (i) easy hand working in 
anhydrous form and chemic stability; (ii) good solubility in organic 
solvents [59–63]. 

Gold catalysts, especially the catalysts of Au nanoparticles, have 
attracted much attention, given their comprehensive role as catalysts in 
the preparation of propargylamine through the activation of C–H 
(coupling reaction A3) [64–66]. In continuous of our efforts for 
designing novel nanocomposites and because of high-value of the 
propargyl amines herein, we reported a magnetic 
dithiocarbamate-functionalized core/shell nanostructure Fe3O4@C, 
which decorated with the substantial impact of Au0-nanoparticles were 
utilized as heterogeneous catalysts in the synthesis of propargyl amines 
under mild reaction conditions with good to excellent yield (Scheme 1). 

2. Experimental 

2.1. Chemicals and apparatus 

All reagents were obtained commercially from Merck, Sigma, and 
were used without purification. FT-IR spectra were recorded with a 
shimadazu IR-640 spectrometer. The crystalline phases of the particles 
were recognized by Philips-PW1800 diffractometer XRD instrument. 
The 1H and 13C NMR spectra were recorded on a Bruker Avance 300 
spectrometers. Melting points were measured on an Electrothermal 
9100 apparatus. 

2.2. Synthesis of Fe3O4@C-NHCS2H nanoparticles 

Fe3O4 nanoparticles were prepared corresponding to the Zhao route 
[67]. Firstly, FeCl3.6H2O (1.5 g, 5.55 mmol) and Polyvinylpyrrolidone 
(PVP, 1 g), and NaOAc (2 g) were dissolved in EG (ethylene glycol 30 
mL) and stirred for 2 h. After transferring the mixture to a Teflon-line 
autoclave was sealed. After heating it for 10 h at 210 ◦C, the black 
sediment was collected by an external magnet after washing with 
distilled water and ethanol for several times. Encapsulation of prepared 
Fe3O4 nanoparticles with carbon shell was done with an improvement of 
literature [68]. 0.1 g of the synthesized Fe3O4 was dispersed under 
ultrasonication in 30 mL water containing 2.0 g glucose. After trans
ferring the mixture to a Teflon-line autoclave with a 100 mL capacity 
was heated at for 12.5 h 205 ◦C. Then, the black solid product was 
gathered using an external magnet from the mixture and washed for 
several times with water. Finally, it was dried at 60 ◦C for 24 h in vac
uum. The synthesized Fe3O4@C was functionalized corresponding to the 
literature [69]. Fe3O4@C (0.1 g) was dispersed with ultrasonication in 
toluene (10 mL) and after adding 2 mL of APTES to the mixture refluxed 

Scheme 1. A3 coupling reaction over Gold nanoparticle stabilized mag
netic carbon. 

Scheme 2. Schematic way for the immobilization of Au onto the Fe3O4@C-NHCS2H.  
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for 2 h at 110◦ C. Finally, the black solid was separated by an external 
magnet and washed for several times with ethanol. Afterward, it was 
dispersed in 10 mL methanol and kept it in sonicate condition for 10 
min. Finally, 1.1 mL carbon disulfide (CS2) was added to the reaction 
mixture and stirred for more than 12 h. The final product Dithiocarba
mate functionalized magnetic carbon (Fe3O4@C-NHCS2H) was collected 
using a magnet, washed with ethanol, and dried for 5 h at 60–70 ◦ C. 

2.3. Au NPs immobilization onto the Fe3O4@C-NHCS2H 

Au nanoparticles on to the dithiocarbamate functionalized magnetic 
carbon (Fe3O4@C-NHCS2H) were immobilized on the support based on 

literature [70]. Typically, 0.3 g of Fe3O4@C-NHCS2H were added to 0.12 
M HAuCl4 aqueous solution (10 mL), after 5 min sonication, it was kept 
for 24 h under stirring. Finally, the black reaction mixture was filtered 
by an external magnet the obtained solid was washed with ethanol 
(EtOH) for three times to gain Fe3O4@C-NHCS2H.AuCl3. Then, in a 
separated vessel, 5 mL of 0.2 mol/L of freshly prepared NaBH4 (in 
methanol) was prepared and dropwise added to a mixture of prepared 
Fe3O4@C-NHCS2H.AuCl3 in 50 mL dry methanol during 15 min. After, 
30 min, the solid products were collected by an external magnet and 
washed with methanol, obtaining Fe3O4@C-NHCS2H.AuNPs. 

