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Abstract: A five step synthesis of thiotomoxetine (2) is described. Installation of the aryl ether 
was accomplished using a highly efficient SNAr fragment coupling between amino alcohol (4) 
and a 1-halo-2-methylsulfinylbenzene (X = F or C1) followed by a selective reduction of the 
arylsulfoxide moiety. © 1999 Elsevier Science Ltd. All rights reserved. 

Various substituted 3-aryloxy-3-aryl-l-propanamines (1) are potent and selective inhibitors of neuronal 

norepinephrine and serotonin uptake. ~ Many of these compounds are useful therapies for the treatment of a 

variety of  illnesses including depression, obesity, obsessive compulsive disorder, attention deficit disorder, 

urinary incontinence and alcoholism. The most notable members in this family of compounds are fluoxetine 

(Ar' = p-CF~Ph) and (R)-tomoxetine (Ar' = o-MePh). Over the past decade, several methods for the synthesis 

of these important biological targets have appeared in the literature. Recently, a new member of this class of  

compounds, (R)-thiotomoxetine (2), was chosen as a candidate for clinical development. Thiotomoxetine has 

been prepared on small scale using standard Mitsunobu chemistry, but this route is not amenable to scale-up, z 

We report herein an efficient and scaleable process for the synthesis of optically pure 2. 
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Nucleophilic aromatic substitution (SNAr) coupling between an amino alcohol and a suitably activated 

haloaromatic is one of the most efficient methods for installation of the aryloxy moiety in these compounds? '4 

For example, (S)-fluoxetine has been prepared in 96% yield and >99% ee by coupling (S)-N-methyl-3-hydroxy- 

3-phenylpropanamine and p-chloro-trifluoromethyltoluene. 5 However, moderate yields and extensive 

racemization was observed with less activated substrates (e.g. o-fluorotoluene). 6 There is one report in the 

literature in which 2-fluorothioanisole was coupled with achiral alcohols, but the forcing conditions required 

were not applicable to a synthesis of optically active thiotomoxetine] 
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We envisioned that facilitation of the SNAr process could be accomplished by conversion of the 

thiomethyl substituent in 2-fluorothioanisole to an electron withdrawing group such as a methylsulfoxide or 

sulfone. This strategy requires subsequent reduction of the activating group to provide the desired 

methylsulfide. The difficulty in reduction of aryl sulfones to the corresponding sulfides prompted us to focus 

on the S~Ar coupling of a 2-haloarylsulfoxide with an optically pure amino alcohol: This strategy is outlined in 

scheme 1. 

Scheme 1 
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Reagents: (a) NaBH 4, H20, 0 °C. (b) i. (R)-(-)-Mandelic acid, EtOAc, 77 °C to -15 °C. i i . NaOH, MTBE (c) i. Nail, 
DMSO, 50 °C. i i. oxalic acid, MeOH, 0 °C. (d) TMSCI, DMS, Py, CH2CI2, 23 °C. (e) i. CI3CH2OCOCI, Proton- 
Sponge, toluene, 70 °C. ft. 5N NaOH, DMSO, 23 °C. i i i . HCI, EtOAc, 23 °C. 

Preparation of  4 9 w a s  achieved through a sodium borohydride reduction of  commercially available 3- 

dimethylaminopropiophenone hydrochloride 3 followed by an efficient classical resolution with (R)-(-)- 

mandelic acid in EtOAc (43% yield, 94% ee)) ° The optical purity could be upgraded to >99% ee through 

recrystallization of the intermediate mandelate salt in acetone/MTBE. However, 94% ee 4 provided 

thiotomoxetine (2) in >99% ee after subsequent isolations and crystallizations. The SNAr fragment coupling 

between the sodium alkoxide of 4 and fluorosulfoxide j~ 5 proceeded smoothly at 50 °C in DMSO providing 6 in 

90% isolated yield as a 1:1 mixture of diastereomers at the sulfoxide center) 2 Notably, no  r a c e m i z a t i o n  was 

observed under these mild reaction conditions. The mixture of sulfoxides 6 was reduced using a representative 

protocol involving trimethylsilylchloride and dimethylsulftde in CH2C12 at 23 °C to provide the arylsulfide 7 in 

95% yield and 99% ee) 3 Other reduction conditions were investigated but led to decomposition (i.e. BH3oTHF ) 

or no reaction (i.e. DIBAL). Dealkylation of the tertiary amine was accomplished by treatment of 7 with 2,2,2- 

trichloroethyl chloroformate and in situ hydrolysis of  the carbamate with NaOH to give 2 which was isolated as 

its HCI salt in 75% yield and >99.5% ee. 

Sulfoxide activation represents a novel method for facilitation of the SNAr reaction, and we, therefore, 

sought to establish the scope of its applicability. The results of this study are shown in the Table. Reactions of  

primary and secondary sodium alkoxides with both the fluoro- and more economical chlorosulfoxides provided 
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high yields (82-97%) of the desired substitution products (entries 1-4). However, the more hindered tertiary 

alkoxides gave low yields of the desired product (<10%) along with substantial decomposition (entries 5 and 6). 

Phenoxide was also found to be a poor coupling partner. No reaction was observed even at elevated 

temperatures (entry 7). 

[ ~ X  ROH . [ ~ O R  

S -Me Nail, DMSO S -Me 
II II 

O O 
X= F, CI 

Table: Scope of alkoxy-SNAr reactions 

Entry ROH X Temperature (°C) Time (h) Yield (%) 

1 MeOH F 25 10 97 

2 MeOH Cl 75 16 91 

3 4 F 50 8 90 

4 4 CI 75 12 82 

5 t-BuOH F 25-50 24 < 10% 

6 t-BuOH CI 75 16 NR 

7 PhOH F 120 48 NR 

Sulfoxide activation in aromatic substitution chemistry has been demonstrated in a concise synthesis of 

thiotomoxetine 2 which eliminates racemization and avoids Mitsunobu chemistry. This synthesis features an 

efficient reduction/resolution for the installation of the asymmetric center in amino alcohol 4 along with a high 

yielding SNAr fragment coupling of this amino alcohol with 2-halosulfoxide 5 with no racemization observed. 
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