

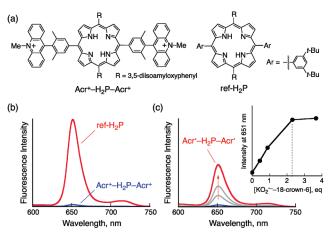
An Efficient Fluorescence Sensor for Superoxide with an Acridinium Ion-Linked Porphyrin Triad

Hiroaki Kotani,⁺ Kei Ohkubo,⁺ Maxwell J. Crossley,^{*,‡} and Shunichi Fukuzumi^{*,†,§}

[†]Department of Material and Life Science, Graduate School of Engineering, Osaka University, and ALCA, Japan Science and Technology (JST), Suita, Osaka 565-0871, Japan

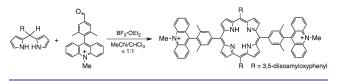
[‡]School of Chemistry, Building F11, The University of Sydney, NSW 2006, Australia

⁹Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea


Supporting Information

ABSTRACT: Addition of potassium superoxide with 18-crown-6 ether (KO₂^{•-}-18-crown-6) to a toluene solution of an acridinium ion-linked porphyrin triad (Acr⁺-H₂P-Acr⁺) resulted in a remarkable enhancement of the fluorescence intensity. Thus, Acr⁺-H₂P-Acr⁺ acts as an efficient fluorescence sensor for superoxide. Electron transfer from KO₂^{•-}-18-crown-6 to the Acr⁺ moiety to produce the two-electron-reduced species (Acr[•]-H₂P-Acr[•]) results in inhibition of the fluorescence quenching via photoinduced electron transfer, as revealed by laser flash photolysis measurements.

F luorescence sensors have been widely developed to visualize not only metal cations¹ but also anions² and reactive oxygen species (ROS)³ in vivo or in vitro. The sensor molecules can recognize redox-inactive metal cations and anions and emit specific fluorescence upon binding of these targets.^{4,5} In the case of ROS, superoxide ($O_2^{\bullet-}$) is the first species to be produced in the respiratory chain by an electron-transfer reduction of oxygen.³ The detection of $O_2^{\bullet-}$ is confounded by the lack of a sensitive and specific method. Development of new fluorescence probes, where a probe molecule begins to fluoresce at low concentrations of ROS, would expand the scope of the availability of fluorescence techniques for routine analysis of ROS.⁶ In such a case, high sensitivity toward $O_2^{\bullet-}$ would be required in fluorescence sensors.


On the other hand, photoinduced electron transfer (PET) is one of the common processes for quenching the fluorescence in fluorescence sensors.^{1b,2c,7} The efficiency of the PET process depends on the redox potentials of the electron-donor moiety (D) and the electron-acceptor moiety (A) in D–A-linked molecules together with the excitation energy of the fluorescent moiety. When D–A-linked molecules are reduced by $O_2^{\bullet-}$, the fluorescence intensity would be affected by $O_2^{\bullet-}$. However, there has been no report on the response of such a D–A-linked fluorescence sensor to a simple external signal such as electron transfer with $O_2^{\bullet-}$.

We report herein a quantitative fluorescence sensor for $O_2^{\bullet-}$ based on an acridinium ion (Acr⁺)-linked porphyrin triad (Acr⁺-H₂P-Acr⁺) (Figure 1a). The acridinium ion used as an electron acceptor in this work has been utilized for a long-lived ET state because the λ value for electron self-exchange between

Figure 1. (a) Structures of the acridinium ion-linked porphyrin triad (Acr⁺-H₂P-Acr⁺) and the reference compound (ref-H₂P). (b) Fluorescence spectra of ref-H₂P and Acr⁺-H₂P-Acr⁺ observed in a deaerated toluene solution at 298 K (excitation wavelength $\lambda_{ex} = 512$ nm). (c) Fluorescence spectra observed in the titration of Acr⁺-H₂P-Acr⁺ (2.0 μ M) with KO₂^{•-}-18-crown-6 in a deaerated toluene at 298 K ([KO₂^{•-}-18-crown-6] = 0-7.0 μ M; $\lambda_{ex} = 512$ nm). Inset: plot of fluorescence intensity at 651 nm vs [KO₂^{•-}-18-crown-6].