Fig. 1. (a,c) FE-SEM and TEM images of Fe3O4@C-NHCS2H.AuNPs and (b) TEM image of Fe3O4@C-NHCS2H, and (d) particle size of Fe3O4@C-NHCS2H.AuNPs 
microspheres. 

Scheme 3. A plausible mechanism for the Au-catalyzed A3-coupling.  
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2.4. General synthesis of propargyl amines 

First, 1 mmol of benzaldehyde, 1.2 mmol of morpholine, a 1.3 mmol 
of phenylacetylene 0.4 g of Fe3O4@C-NHCS2H.AuNPs, and 1 mmol of 
K2CO3 were added to 4 mL of CHCl3 and allowed to stirrer at room 
temperature. The reaction progress was monitored by TLC method. After 
completion of the reaction, the gold catalyst was removed by an external 
magnet. The nanocatalyst was then washed with ethyl acetate (3 × 5 
mL). The reaction solvent was evaporated to give paste for plate- 
chromatography. The corresponding propargyl amines were analyzed 
by physical properties, 1H NMR, and 13C NMR. 

1-(1,3-diphenylprop-2-yn-1-yl)piperidine: 1H NMR (CDCl3, 500 
MHz): δH (ppm) 1.46 (s, 3H, NCH2CH2CH2), 1.60–1.66 (m, 6H, 
NCH2CH2CH2), 2.59 (s, 4H, NCH2CH2CH2), 4.83 (s, 1H of NCH), 
7.32–7.40 (m, 6H of Ar), 7.53–7.55 (m, 2H of Ar), 7.65 (d, 3JHH =7 Hz, 2 
H). 

4-(1,3-diphenylprop-2-yn-1-yl)morpholine: 1H NMR (CDCl3, 500 
MHz): δH (ppm) 2.66 (s, 2H, NCH2CH2O), 3.76 (t, 3JHH =5.5 Hz, 4H, 
NCH2CH2O), 4.82 (s, 1H of NCH), 7.33–7.41 (m, 6H of Ar), 7.53–7.55 
(m, 2H of Ar), 7.64 (d 3JHH =7.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): 
δc (ppm) 62.03 (NCH), 67.17 (NCH2CH2O), 85.03 (Ph-C≡C), 88.48 
(HCN-C≡C), 122.97, 127.78, 128.23, 128.31, 128.59, 131.81, 137.79. 

4-(3-phenyl-1-(p-tolyl)prop-2-yn-1-yl)morpholine: 1H NMR (CDCl3, 
500 MHz): δH (ppm) 2.66 (s, 3H of Me), 2.71− 2.62 (m, 4H, NCH2CH2O), 
3.80− 3.71 (m, 4H, NCH2CH2O), 4.87 (s, 1H of NCH), 7.22− 7.19 (m, 2H 
of Ar), 7.36− 7.33 (m, 3H of Ar). 13C NMR (125 MHz, CDCl3): δc (ppm) 
31.7 (CH3), 50.7 (NCH2CH2O), 61.7 (NCH), 67.9 (NCH2CH2O), 85.3 
(Ph-C≡C), 88.5 (HCN-C≡C), 123.2, 128.3, 128.4, 128.6, 129.1, 131.7, 
135.6, 137.6. 

1-(1-(2-chlorophenyl)-3-phenylprop-2-yn-1-yl)piperidine: 1H NMR 
(CDCl3, 500 MHz): δH (ppm) 1.44 (t, 3JHH =5.5 Hz, 2H, NCH2CH2CH2), 
1.57–1.61 (m, 4H, NCH2CH2CH2), 2.63 (t, 3JHH =5.5 Hz, 4H, 

NCH2CH2CH2), 5.12 (s, 1H of NCH), 7.25–7.29 (m, 2H of Ar), 7.34 (t, 
3JHH =6.5 Hz, 2H of Ar), 7.51–7.53 (m, 1H of Ar), 7.76–7.77 (m, 1H of 
Ar). 13C NMR (125 MHz, CDCl3): δc (ppm) 24.45 (NCH2CH2CH2), 26.14 
(NCH2CH2CH2), 50.70 (NCH), 59.25 (NCH2CH2CH2), 85.81 (Ph-C≡C), 
87.63 (HCN-C≡C), 123.17, 126.17, 128.13, 128.27, 128.76, 1-(1-(2- 
chlorophenyl)-3-phenylprop-2-ynyl)morpholine: 1H NMR (CDCl3, 500 
MHz): δH (ppm) 2.69 (t, 3JHH =4.5 Hz, 4H, NCH2CH2O), 3.68–3.77 (m, 
4H, NCH2CH2O), 4.95 (s, 1H of NCH), 7.29–7.36 (m, 5H of Ar), 
7.42–7.44 (m, 1H of Ar), 7.51–7.53 (m, 2H of Ar), 7.76 (t, 3JHH =2.5 Hz, 
1H of Ar). 

