Reactivity of Methyl Mandelate-Ti(IV)-enediolate: Oxidative Homocoupling versus Aldol and Direct Mannich-Type Syn-Diastereoselective Condensation

Angelo Clerici, Nadia Pastori, and Ombretta Porta*
Dipartimento di Chimica, Materiali e Ingegneria Chimica
"Giulio Natta", Politecnico di Milano, Sezione Chimica, Via Mancinelli 7, 20131 Milano, Italy

ombretta.porta@polimi.it
Received September 29, 2004

Methyl mandelate undergoes quantitative oxidative homocoupling on treatment with $\mathrm{TiCl}_{4} /$ amine at room temperature. In the presence of ArCHO, quantitative syn-diastereoselective aldol condensation takes over the dimerization, whereas exclusive Mannich-type syn-diastereoselective reaction is observed in the presence of both ArCHO and PhNH_{2}. The subsequent reactions of the title intermediate do not depend on how it is generated.

Scattered examples of Li-enolate and silylenol ether ${ }^{1}$ homocoupling promoted by TiCl_{4} have been reported. More recently, oxidative coupling of simple $\mathrm{Ti}(\mathrm{IV})$-enolates from phenylacetic acid derivatives have appeared. ${ }^{2}$ Since $\mathrm{Ti}(\mathrm{IV})$-enolates can play an important role in carbon-carbon bond formation, understanding all aspects of their reactivities is an important goal.

In the course of our studies, we have found that $\mathrm{TiCl}_{3} /$ pyridine/THF reduction of methyl phenylglyoxylate $\mathbf{1}$, in the presence of aldehydes or imines (formed in situ), undergoes aldol ${ }^{3}$ or direct Mannich-type ${ }^{4}$ condensations. According to the mechanism of Scheme 1 (paths a), we suggested $\mathrm{Ti}(\mathrm{IV})$-enediolate $\mathbf{C}^{3,4}$ to be the reactive intermediate. Ti(III)-reductive dimerization of $\mathbf{1}$, via coupling of the intermediate radical \mathbf{A}, is followed in tandem by

[^0]TABLE 1. Oxidative Coupling of 2 under Different Experimental Conditions

	$\frac{\mathrm{TiCl}_{4} / \text { base }}{\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}}$		Ph-		
$\begin{gathered} \text { entry } \\ \text { (method) } \end{gathered}$	molar ratio			yield (\%) ${ }^{\text {a }}$	
	2	TiCl_{4}	base	3 (meso/dl)	1
1 (i)	1	1	-	no reaction	
2 (i)	1	1	1	9 (83:17)	-
3 (i)	1	1	2	62 (80:20)	-
4 (i)	1	1	3	quant (83:17)	-
5 (i)	1	2	3	quant (95:5)	-
6 (i) ${ }^{\text {c }}$	1	1	3	60 (83:17)	-
7 (ii)	1	1	3	14 (only meso)	30
$8(\mathrm{ref} 3)^{d}$				59 (92:8)	-

${ }^{a}$ Material balance $\geq 95 \%$; quant means ${ }^{1} \mathrm{H}$ NMR purity of the crude residue is $\geq 95 \%$; the remainder to 100% is the starting material 2; yields and isomer ratios are calculated from the peak area of the COOCH_{3} proton singlets (δ, ppm): 3-meso, 3.85; 3-dl, $3.79 ; \mathbf{2}, 3.74 ; \mathbf{1}, 3.98 .^{b}$ Method i: slow addition (15 min) of TiCl_{4} to 2 followed by the base addition (5 min). Method ii: addition of the base $(10 \mathrm{~min})$ to 2 followed by TiCl_{4} addition (5 min .). ${ }^{c}$ DIPEA instead of TEA was used. ${ }^{d}$ From $1 / \mathrm{TiCl}_{3} /$ pyridine/THF.
the heterolytic cleavage of $\operatorname{Ti}(\mathrm{IV})$-chelated diol \mathbf{B}, affording \mathbf{C} and the starting $1 .{ }^{5}$

