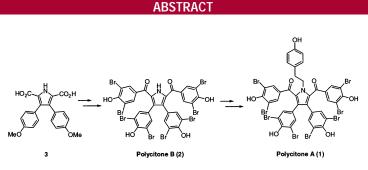
Total Syntheses of the Marine Pyrrole Alkaloids Polycitone A and B

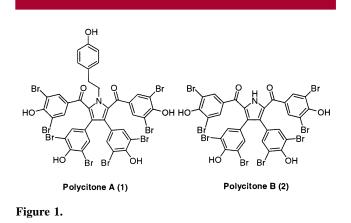

Andreas T. Kreipl, Caroline Reid, and Wolfgang Steglich*

Chemie Department, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), D-81377 München, Germany

wos@cup.uni-muenchen.de

Received July 18, 2002

Vol. 4, No. 19 3287–3288



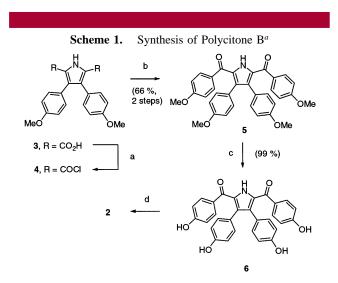
Polycitone B (2) was obtained in four steps from pyrrole dicarboxylic acid 3, including Friedel–Crafts reaction of the corresponding acid chloride with anisole. The conversion of 2 into polycitone A (1) was achieved in two steps via Mitsunobu alkylation of the pyrrolic NH group. The synthesis of polycitone A proceeds in 18% overall yield and offers the possibility of varying the substituents on the pyrrole ring.

The polycitones A and B (1 and 2 respectively) are polybrominated pyrrole alkaloids and were isolated by Kashman and co-workers^{1,2} from marine ascidians of the genus *Polycitor*. Polycitone A was found to be a potent inhibitor of retroviral reverse transcriptases (i.e., human immundeficiency virus type 1) and cellular DNA polymerases.³ In a continuation of our studies on the biomimetic synthesis of marine 3,4-diarylpyrrole alkaloids,⁴ we now report the first total syntheses of the polycitones A and B. Our syntheses commence with dicarboxylic acid **3** used previously for the preparation of polycitrin A.⁵ Compound **3** is easily obtained in 72% yield by oxidative coupling of

(4) Lycogalic acid A: Fröde, R.; Hinze, C.; Josten, I.; Schmidt, B.; Steffan, B.; Steglich, W. *Tetrahedron Lett.* **1994**, 1689–1690. Polycitrin A: Terpin, A.; Polborn, K.; Steglich, W. *Tetrahedron* **1995**, *51*, 9941–9946. Lamellarins: (a) Heim, A.; Terpin, A.; Steglich, W. Angew. Chem. **1997**, *109*, 158–159; Angew. Chem., Int. Ed. Engl. **1997**, *36*, 155–156. (b) Peschko, C.; Winklhofer, C.; Steglich, W. Chem. Eur. J. **2000**, *6*, 1147–1152. Storniamide A nonamethyl ether: Ebel, H.; Terpin, A.; Steglich, W. Tetrahedron Lett. **1998**, *39*, 9165–9166. Purpurone, ningalin C: Peschko, C.; Steglich, W. Tetrahedron Lett. **2000**, *41*, 9477–9481.

10.1021/ol026555b CCC: \$22.00 © 2002 American Chemical Society Published on Web 08/22/2002

the dianion of 3-(4-methoxyphenyl)pyruvic acid and cyclization of the resulting 1,4-dicarbonyl intermediate with ammonia. Treatment of dicarboxylic acid **3** with oxalyl chloride followed by removal of the solvent and rigorous drying yielded the crude acid chloride **4**, which reacted with anisole

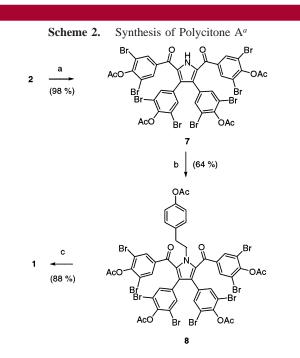

⁽¹⁾ Rudi, A.; Goldberg, I.; Stein, Z.; Frolow, F.; Benayahu, Y.; Schleyer, M.; Kashman, Y. *J. Org. Chem.* **1994**, *59*, 999–1003.

