pubs.acs.org/JACS

Remote sp² C–H Carboxylation via Catalytic 1,4-Ni Migration with CO_2

Marino Börjesson, Daniel Janssen-Müller, Basudev Sahoo, Yaya Duan, Xueqiang Wang, and Ruben Martin*

ABSTRACT: A remote catalytic reductive sp² C–H carboxylation of arenes with CO_2 (1 bar) via 1,4-Ni migration is disclosed. This protocol constitutes the first catalytic 1,4-Ni migration reported to date, thus offering new vistas in the Ni-catalyzed reductive coupling arena while providing an unconventional new platform for incorporating electrophilic sites at remote sp² C–H linkages.

Recent years have witnessed the design of catalytic reductive carboxylations of aryl (pseudo)halides with CO_2 en route to benzoic acids,¹ privileged motifs in biologically active molecules.² Although remarkable levels of sophistication have been reached, prefunctionalization at the targeted sp² reaction site is required prior to CO_2 insertion (Scheme 1, path a).¹ Beyond any doubt, the pursuit of an

alternative catalytic carboxylation at previously unfunctionalized sp² C–H sites (path b) might constitute, conceptuality and practicality aside, a worthwhile endeavor for chemical invention.³

Prompted by a seminal work of Fujiwara with stoichiometric amounts of Pd complexes,⁴ significant efforts have been made to unlock the potential of sp^2 C–H carboxylations by employing either acidic sp^2 C–H linkages⁵ or strategies requiring chelating groups (Scheme 1, bottom).⁶ However, extensions to non-acidic sp^2 C–H bonds are beyond reach in the former, whereas the absence of chelating groups results in site-selectivity issues, invariably requiring noble metals and/or stoichiometric organometallic reagents (bottom left).⁷ These observations have contributed to the perception that a de novo catalytic sp^2 C–H carboxylation strategy without recourse to noble metals or organometallics might provide fundamentally new knowledge in both sp^2 C–H functionalization and carboxylation processes. Under this premise, we wondered whether a new catalytic blueprint could be designed via a cascade-type process based on a site-selective 1,4-Ni migration,⁸ thus setting the stage for a formal CO_2 insertion at remote sp² C–H bonds (Scheme 2). At the outset of our

investigations, however, it was unclear whether such a strategy could be implemented, as (1) *catalytic* 1,4-Ni translocation⁹ remains an unknown cartography in cross-coupling reactions^{10–14} and (2) site-selectivity issues might come into play because of competitive catalytic carboxylation at the sp³ C–Br site¹⁵ or at the alkyne motif.¹⁶ We recognized that, if successful, such a scenario might offer a conceptually new reactivity mode in the reductive cross-coupling arena for tackling the functionalization of otherwise inaccessible sp² C–H reaction sites.¹⁷ Herein we report the successful realization of this goal. Our protocol is characterized by its mild conditions, wide substrate scope—including challenging substrate combinations—without the need for handling air-or moisture-sensitive reagents, and an exquisite site-selectivity pattern.

Received: August 16, 2020

Our investigations began by evaluating the remote sp² C–H carboxylation of 1a with CO₂ (Table 1). As expected,

^{*a*}Conditions: **1a** (0.20 mmol), NiBr₂·diglyme (10 mol %), **L5** (20 mol %), and MnCr alloy (0.25 mmol) in DMF (0.2 M) at 15 °C under CO_2 (1 atm). ^{*b*}Determined by ¹H NMR analysis using trimethoxybenzene as an internal standard. ^{*c*}Isolated yields.

conditions previously employed for the reductive carboxylation of aryl halides failed to provide even traces of $2a^{18}$ and mainly resulted in statistical mixtures of carboxylic acids arising from CO_2 insertion at the vinyl motif (E_1Z-2a') . After a judicious choice of the reaction parameters, a combination of NiBr₂. diglyme, L5, and Mn₈₉Cr₁₁ was found to be critical for success,¹⁹ delivering 2a in 77% yield with an excellent siteselectivity profile (94:6).²⁰ As shown in entries 2–5, subtle changes in the electronic or steric environment of the 2,2'bipyridine core had a non-negligible impact on the reactivity.²¹ Strikingly, erosion of both the yield and site selectivity was observed when metal reductants other than Mn₈₉Cr₁₁ were employed (entries 6-8).²² While one might argue that the presence of Cr atoms might dictate the site-selectivity pattern, the results shown in entries 7 and 8 indicate otherwise.¹⁴ At present we have no explanation for this behavior. While inferior results were found with $Ni(cod)_2$ and DMSO (entries 9 and 10), no erosion in yield or selectivity was found when air- and moisture-stable $NiBr_2(L5)_2$ was used, constituting an additional bonus from a user-friendly standpoint (entry 11).