Scheme 1

Acr⁺ and the corresponding one-electron-reduced radical (Acr[•]) is the smallest (0.3 eV).^{8,9}

 $Acr^+-H_2P-Acr^+$ was synthesized by condensation of 5-(3, 5-diisoamyloxyphenyl)dipyrromethane with the corresponding aldehyde (Scheme 1) and characterized by ¹H NMR analysis [see the Experimental Section in the Supporting Information (SI)]. The UV-vis spectrum of $Acr^+-H_2P-Acr^+$ exhibited absorption bands at 361 nm due to the Acr^+ moiety and 418 and 512 nm due to the H_2P moiety (see Figure S1 in the SI).

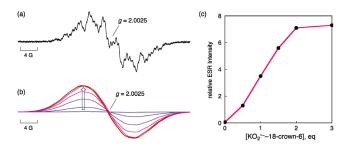
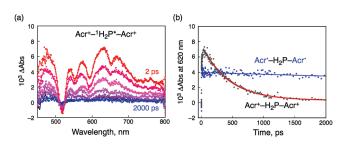
```
        Received:
        May 6, 2011

        Published:
        June 23, 2011
```

The fluorescence spectrum of Acr⁺-H₂P-Acr⁺ is shown in Figure 1b, where the H₂P moiety was exclusively excited at λ_{ex} = 512 nm. The fluorescence intensity of Acr⁺-H₂P-Acr⁺ was significantly quenched in comparison with that of the reference compound (ref-H₂P). The one-electron oxidation potential of the H_2P moiety ($E_{ox} = 0.97$ V vs SCE) and the one-electron reduction potential of the Acr⁺ moiety $(E_{\rm red} = -0.54 \text{ V})^8$ in acetonitrile (MeCN) were determined by cyclic voltammetry (see Figure S2 in the SI). Upon addition of potassium superoxide $(KO_2^{\bullet^{-}}; E_{ox} = -0.68 \text{ V})$ with 18-crown-6 ether $(KO_2^{\bullet^{-}} - 18$ crown-6)¹⁰ to a toluene solution of Acr⁺ $-H_2P-Acr^+$ (2.0 μ M), the fluorescence intensity at $\lambda_{\rm em}$ = 651 nm was remarkably enhanced (Figure 1c), giving a fluorescence spectrum similar to that of ref-H₂P. The Figure 1c inset shows a plot of the fluorescence intensity at 651 nm versus [KO₂^{•-}-18-crown-6]. The stoichiometry of [KO2 •- 18-crown-6] with respect to [Acr⁺-H₂P-Acr⁺] was determined to be 2:1 from the fluorescence spectral titration. This indicates that Acr⁺-H₂P-Acr⁺ is reduced by 2 equiv of $KO_2^{\bullet-}$ -18-crown-6 to produce the twoelectron-reduced species (Acr[•]-H₂P-Acr[•]), which shows the fluorescence of the H_2P moiety. Thus, $Acr^+-H_2P-Acr^+$ acts as an effective off/on fluorescence sensor for a small concentration of $O_2^{\bullet-}$ less than micromolar order. Such a significant enhancement of the fluorescence intensity was also observed when tetramethylsemiquinone radical anion (Me₄Q^{•-}; $E_{ox} = -0.88$ V) was employed in toluene instead of KO₂^{•-}-18-crown-6 (see Figure S3 in the SI). This indicates that the electron-transfer reduction of the Acr⁺ moieties in Acr⁺-H₂P-Acr⁺ results in the formation of Acr[•]-H₂P-Acr[•], which exhibits the fluorescence of the H₂P moiety in toluene. When a polar solvent such as acetonitrile was employed instead of toluene, no fluorescence of $Acr^+ - H_2P - Acr^+$ was observed in the absence or presence of $\mathrm{KO_2}^{\bullet-}$ – 18-crown-6. Thus, the use of a nonpolar solvent such as toluene is required for the detection of $O_2^{\bullet-}$ or $Me_4Q^{\bullet-}$ with $Acr^+ - H_2P - Acr^+$.