In the absence of any reactive partner, both $\mathbf{1}$ and \mathbf{C} are partially recycled to \mathbf{A}, the former by $\mathrm{Ti}(\mathrm{III})$ reduction and the latter by $\mathrm{Ti}(\mathrm{IV})$ oxidation affording dimethyl 2,3-dihydroxy-2,3-diphenylbutanedioate 3 (59%; meso/dl, 98 : 2) and 2 (6%). ${ }^{3}$ Conversely, in the presence of a suitable electrophile, \mathbf{C} is drained from the cycle to afford $\mathbf{4}$ or 5. ${ }^{3-5}$

We now report our preliminary results on the reactivity of \mathbf{C} when it is directly generated from methyl mandelate 2 and $\mathrm{TiCl}_{4} /$ TEA (or DIPEA, N, N-diisopropylethylamine) at room temperature (Scheme 1, paths b). The results obtained, either in the absence or in the presence of electrophiles, show that the chemo- and stereoselectivity of \mathbf{C} generated by the previous and the present methods are quite similar.

Oxidative Coupling of 2. When 3 equiv of TEA was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2 and TiCl_{4} (1 equiv each), dimer 3 is formed in quantitative yield after $\mathrm{NH}_{4} \mathrm{Cl}$ hydrolysis of B. The amount of TEA strictly controlled the yield of 3 (Table 1, method i, entries 1-4), whereas the use of DIPEA resulted in a lower yield (entry 6). Two equivalents of TiCl_{4} slightly improved the meso/dl ratio (entry 5).

The reaction conditions that involve reverse order of addition (TEA followed by TiCl_{4}, method ii, entry 7) furnished 1 as the main oxidation product. Both products distribution (formation of $\mathbf{3}$ and 1) and stereoselectivity (only 3 -meso) observed are in accord with the radical mechanism shown in Scheme 1 (paths b).

The $\mathrm{Ti}(\mathrm{IV})$-enolate \mathbf{C}, once formed from $\mathbf{2}$, is oxidized, via metal to ligand electron transfer (ET), to the stabi-

[^1] 481.

SCHEME 1

lized capto-dative radical \mathbf{A}, which, under acidic conditions from the beginning (method i), couples at the less hindered side to give predominantly 3-meso. Under basic conditions from the beginning (method ii), $\mathrm{Ti}(\mathrm{IV})$-chelated diol \mathbf{B}, once formed, undergoes heterolytic cleavage to $\mathbf{1}$ and \mathbf{C}, which is partially recycled.

In a control experiment it was found that 68% of $\mathbf{3}$-meso, under conditions of entry 7 , is converted to $\mathbf{1}$ (47%), 2 (10%), and $3-d l(9 \%)$, whereas it is recovered unchanged under conditions of entry 4 . Last, it must be stressed that no traces of products derived from $\mathrm{TiCl}_{4}{ }^{-}$ amine oxidation were detected. ${ }^{6}$

Aldol Addition of 2 vs Homocoupling. When equimolar amounts of $\mathbf{2}$, 4 -bromobenzaldehyde, and TiCl_{4} were allowed to react at room temperature for 30 min in the presence of 2 equiv of TEA or DIPEA, syn-diastereoselective condensation of \mathbf{C} with the aldehyde occurred and α, β-dihydroxy ester 4 was formed in quantitative yield (Table 2, method iii, entries 2 and 4). Longer reaction time ($2-4 \mathrm{~h}$) did not change the diastereoselectivity.

Oxidative coupling of 2 partially competed (17% of $\mathbf{3}$) with aldol condensation (83% of 4) only when 2 equiv of TiCl_{4} was employed (entry 3), but the syn/anti ratio increased to $98: 2$. The order of TiCl_{4} and amine addition did not significantly decrease the yield of 4 (entry 5 , method iv).