Encouraged by these findings, we turned our attention to studying the generality of our cascade process with a host of unactivated alkyl bromides. As evident from the results compiled in Table 2, structures containing thioethers (2d), methoxy arenes (2b), trifluoromethylated derivatives (2c and 2i), or heterocycles (2o) could perfectly be tolerated. Even aryl halides (2g, 2h, and 2r) or organoboranes (2e) could be accommodated, thus constituting an orthogonal gateway for subsequent manipulation via cross-coupling reactions. Notably, acetylenes end-capped with either sterically hindered arenes (2m) or aliphatic motifs (2j-l) posed no problems. Equally relevant was the observation that the targeted carboxylation occurred regardless of the steric properties at the acetylene backbone or the employment of secondary unactivated alkyl bromides (2p and 2q). Interestingly, the inclusion of different substitution patterns on the arene backbone did not interfere with productive 1,4-migration, albeit in lower yields (2r and

Table 2. sp² C-H Carboxylation of Alkyl Bromides^{a,b}

^aConditions: as in Table 1, entry 11. ^bIsolated yields, averages of two runs, $2\mathbf{a}-\mathbf{w}:2\mathbf{a}'-\mathbf{w}' \ge 90:10$. ^c $2\mathbf{i}:2\mathbf{i}' = 87:13$. ^d $2\mathbf{0}:2\mathbf{o}' = 76:26$. ^cL2 (20 mol %) and MnCr (2.5 equiv). ^fNiBr₂·diglyme (15 mol %)/L2 (30 mol %) and MnCr (2.5 equiv), $2\mathbf{w}:2\mathbf{w}' = 80:20$.

2s).²³ The successful carboxylation of silicon-tethered alkyl bromides is particularly important, as the corresponding carboxylic acids 2t-w could be homologated via C-Si cleavage at later stages, thus easily accessing nonfused analogues (Scheme 4, bottom).

The successful preparation of 2a-w suggested that an otherwise similar 1,4-Ni migration scenario could be within reach by the use of simple vinyl halides as substrates. As shown in Scheme 3, this turned out to be the case, and vinyl bromides containing either alkyl or aromatic substituents could trigger the targeted sp² C–H carboxylation en route to 4a and 4b regardless of whether E/Z mixtures of 3a and 3b, respectively, were utilized.²⁴ While tentative, this observation suggests an initial E/Z isomerization of the oxidative addition Ni(II) species prior to 1,4-Ni migration, probably via the

^{*a*}Conditions: as in Table 1, entry 11, using DMA. ^{*b*}Isolated yields, averages of two independent runs. ^{*c*}Z:E = 2.4:1. ^{*d*}Z:E = 3.3:1.

intermediacy of carbene-type species.²⁵ The prospective impact of our 1,4-Ni migration technique is further illustrated in Scheme 4. As shown, complex molecular isochromanone or

Scheme 4. Application Profile

synthesis of phthalides and isochromanones (BQ = 1,4-benzoquinone)

phthalide architectures could be accessed from 2a or 2b depending on the reaction conditions utilized. Thus, bromolactonization to obtain 5 was easily accomplished by exposing 2a to NBS in TFA,²⁶ whereas clean formation of phthalide 6 was observed with H_2SO_4 instead.²⁷ Similarly, while isochromenone 7 could be obtained via Pd-catalyzed oxidative regimes,²⁸ the saturated isochromanone analogue 8 was within reach from 2b instead. More importantly, the successful preparation of 9 in an unoptimized 43% yield tacitly indicates that the presence of silicon fragments can be turned into a strategic advantage to access functionalized polyhydroxylated carboxylic acids, thus expanding the application profile of our technology.²⁹