The formation of Acr[•]-H₂P-Acr[•] was confirmed by electron paramagnetic resonance (EPR) measurements, as shown in Figure 2a. The hyperfine splitting constants of Acr[•]-H₂P-Acr[•] were similar to those reported for the acridinyl radical.⁸ The EPR intensity increased linearly up to the addition of 2 equiv of $KO_2^{\bullet-}$ -18-crown-6 to produce Acr[•]-H₂P-Acr[•] (Figure 2b,c). This indicates that there is no interaction between the two Acr[•] moieties in Acr[•]-H₂P-Acr[•] because of the long distance between the two spins.

In order to understand why the fluorescence of the H₂P moiety was recovered when the Acr⁺ moiety was reduced, we compared transient absorption spectra observed upon photoexcitation of Acr⁺-H₂P-Acr⁺ and Acr[•]-H₂P-Acr[•]. Femtosecond laser flash photolysis of Acr⁺-H₂P-Acr⁺ in deaerated toluene with λ_{ex} = 430 nm revealed a transient absorption spectrum with peaks at $\lambda =$ 480 and 620 nm due to the singlet excited state of the H₂P moiety in $Acr^+-H_2P-Acr^+$ ($Acr^+-{}^1H_2P^*-Acr^+$) (Figure 3a), in agreement with the spectrum of 1 ref-H₂P* (Figure S4 in the SI). The decay time profile at $\lambda = 620$ nm exhibited monoexponential decay with a lifetime of 200 ps (red line in Figure 3b), whereas 1 ref-H₂P* exhibited little decay in this time range (Figure S4 in the SI). Such fast decay of the absorbance at $\lambda = 620$ nm due to ${}^{1}\text{H}_{2}\text{P}^{*}$ is ascribed to electron transfer from the ${}^{1}H_{2}P^{*}$ moiety to the Acr⁺ moiety to form the electron-transfer state $(Acr^+ - H_2P^{\bullet+} - Acr^{\bullet})$. From the fluorescence quenching in Figure 1b, the rate constant (k_{et}) for electron transfer from the $^1\text{H}_2\text{P}^*$ moiety to the Acr⁺ moiety was estimated to be 2.0 \times 10 9 s $^{-1}$ by comparison of the intensity of

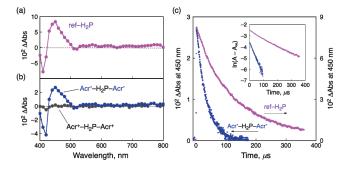
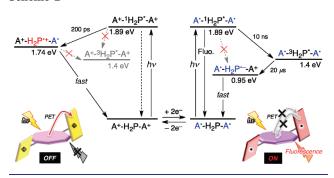

Figure 2. (a) EPR spectra of $Acr^{\bullet}-H_2P-Acr^{\bullet}$ produced by the addition of $KO_2^{\bullet-}-18$ -crown-6 (1.5 mM) to a deaerated toluene solution of $Acr^{+}-H_2P-Acr^{+}$ (0.50 mM) with a modulation width of 0.10 G. (b) EPR spectral change by addition of $KO_2^{\bullet-}-18$ -crown-6 with a modulation width of 10 G. (c) Plot of the ESR intensity of $Acr^{\bullet}-H_2P-Acr^{\bullet}$ vs $[KO_2^{\bullet-}-18$ -crown-6].

Figure 3. (a) Transient absorption spectra of Acr⁺ $-H_2P$ -Acr⁺ (1.0 μ M) in deaerated toluene at 298 K taken after femtosecond laser excitation at λ_{ex} = 430 nm. (b) Decay time profiles at λ = 620 nm for Acr⁺ $-H_2P$ -Acr⁺ and for Acr⁻ $-H_2P$ -Acr⁺ produced by the addition of KO₂^{•-}-18-crown-6 (2.0 μ M).