⁽²⁾ Rudi, A.; Evan, T.; Aknin, M.; Kashman, Y. J. Nat. Prod. 2000, 63, 832–833.

⁽³⁾ Loya, S.; Rudi, A.; Kashman, Y.; Hizi, A. *Biochem. J.* **1999**, *344*, 85–92.

⁽⁵⁾ Terpin, A.; Polborn, K.; Steglich, W. Tetrahedron 1995, 51, 9941-9946.

under Friedel-Crafts conditions to afford the diketone **5** in 66% yield (Scheme 1). Surprisingly, this convenient method



^{*a*} Reagents and conditions: (a) (COCl)₂, DMF (cat.), CH₂Cl₂, 0 °C, 2 h; (b) AlCl₃, PhOMe, CH₂Cl₂, rt, 12 h; (c) AlI₃ (freshly prepared from Al powder and I₂), *n*-Bu₄N⁺I⁻, PhH, reflux, 12 h; (d) Br₂, AcOH, rt, 48 h.

for the synthesis of a 2,5-dibenzoylpyrrole⁶ from the corresponding pyrrole dicarboxylic acid chloride⁷ has not been used before.

Attempted cleavage of the methoxy groups with BBr₃, AlBr₃, EtSNa, or pyridine hydrochloride gave only partially demethylated products. These difficulties were solved by using freshly prepared AlI₃⁸ in the presence of n-Bu₄N⁺I⁻ as a phase transfer catalyst.⁹ The resulting tetraphenol **6** was then brominated in acetic acid at room temperature to provide polycitone B (**2**) in 83% yield. The ¹H NMR data derived from the synthetic material were in close correspondence with those reported in the literature.² The chemical shifts in the ¹³C NMR spectra exhibited small differences that may be explained by solvent effects.

For the synthesis of polycitone A (1) (Scheme 2), polycitone B (2) was converted into the tetraacetate 7, which upon treatment with 2-(4-acetoxyphenyl)ethanol under Mitsunobu conditions in refluxing THF afforded peracetylpolycitone A (8) in 64% yield after purification by column chromatography (in contrast, unbrominated analogues of compound 7 could be alkylated already at room temperature and provided the corresponding *N*-alkyl derivatives in much better yields). The acetyl groups in 8 were removed under

^{*a*} Reagents and conditions: (a) AcCl (10 equiv), NEt₃ (6 equiv), CH₂Cl₂, rt, 12 h; (b) 2-(4-acetoxyphenyl)ethanol (4 equiv), PPh₃ (4 equiv), DEAD (4 equiv), dry THF, reflux, 2 h; (c) N_2H_4 ·H₂O (20 equiv), dry MeOH, rt, 45 min.

mild conditions with hydrazine monohydrate in dry methanol¹⁰ to give polycitone A (1), as a yellow solid, in 88% yield. Whereas the free phenol 1 exhibited small differences from the reported ¹³C NMR data for the natural product, the data of the permethyl derivative¹ obtained from synthetic 1 by treatment with Me_2SO_4 and K_2CO_3 were in complete agreement.

In summary our synthesis afforded polycitone A in eight steps and 22% overall yield from 3-(4-methoxyphenyl)pyruvic acid. The synthesis is very flexible and can be easily adapted to the preparation of analogues. Attempts to shorten our syntheses by oxidative coupling of benzylic 1,2-diketones and subsequent cyclization with ammonia or amines to 2,5dibenzoylpyrroles have been unsuccessful.

Acknowledgment. We gratefully acknowledge the financial support by the Fonds der Chemischen Industrie. C.R. was on exchange from the University of Glasgow supported by the ERASMUS program.

Supporting Information Available: Experimental procedures and characterization data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026555B

⁽⁶⁾ Synthesis of a 2,3-dibenzoylpyrrole: Barik, R.; Kumar, C. V.; Das, P. K.; George, M. V. *J. Org. Chem.* **1985**, *50*, 4309–4317.

⁽⁷⁾ Gale, P. A.; Camiolo, S.; Chapman, C. P.; Light, M. E.; Hursthouse, M. B. *Tetrahedron Lett.* **2001**, 5095–5098.

⁽⁸⁾ Bhatt, M. V.; Babu, J. R. *Tetrahedron Lett.* 1984, 25, 3497–3501.
(9) Andersson, S. *Synthesis* 1985, 436–437.

⁽¹⁰⁾ Steglich, W.; Zechlin, L. Chem. Ber. 1978, 111, 3939-3948.