To the best of our knowledge there are no previous reports of aldol condensation of unprotected α-hydroxy ester promoted by TiCl_{4} /amine at room temperature. Most related methods require low temperatures and hydroxy-protected substrates. ${ }^{7}$ At low temperature, it is critical that TiCl_{4} complexation of the enolizable substrate precedes the amine addition, which, otherwise,

[^2]TABLE 2. Aldol Addition of 2 with 4-Bromobenzaldehyde under Different Experimental Conditions

2

entry $(\text { method })^{b}$	$\mathbf{2}$	ArCHO	TiCl_{4}	base	mield $(\%)^{a}$ $\mathbf{4}$ (syn:anti)
	1	1	1	1	<5
	1	1	1	2	quant (83:17)
	1	1	2	2	$83(98: 2)^{c}$
	1	1	1	2	quant $(87: 13)$
	1	1	1	2	$80(90: 10)$
6 (ref 3$)^{e}$					$85(96: 4)$

${ }^{a}$ See footnote a of Table 1. COOCH_{3} proton singlets (δ, ppm): 4-syn, 3.85; 4-anti, 3.67; 2, 3.74. ${ }^{b}$ Method iii: the base was slowly added (6 min) to $\mathbf{2}$, ArCHO , and TiCl_{4}. Method iv: TiCl_{4} was slowly added (5 min) to $\mathbf{2}$, ArCHO, and the base. ${ }^{c} 17 \%$ of $\mathbf{3}$ was also formed. ${ }^{d}$ DIPEA instead of TEA is used. ${ }^{e}$ From $1 / \mathrm{TiCl}_{3} /$ pyridine/ THF.
irreversibly complexes with $\mathrm{TiCl}_{4} .^{7} \mathrm{We}$ found that no aldol condensation of 2 by $\mathrm{TiCl}_{4} / \mathrm{TEA}$ occurs at $-40^{\circ} \mathrm{C}$, thus the $\mathrm{TiCl}_{4}-\mathrm{TEA}$ complexation at room temperature is readily reversible and, as a consequence, the order of reagent addition must no longer be strictly followed.

Direct Syn-Diastereoselective Mannich-Type Reaction of 2 vs Aldol Condensation. When TiCl_{4} was added at room temperature to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2 and TEA containing 4-bromobenzaldehyde and aniline in a 1:1 or 1:1.5 molar ratio, neither aldol addition nor
(7) (a) Annunziata, R.; Cinquini, M.; Cozzi, F.; Lombardi Borgia, A. J. Org. Chem. 1992, 57, 6339-6342. (b) Adrian, J. C., Jr.; Borkin, L.; Fox, R. J.; Chick, J. E.; Hunter, A. D.; Nicklow, R. A. J. Org. Chem. 2000, 65, 6264-6267. (c) Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 5, 591-594.

TABLE 3. Syn-Diastereoselective Direct Mannich-Type Condensation of 2 under Different Experimental Conditions

			$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}]{\mathrm{TiCl}_{4} / \text { base }}$			 syn only
$\begin{gathered} \text { entry } \\ (\text { method) })^{b} \end{gathered}$	molar ratio					$\begin{gathered} \text { yield }(\%)^{a} \\ \mathbf{5} \end{gathered}$
	2	ArCHO	PhNH_{2}	TiCl_{4}	base	
1 (v)	1	1	1	1	2	50
2 (v)	1	1	1.5	1	2	55
3 (v)	1	1	1.5	1.5	2	56
4 (v)	1	1	1.5	2	2	70 (60) ${ }^{\text {c }}$
5 (vi)	1	1	1.5	1.5	2	71 (62) ${ }^{\text {c }}$
$6(\mathrm{ref} 4)^{d}$						61^{c}

${ }^{a}$ See footnote a of Table $1 . \mathrm{COOCH}_{3}$ proton singlets (δ, ppm): 5-syn, 3.82; 2, 3.74. ${ }^{b}$ Method v: slow addition (6 min) of TiCl_{4} to 2, $\mathrm{ArCHO}, \mathrm{PhNH}_{2}$, and TEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution; Method vi: slow addition (6 min) of TiCl_{4} to a THF solution of $\mathbf{2}, \mathrm{ArCHO}, \mathrm{PhNH}_{2}$, and pyridine. ${ }^{c}$ Isolated yield in parentheses. ${ }^{d}$ From $1 / \mathrm{TiCl}_{3} /$ pyridine/THF.
oxidative dimerization products were observed and syn-α-hydroxy- β-amino ester 5 was the sole product and the only detectable isomer (Table 3, method v, entries $1-4$).

However, by performing the reaction in the presence of an excess of aldehyde (4-bromobenzaldehyde/aniline, 2:1 molar ratio), the aldol product 4 was obtained in 90% yield. This result, along with the ones of entries $1-4$, would indicate that the $\mathrm{Ti}(\mathrm{IV})$-catalyzed imine formation ${ }^{8}$ is faster than the concurrent aldolization and that addition of \mathbf{C} is faster to an aldehyde than to an imine.