 $^{1}\text{H}_{2}\text{P}^{*}$ in Acr⁺–H₂P–Acr⁺ with that of $^{1}\text{ref-H}_{2}\text{P}^{*}$ (τ = 10.1 ns); 11 this agrees with the k_{et} value of 2.0 \times 10 9 s $^{-1}$ determined from the lifetime of ${}^{1}H_{2}P^{*}$ in Figure 3b (red line). The free energy change for electron transfer from ¹H₂P* to Acr⁺ $(\Delta G_{\rm et})$ in MeCN was determined to be -0.38 eV on the basis of the one-electron oxidation potential of H_2P ($E_{ox} = 0.97$ V vs SCE), the energy of the singlet excited state (1.89 eV),¹² and the one-electron reduction potential of the Acr⁺ moiety $(E_{\rm red} = -0.54 \,\mathrm{V}\,\mathrm{vs}\,\mathrm{SCE})$.⁸ The electron transfer from ${}^{1}\mathrm{H}_{2}\mathrm{P}^{*}$ to Acr⁺ in toluene is also energetically feasible judging from the negative ΔG_{et} value (-0.14 eV), which was evaluated using an empirical equation for the estimation of ΔG_{et} in a solvent of known dielectric constant ($\varepsilon = 2.38$ for toluene) based on the $\Delta G_{\rm et}$ value in MeCN.¹³ However, the transient absorption band due to the electron-transfer state was not observed during the decay of the transient absorption due to ¹H₂P*. This suggests that back electron transfer from the Acr[•] moiety to the H_2P^{+} moiety is much faster than the forward electron transfer.

In sharp contrast to the fast decay of ${}^{1}H_{2}P^{*}$ in Acr⁺-H₂P-Acr⁺, little decay of ${}^{1}H_{2}P^{*}$ was observed when KO₂•⁻-18-crown-6 (2 equiv) was added to a deaerated toluene solution of Acr⁺-H₂P-Acr⁺ (blue line in Figure 3b). Because the Acr⁺ moiety of Acr⁺-H₂P-Acr⁺ is reduced by 2 equiv of O₂•⁻ to produce Acr[•]-H₂P-Acr⁺, electron transfer from ${}^{1}H_{2}P^{*}$ to Acr[•] becomes energetically unfeasible. On the other hand, electron transfer from the Acr[•] moiety to the ${}^{1}H_{2}P^{*}$ moiety is energetically feasible judging from the negative $\Delta G_{\rm et}$ value (-0.94 eV).¹⁴ However, the spin state of the electron-transfer

Figure 4. (a) Transient absorption spectrum of ref·H₂P (1.0 μ M). (b) Transient absorption spectra of Acr⁺-H₂P-Acr⁺ (1.0 μ M) and Acr⁺-H₂P-Acr⁺ produced by the addition of KO₂⁻⁻-18-crown-6 (5.0 μ M) in deaerated toluene at 298 K taken 2.0 μ s after laser excitation at λ_{ex} = 430 nm. (c) Decay time profiles at λ = 450 nm for ³ref-H₂P^{*} and Acr⁺⁻³H₂P^{*}-Acr⁺.


product may be different. The spin state of Acr[•]-H₂P-Acr[•] is two independent doublets (see above), whereas the spin state of the electron-transfer product (Acr⁺-H₂P^{•-}-Acr[•]) is either a singlet or a triplet because the H₂P^{•-} moiety can interact with the Acr[•] moiety. Thus, electron transfer from the Acr[•] moiety to the ¹H₂P^{*} moiety in Acr[•]-H₂P-Acr[•] to produce Acr⁺-H₂P^{•-}-Acr[•] (or Acr[•]-H₂P^{•-}-Acr⁺) is spin-forbidden. The endergonic electron transfer from the Acr[•] moiety to the ¹H₂P^{*} moiety is also spin-forbidden. This may be the reason why no quenching of ¹H₂P^{*} was observed in Acr[•]-H₂P-Acr[•].