3. Results and discussion 

In the present study, we designed DTC functionalized magnetic core- 
shell for immobilization ultra-fine Au NPs. In this methodology, the 
magnetic NPs coated via carbon for functionalized with DTC ligand to be 
immobilized Au NPs and dispersible in the organic solvent. A schematic 
illustration of the Fe3O4@C-NHCS2H.AuNPs synthesis is shown in 
Scheme 2. 

To verify this speculation, the morphology of the obtained nano
sphere has been investigated through FESEM and TEM as shown in 
(Fig. 1). The FESEM image (Fig. 1a) shown that the of the Fe3O4@C- 
NHCS2H.AuNPs microspheres morphology. The surface of the micro
sphere with DTC ligand helps for the stabilization of Au NPs and inhi
bition from agglomeration. From the TEM images can provide more 
detailed information that enables us to view the spherical Au NPs are 
well-distributed on the surface of the Fe3O4@C-NHCS2H without sig
nificant agglomeration. The size distribution histogram for Au NPs 
(Fig. 1d) shows a mean diameter of 3.3 ± 0.9 nm, which confirms that 
Au NPs maintain its high monodispersity profile even after immobili
zation on the support. 

Fig. 2 exhibits the FT-IR spectra of Fe3O4@C and the individual Au 

Fig. 2. FTIR spectra of Fe3O4@C, and Fe3O4@C-NHCS2H.AuNPs.  
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nanoparticles synthesized Fe3O4@C-NHCS2H.AuNPs in this work. For 
Fe3O4@C, the peaks in the 2900− 3000 cm-1 and 3424 cm-1, can be 
assigned to surface C–H of carbon while O–H functional groups can be 
attributed to the surface of the carbon. In the spectra of Fe3O4@C- 
NHCS2H.Au nanoparticles, it is worth noting that the peak of Fe3O4@C 
nanoparticles at 1621 cm-1 is red shifted to 1601 cm -1 because of the 
surface change of bifunctional hybrid nanomaterials. Also, the bands at 
1446, 1378, and 1252 cm-1 are assigned to C––S. A characteristic band 
at 1113 cm-1 can be assigned to the existing CN bonds of DTC. The 
absorption band at 698 cm− 1 referred to the vibration of C–S in the 
ligand of DTC. These can be proved to the successful synthesis of 
Fe3O4@C-NHCS2H.AuNPs. 

To determine the composition of the synthesized metallic Fe3O4@C- 
NHCS2H.AuNPs nanocrystals, EDX spectra and elemental SEM-mapping 
were recorded, as shown in Fig. 3. The results revealed that the peaks 
found in the spectrum were derived from C, N, O, S, Au, and Fe atoms, 
indicating that the purity and successful deposition of Au to Fe3O4@C- 
NHCS2H microsphere. Wt% of Au in the microsphere was calculated 
AAS. According to this, the wt% of Au was 1.36 %. 

X-ray photoelectron spectra (XPS), one of the most important tech
niques to determine the oxidation state of surface elements in materials, 
was used to characterize the Fe3O4@C-NHCS2H.AuNPs composites. The 
XPS spectrum of the gold core levels(4f) shows two intense photo-peaks 
with maximum BE (binding energy) values of 83.5 and 87.2 eV ascribed 

Fig. 3. EDX spectra of Fe3O4@C (a), Fe3O4@C-NHCS2H (b), Fe3O4@C-NHCS2H.AuNPs microspheres (c). SEM-mapping of Fe3O4@C-NHCS2H.AuNPs (d-f).  
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to the Au 4f7/2 and 4f5/2 doublet, respectively. So, these BE values are 
consistent with the presence of gold species in the metallic state [71]. 
The XPS spectrum of the C 1s revealed three peaks located at 284.2, 
285.4 and 288.1 eV, which are corresponding to the sp2 bonded carbon 
in the ligand (C–C), (N–C–C) and (S–C = S) originating from the DTC 
ligand in structure Fe3O4@C, respectively (Fig. 4a, b). 