Intrigued by the favorable reactivity profile shown in Table 2 and Schemes 2 and 3, we conducted experiments with isotopically labeled substrates (Scheme 5, top). As shown, full deuterium incorporation at the vinyl position (>95% D) was observed in 4c when 3c was exposed to our optimized NiBr₂/L5 regime, thus corroborating that a [1,4]-Ni migration occurs at the ortho sp^2 C–H bond prior to CO₂ insertion. Interestingly, while a significant intramolecular kinetic isotope effect was observed in the reductive carboxylation of 3d ($k_{\rm H}/k_{\rm D}$ = 5:1; Scheme 5, top right), no intermolecular kinetic isotope effect was found by comparison of the rates of 3a and 3c.¹⁹ Although tentative, this observation suggests a rate-determining step that occurs before or after the 1,4-migration event.³⁰ Still, however, there was a reasonable doubt about whether [1,4]-Ni migration and the subsequent CO₂ insertion occurred at Ni(I) or Ni(II) centers. Thus, we turned our attention to unraveling such mechanistic intricacies by isolating the putative oxidative addition species at either the vinyl or aryl terminus. Interestingly, 10 and 11 could be prepared by reacting the aryl (vinyl) halide with $Ni(cod)_2$ and TMEDA or L2 in THF.³¹ The structures of these complexes in the solid

Scheme 5. Preliminary Mechanistic Studies

state are depicted in Scheme 5 (bottom).³² As anticipated, the carboxylation of **10** occurred only *in the presence* of **L5**, thus illustrating the importance of 2,2'-bipyridine ligands in the targeted carboxylation reaction. More importantly, **4a** could be obtained from **10** or **11** *in the absence of external metal reductant*, strongly suggesting that both 1,4-Ni migration and CO_2 insertion occur at Ni(II) centers.³³ This observation can hardly be underestimated, as it challenges the prevailing perception that CO_2 insertion occurs at Ni(I)–carbon bonds³⁴ and that a 1,4-shift should take place at Ni(I) centers,⁹ thus opening up new knowledge about catalyst design, particularly in the reductive cross-coupling arena.¹⁷ Whether CO_2 insertion occurs at four-coordinate or six-coordinate species via octahedral complexes is a subject of ongoing studies in this laboratory.³⁵

In summary, we have documented the first catalytic 1,4nickel migration as a vehicle to enable CO_2 insertion at remote and previously unfunctionalized sp² C–H reaction sites, an unrecognized opportunity in both the carboxylation and reductive cross-coupling arena. The salient features of this protocol are the exquisite chemo- and site selectivity, mild conditions, and application profile. Further extensions to other cross-couplings initiated by 1,4-Ni migration are currently underway in our laboratories.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c08810.

Crystallographic data for 2a' (CCDC 1992996) (CIF) Crystallographic data for 2a (CCDC 1992997) (CIF) Crystallographic data for 4a (CCDC 1992998) (CIF) Crystallographic data for 5 (CCDC 1992999) (CIF) Crystallographic data for 10 (CCDC 1993000) (CIF) Crystallographic data for NiBr₂(L5)₂ (CCDC 1993001) (CIF)

Experimental procedures and spectral and crystallographic data (PDF)

AUTHOR INFORMATION

Corresponding Author

 Ruben Martin – Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain; ICREA, 08010 Barcelona, Spain;
orcid.org/0000-0002-2543-0221; Email: rmartinromo@ iciq.es

Authors

- Marino Börjesson Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- **Daniel Janssen-Müller** Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Basudev Sahoo Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain; orcid.org/0000-0002-9746-9555
- Yaya Duan Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- **Xueqiang Wang** Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c08810

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank ICIQ and FEDER/MCI-AEI/PGC2018-096839-B-I00 for financial support. Prof. A. Berkessel is acknowledged for a generous gift of Mn/Cr. M.B., B.S. and D.J.-M. thank MINECO, the European Union's Horizon 2020 Programme under Marie Sklodowska-Curie Grant Agreement 795961, and the Alexander von Humboldt Foundation for predoctoral and postdoctoral fellowships. We sincerely thank E. Escudero and E. Martin for X-ray crystallographic data.

REFERENCES

(1) Selected reviews: (a) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. *Angew. Chem., Int. Ed.* **2018**, *57*, 15948. (b) Fujihara, T.; Tsuji, Y. Cobalt- and rhodiumcatalyzed carboxylation using carbon dioxide as the C1 source. *Beilstein J. Org. Chem.* **2018**, *14*, 2435. (c) Juliá-Hernández, F.; Gaydou, M.; Serrano, E.; Van Gemmeren, M.; Martin, R. Ni- and Fecatalyzed Carboxylation of Unsaturated Hydrocarbons with CO₂. *Top. Curr. Chem.* **2016**, *374*, 45. (d) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. Metal-Catalyzed Carboxylation of Organic (Pseudo)halides with CO₂. *ACS Catal.* **2016**, *6*, 6739. (e) Zhang, L.; Hou, Z. *N*-Heterocyclic carbene (NHC)-copper-catalysed transformations of carbon dioxide. *Chem. Sci.* **2013**, *4*, 3395. (f) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. *Nat. Commun.* **2015**, *6*, 5933.