The electron-transfer quenching of the fluorescence of ${}^{1}H_{2}P^{*}$ by the Acr⁺ moiety was also confirmed by nanosecond laser flash photolysis measurements. No transient absorption due to the triplet excited state of the H₂P moiety was observed in Acr⁺-H₂P-Acr⁺ because of electron transfer from ${}^{1}H_{2}P^{*}$ to Acr⁺, which is faster than the intersystem crossing from ${}^{1}H_{2}P^{*}$ to ${}^{3}H_{2}P^{*}$ (black line in Figure 4). In the case of Acr⁺-H₂P-Acr⁺ produced by the two-electron reduction of Acr⁺-H₂P-Acr⁺ with 2 equiv of KO₂^{•-}-18-crown-6, however, the transient absorption band ($\lambda_{max} = 450$ nm) was clearly observed, as in the case of ref-H₂P (blue line in Figure 4b vs the reference spectrum in Figure 4a). The triplet lifetime of Acr[•]- ${}^{3}H_{2}P^{*}$ -Acr[•] is shorter than that of ref-H₂P (Figure 4c), probably because of electron transfer from the Acr[•] moiety to the ${}^{3}H_{2}P^{*}$ moiety followed by fast back electron transfer.

The energy diagrams for the photodynamics of $Acr^+-H_2P-Acr^+$ and $Acr^--H_2P-Acr^-$ are summarized in Scheme 2. The singlet excited state (${}^{1}H_2P^*$) produced upon photoexcitation of $Acr^+-H_2P-Acr^+$ is quenched by spin-allowed electron transfer from the ${}^{1}H_2P^*$ moiety to the Acr^+ moiety followed by fast back electron transfer. from the Acr^- moiety to the H_2P^{+} moiety, and therefore, it exhibits little fluorescence. Once the two Acr^+ moieties are reduced by $O_2^{\bullet-}$ to produce $Acr^--H_2P-Acr^+$, the ${}^{1}H_2P^*$ moiety is not quenched in toluene by either endergonic electron transfer from the ${}^{1}H_2P^*$ moiety to the Acr^+ moiety or spin-forbidden electron transfer from the Acr^- moiety to the ${}^{1}H_2P^*$ moiety, so it exhibits much stronger fluorescence than $Acr^+-H_2P-Acr^+$.

In a polar solvent such as MeCN, the formation of Acr[•]-H₂P-Acr[•] was also confirmed by EPR measurements (Figure S5 in the SI). In sharp contrast to the case in toluene, no fluorescence from the singlet excited state in Acr[•]-H₂P-Acr[•] (Acr[•]-¹H₂P^{*}-Acr[•]) was observed in MeCN because of fast electron transfer from the Acr[•] moiety to the ¹H₂P^{*} moiety.¹⁵

In conclusion, we have developed an efficient fluorescence sensor for detection of $O_2^{\bullet-}$ using an acridinium ion-linked porphyrin triad (Acr⁺-H₂P-Acr⁺) that is responsive to electron-transfer reduction of the Acr⁺ moiety. The present study provides a new strategy for fluorescence sensors that are responsive to one-electron reductants such as $O_2^{\bullet-}$.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures and Figures S1–S5. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

m.crossley@chem.usyd.edu.au; fukuzumi@chem.eng.osaka-u. ac.jp

ACKNOWLEDGMENT

This work at Osaka University was supported by Grants-in-Aid (Nos. 20108010 and 23750014) and a Global COE Program, "The Global Education and Research Center for Bio-Environmental Chemistry" from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by KOSEF/MEST through WCU Project R31-2008-000-10010-0, Korea. We also thank the Australian Research Council for partial funding of this research (Grant DP1092560).

REFERENCES

 (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. *Chem. Rev.* **1997**, *97*, 1515. (b) Jiang, P.; Guo, Z. *Coord. Chem. Rev.* **2004**, *248*, 205.
 (c) Que, E. L.; Domaille, D. W.; Chang, C. J. *Chem. Rev.* **2008**, *108*, 1517.
 (d) Domaille, D. W.; Que, E. L.; Chang, C. J. *Nat. Chem. Biol.* **2008**, *4*, 168.

(2) (a) Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609.
(b) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486.
(c) Sessler, J. L.; Davis, J. M. Acc. Chem. Res. 2001, 34, 989. (d) Martínez-Mánez, R; Sancenón, F. Chem. Rev. 2003, 103, 4419.