To better understand the crystal structures of as-obtained composite, 
powder XRD patterns of Fe3O4@C-NHCS2H.AuNPs were surveyed 
(Fig. 4c). The characteristic peaks at 2θ = 62.6◦, 57.1◦, 53.6◦, 43.2◦, 
35.5◦, and 30.2◦ were in good accordance with corresponding Miller 
index reflection of cubic Fe3O4 phase. No obvious peak corresponding to 
carbon in the XRD pattern demonstrated the amorphous phase of car
bon. Also, gold nanoparticles, no remarkable diffraction peaks appeared 
in the structure of Fe3O4@C-NHCS2H.AuNPs, which demonstrated that 
Au NPs were in a low amount. 

Fig. 4. XPS patterns of Fe3O4@C-NHCS2H.AuNPs. (a) C1 s; (b) Au 4f. Powder XRD pattern of Fe3O4@C-NHCS2H.AuNPs (c).  

Fig. 5. The base effect (a) and effect of time (b) on the progress of A3-coupling reaction.  

Table 1 
The effect of various solvents a on the synthesis of propargylamine.  

Entry 

Solvent Base Temp (oC) Cat. (mol%) Time (h) Yield (%)b 

1 CH3CN KOH 60 0.6 12 68 
2 EtOH KOH 80 0.6 12 35 
3 EG KOH 100 0.6 12 Trace 
4 CHCl3 K2CO3 60 0.8 12 92  

a Reaction conditions: morpholine (1.2 mmol), benzaldehyde (1 mmol), and 
phenylacetylene (1.3 mmol). 

b Isolated yields. 
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3.1. Catalytic performances 

The catalytic activity of the Fe3O4@C-NHCS2H.AuNPs catalyst was 
examined in the A3-coupling reaction of morpholine, benzaldehyde, and 
phenylacetylene as the probe reaction. We investigated the effects of 
temperature, reaction solvents, reaction time, base, and amount of 
catalyst in A3-coupling. Table 1 summarizes the effects of different 
solvents and the amount of catalyst. The favorable result was obtained 

with Fe3O4@C-NHCS2H.AuNPs (40 mg with 0.8 mol% Au NPs) in CHCl3 
solvent (Table 1, entry 4). 

Different reaction temperatures and base were monitored for 
observing the activity of Fe3O4@C-NHCS2H.AuNPs in the model reaction. 
The favorable result was obtained at room temperature and higher than 
that, no considerable value and change were observed in the reaction 
yields. For obtaining the best results, Et3N, NaOH, KOH, K2CO3, and 
Cs2CO3 (1 eq) were examined as the base in the model A3-coupling re
action using Fe3O4@C-NHCS2H.AuNPs. This test displayed that the best 
catalytic activity is displayed for Cs2CO3 and K2CO3 (Fig. 5a). To find an 
ideal duration for A3 reaction achievement, the reaction progress was 
screened in each an hour and the reaction kinetics were also shown in 
Fig. 5b. Start at work, the reaction rate is slow and next, the rate in
creases along with the reaction progress and finally, the reaction prog
ress (TLC) stops after 12 h. Thus, no considerable change was also 
observable after 12 h (Fig. 5b). 

Several amounts of Fe3O4@C-NHCS2H.AuNPs in terms of Au mol% 
were tested in the model reaction to obtain an ideal amount of catalyst. 
Based on this test, the optimal amount of nanocatalyst per each mol of 
substrate 0.04 g with (0.8 mol% Au NPs) was obtained (Fig. 6). 

In command to reach a deeper considerate of whether the proposed 
catalyst is heterogeneous in nature or not, we performed a series of 
control experiments such as ICP analysis and HFT (hot filtration test). 
ICP analysis of A3-coupling reaction indicated that negligible Au 
leaching occurred. Hot filtration test of the reaction suspension to 

Table 2 
Synthesis of propargylamine derivatives under the optimized conditionsa.  