To carefully compare the reactivity of \mathbf{C}, directly formed from $2 / \mathrm{TiCl}_{4}$ (entries $1-4$), with the reactivity of
(8) $\mathrm{Ti}(\mathrm{IV})$ has been shown fo facilitate the formation of enamines and imines in anhydrous solvents. (a) White, W. A.; Weingarten, H. J. Org. Chem. 1967, 32, 213-214. (b) Weingarten, H.; Chupp, J. P.; White, W. A. J. Org. Chem. 1967, 32, 3246-3249. (c) Carlson, R.; Larson, U.; Hansson, L. Acta Scand. 1992, 46, 1211-1213.

C, indirectly formed from $1 / \mathrm{TiCl}_{3} /$ pyridine $/ \mathrm{THF}$, ${ }^{4}$ we performed the Mannich type condensation starting from 2/TiCl $/ 4$ pyridine/THF also (entry 5) and, as predicted by the proposed mechanism, the yield and diastereoselectivity were similar (compare entries 4-6).

In recent years, ${ }^{9}$ the synthesis of β-amino- α-hydroxy acids has attracted much attention due to their occurrence in many biologically relevant compounds (taxol side chain is a representative example). The results herein reported demonstrate the significance of titanium salts as useful reagents in syn-diastereoselective synthesis of this class of compounds. It remains to be seen whether this very simple approach is to be successful in enantioselective synthesis with chiral α-hydroxy derivatives. Current studies toward this goal are underway.

In conclusion, the present investigation has demonstrated that the reactivity of \mathbf{C} does not depend on how it is generated and, at the same time, supports our previous mechanistic hypothesis. This new method is synthetically more attractive than the former since (a) TiCl_{4} is easier to handle than TiCl_{3}, (b) strictly anhydrous solvents are not required, (c) many α-hydroxy esters are commercially available materials and more stable than the corresponding α-keto esters, and (d) for comparable yields of products ($\mathbf{3}, \mathbf{4}$, and $\mathbf{5}$) half the amount of metal salt is required.

Acknowledgment. Financial support from MURST (Cofin 2002) is gratefully acknowledged. In addition, we thank Mr. M. Teti for running ${ }^{1} \mathrm{H}$ NMR analyses.

Supporting Information Available: General experimental details, full purification, and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.
JO048279F

[^3]
[^0]: (1) (a) Inaba, S.; Ojima, I. Tetrahedron Lett. 1977, 23, 2009-2012. (b) Wallace, I. H. M.; Chan, T. H. Tetrahedron 1983, 39, 847-853. (c) Ojima, I.; Brandstadter, S. M.; Donovan, R. Chem. Lett. 1992, 15911594.
 (2) (a) Matsamura, Y.; Nishimura, M.; Hiu, H.; Watanabe, M.; Kise, N. J. Org. Chem. 1996, 61, 2809-2811. (b) Kise, N.; Kumada, K.; Terao, Y.; Ueda, N. Tetrahedron 1998, 54, 2697-2708.
 (3) Clerici, A.; Clerici. L.; Malpezzi, L.; Porta, O. Tetrahedron 1995, 51, 13385-13400.
 (4) Clerici, A.; Clerici. L.; Porta, O. Tetrahedron Lett. 1995, 36, 5955-5958.

[^1]: (5) Clerici, A.; Clerici. L.; Porta, O. J. Org. Chem. 1995, 60, 480-

[^2]: (6) (a) Clerici, A.; Pastori, N.; Porta, O. Tetrahedron Lett. 2004, 45, 1825-1827 and references quoted therein. (b) Periasamy, M.; Sriniva, G.; Karunakar, G. V.; Bharathi, P. Tetrahedron Lett. 1999, 40, 75777580.

[^3]: (9) (a) Roers, R. R.; Verdine, G. L. Tetrahedron Lett. 2001, 42, 35633565. (b) Kudyba, I.; Raczko, J.; Jurczak, J. Tetrahedron Lett. 2003, 44, 8685-8687 and references quoted therein.