(3) (a) Winterbourn, C. C. Nat. Chem. Biol. 2008, 4, 278.
(b) Gomes, A.; Fernandes, E.; Lima, J. L. F. C. J. Biochem. Biophys. Methods 2005, 65, 45. (c) Degli Esposti, M. Methods 2002, 26, 335.

(4) Rurack, K.; Resch-Genger, U. Chem. Soc. Rev. 2002, 31, 116.

(5) (a) Corneillie, T. M.; Whetstone, P. A.; Fisher, A. J.; Meares, C. F. J. Am. Chem. Soc. 2003, 125, 3436. (b) Yuasa, J.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130, 566. (c) Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I. J. Am. Chem. Soc. 2008, 130, 12095.

(6) (a) Li, Y.; Zhu, H.; Kuppusamy, P.; Roubaud, V.; Zweier, J. L.; Trush, M. A. J. Biol. Chem. 1998, 273, 2015. (b) Robinson, K. M.; Janes, M. S.; Pehar, M.; Monette, J. S.; Ross, M. F.; Hagen, T. M.; Murphy, M. P.; Beckman, J. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15038.
(c) Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 8666. (d) Ueno, T.; Urano, Y.; Setsukinai, K.; Takakusa, H.; Kojima, H.; Kikuchi, K.; Ohkubo, K.; Fukuzumi, S.; Nagano, T. J. Am. Chem. Soc. 2004, 126, 14079. (e) Koide, Y.; Urano, Y.; Kenmoku, S.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 10324. (f) Miller, E. W.; Bian, S. X.; Chang, C. J. J. Am. Chem. Soc. 2007, 129, 3458.

(7) (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature
1993, 364, 42. (b) James, T. D.; Linnane, P.; Shinkai, S. Chem. Commun.
1996, 281. (c) Ghosh, P.; Bharadwaj, P. K.; Roy, J.; Ghosh, S. J. Am. Chem. Soc. 1997, 119, 11903. (d) Burdette, S. C.; Walkup, G. K.; Springler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831. (e) Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 4888. (f) Zhang, R.; Wang, Z.; Wu, Y.; Fu, H.; Yao, J. Org. Lett. 2008, 10, 3065.

(8) Fukuzumi, S.; Ohkubo, K.; Suenobu, T.; Kato, K.; Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. **2001**, *123*, 8459.

(9) (a) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. *J. Am. Chem. Soc.* **2004**, *126*, 1600. (b) Ohkubo, K.; Kotani, H.; Fukuzumi, S. *Chem. Commun.* **2005**, 4520. (c) Fukuzumi, S.; Hanazaki, R.; Kotani, H.; Ohkubo, K. *J. Am. Chem. Soc.* **2010**, *132*, 11002.

(10) (a) San Fillipo, J., Jr.; Chern, C.-I.; Valentine, J. S. J. Org. Chem.
1976, 41, 1077. (b) Sawyer, D. T.; Valentine, J. S. Acc. Chem. Res. 1981, 14, 393.

(11) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. J. Am. Chem. Soc. **2000**, 122, 6535.

(12) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.; Ito, O.; Sakata, Y.; Fukuzumi, S. *J. Am. Chem. Soc.* **2001**, *123*, 2607.

(13) Arnold, B. R.; Farid, S.; Goodman, J. L.; Gould, I. R. J. Am. Chem. Soc. 1996, 118, 5482.

(14) From the E_{ox} value of Acr[•] (-0.54 V), the E_{red} value of H₂P (-1.26 V), and the energy of the singlet excited state of H₂P (1.89 eV), the ΔG_{et} value in MeCN was determined to be 1.17 eV. This was converted to the value in toluene using an empirical equation for the estimation of ΔG_{et} in a solvent of known dielectric constant (ε = 2.38 for toluene).¹³ For the E_{red} value of H₂P, see: Schuster, D. I.; Li, K.; Guldi, D. M.; Palkar, A.; Echegoyen, L.; Stanisky, C.; Cross, R. J.; Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. **2007**, 129, 15973.

(15) Electron transfer from the Acr[•] moiety to the ${}^{1}H_{2}P^{*}$ moiety may occur rapidly prior to the spin-spin interaction between the Acr[•] and $H_{2}P^{-}$ moieties because of the larger driving force for electron transfer in MeCN.