Entry 

R1 R2
2NH R3 Time (h) Yield (%) b TON c TOF (h− 1)d Ref.e 

1 Ph Piperidine Ph 12 93 512 43 [72] 
2 Ph Morpholine Ph 15 87 408 27 [73] 
3 4-Me-C6H4 Piperidine Ph 18 83 – – [55] 
4 4-Me-C6H4 Morpholine Ph 18 79 – – [73] 
5 2-Cl-C6H4 Piperidine Ph 16 77 – – [74] 
6 2-Cl-C6H4 Morpholine Ph 18 76 – – [75] 
7 4-OMe-C6H4 Morpholine Ph 18 78 – – [72] 
8 2-Me-C6H4 Piperidine Ph 16 82 – – [74] 
9 2-Me-C6H4 Morpholine Ph 18 78 – – [74]  

a Reaction conditions: amine (1.2 mmol), aldehyde (1 mmol), and aryl acetylene (1.3 mmol). Yield, TON and TOF calculated based on aldehyde. 
b Isolated yields. 
c Turnover number represents the average number of substrate molecules converted into the product per molecule of catalyst. 
d Turnover number per hour. 
e Earlier reference of the corresponding product. 

Fig. 7. Recyclability of Fe3O4@C-NHCS2H.AuNPs for the model reaction of A3-coupling b) TEM image after the 5th recycling of Au-catalyst. Reaction conditions: 
piperidine (1.2 mmol), benzaldehyde (1 mmol), phenylacetylene (1.3 mmol), K2CO3(1 eq), 4 mL CHCl3, 12 h. 

Fig. 6. The effect of mol % of catalysts on A3-coupling reaction.  
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remove the insoluble Fe3O4@C-NHCS2H.AuNPs which also led to the 
inhibition of the reaction. ICP analysis and HFT confirmed that the 
proposed catalyst is truly heterogeneous. 

After a successful and careful catalytic study on the A3-coupling of 
benzaldehyde with morpholine, and phenylacetylene, we found that the 
reaction can progress with the catalyst. Under the optimized parameters, 
the reaction was performed in the existence of 40 mg (0.8 mol% Au NPs) 
of the catalyst at 60 ◦C and 400 μL CHCl3 as solvent in 12 h under K2CO3 
base. The reaction of different aldehydes with morpholine and phenyl
acetylene were performed. Summarized results in Table 2 indicated that 
in general a wide range of aldehydes could do A3-coupling reaction 
smoothly and give propargyl amines in high yields and moderate turn
over frequency (TOF) numbers and turnover number (TON). It should be 
noted that the electronic features of the aromatic compounds affect the 
reaction rate. 

For A3-coupling reactions, the Fe3O4@C-NHCS2H.AuNPs catalyst was 
recovered and reused in the same reaction. All the reaction was per
formed under the optimized factors. At the end of each reaction, the 
catalyst was rapidly and easily separated from the reaction mixture by a 
magnet and washed with ethyl acetate several times. Next, the catalyst 
was dried and reused directly for the next cycle. Therefore, reaction 
kinetics in each run was similar to the first cycle. After five cycles, a 
slight decrease in the yields of products observed which is due to a slight 
waste of catalyst in each recycle (Fig. 7). 

According to atomic absorption spectrometry (AAS), negligible Au 
was detected in the reaction solution until the 5th run, and TEM image 
revealing the formidable firmness of the nanocatalyst under the exam
ined reaction conditions even after the 5th run Fig. 4b. 

Further, the efficiency of Fe3O4@C-NHCS2H.AuNPs was compared for 
the synthesis of the model product with other nanoparticle-based metal 
catalysts. To have more precise comparison, the reaction condition, 
time, temperature, solvent, or free-solvent for each protocol were 
considered, Table 3. As obvious, our procedure is comparable with those 
of previously reported catalytic systems in terms of yields of the prod
ucts, temperatures reaction, and time. In addition to this, present 
nanocatalyst is more effective than the others due to some important 
benefits such as eco-friendly, stability, recyclability nano-catalyst, etc. 

Recently, a possible mechanism for catalyzed A3-coupling proposed 

by Heaney and co-workers [93]. At first, a dimeric gold (0) acetylide A 
forms via C–H activation of phenylacetylene with Fe3O4@C-NHCS2H. 
AuNPs catalyst. Then, it coordinates with iminium ion to obtain inter
mediate B. Finally, propargylamine yields with the addition of the 
alkynylide to iminium ion (Scheme 3). 

4. Conclusion 

In this research, briefly, a novel carbon-based magnetic nanosphere 
(Fe3O4@C-NHCS2H.AuNPs) was synthesized for stabilizing and sup
porting of gold nanoparticles. It developed as an innovative promise 
catalyst and effectively green recyclable catalytic system in the synthesis 
of propargylamine derivatives that were prepared from A3-coupling 
reaction. Also, this simple procedure presented some significant ad
vantages such as easy handling, the mild conditions of reaction, low 
toxicity, good to excellent yields of products, and workup and easy 
separation. 
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