(2) (a) Patai, S. *The Chemistry of Acid Derivatives*; Wiley: New York, 1992. (b) Goossen, L. J.; Rodríguez, N.; Gooßen, K. Carboxylic acids as substrates in homogeneous catalysis. *Angew. Chem., Int. Ed.* **2008**, 47, 3100. (c) Maag, H. *Prodrugs of Carboxylic Acids*; Springer: New York, 2007.

(3) Selected reviews: (a) Luo, J.; Larrosa, I. C-H Carboxylation of Aromatic Compounds through CO₂ Fixation. *ChemSusChem* **2017**,

10, 3317. (b) Hong, J.; Li, M.; Zhang, J.; Sun, B.; Mo, F. C-H Bond Carboxylation with Carbon Dioxide. *ChemSusChem* **2019**, *12*, 6.

(4) Sugimoto, H.; Kawata, I.; Taniguchi, H.; Fujiwara, Y. Palladiumcatalyzed carboxylation of aromatic compounds with carbon dioxide. *J. Organomet. Chem.* **1984**, *266*, C44.

(5) Selected references on catalytic carboxylations of relatively acidic sp² C-H bonds ($pK_a < 28$): (a) Boogaerts, I. I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P. Carboxylation of N-H/ C-H Bonds Using N-Heterocyclic Carbene Copper(I) Complexes. Angew. Chem., Int. Ed. 2010, 49, 8674. (b) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Copper-Catalyzed Direct Carboxylation of C-H Bonds with Carbon Dioxide. Angew. Chem., Int. Ed. 2010, 49, 8670. (c) Inomata, H.; Ogata, K.; Fukuzawa, S. I.; Hou, Z. Direct C-H Carboxylation with Carbon Dioxide Using 1,2,3-Triazol-5-ylidene Copper(I) Complexes. Org. Lett. 2012, 14, 3986. For mechanistic studies on the matter, see: (d) Johnson, M. T.; Marthinus Janse van Rensburg, J.; Axelsson, M.; Ahlquist, M. S. G.; Wendt, O. F. Reactivity of NHC Au(I)-Cs-bonds with electrophiles. An investigation of their possible involvement in catalytic C-C bond formation. Chem. Sci. 2011, 2, 2373. (e) Ariafard, A.; Zarkoob, F.; Batebi, H.; Stranger, R.; Yates, B. F. DFT Studies on the Carboxylation of the C-H Bond of Heteroarenesby Copper(I) Complexes. Organometallics 2011, 30, 6218.

(6) Selected references on *ortho*-directed sp² C-H carboxylations: (a) Mizuno, H.; Takaya, J.; Iwasawa, N. Rhodium (I)-Catalyzed Direct Carboxylation of Arenes with CO₂ via Chelation-Assisted C-H Bond Activation. J. Am. Chem. Soc. 2011, 133, 1251. (b) Sasano, K.; Takaya, J.; Iwasawa, N. Palladium(II)-Catalyzed Direct Carboxylation of Alkenyl C-H Bonds with CO2. J. Am. Chem. Soc. 2013, 135, 10954. (c) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.-Q.; Zhou, L.-P.; Yuan, D.; Sun, Q.-F.; Li, G. Ligand-enabled site-selectivity in a versatile rhodium(II)-catalysed aryl C-H carboxylation with CO2. Nat. Catal. 2018, 1, 469. (d) Cai, Z.; Li, S.; Gao, Y.; Li, G. Rhodium(II)-Catalyzed Aryl C-H Carboxylationof 2-Pyridylphenols with CO2. Adv. Synth. Catal. 2018, 360, 4005. (e) Huang, R.; Li, S.; Fu, L.; Li, G. Rhodium(II)-Catalyzed C-H Bond Carboxylation of Heteroarenes with CO2. Asian J. Org. Chem. 2018, 7, 1376. (f) Song, L.; Cao, G.-M.; Zhou, W.-J.; Ye, J.-H.; Zhang, Z.; Tian, X.-Y.; Li, J.; Yu, D.-G. Pd-catalyzed carbonylation of aryl C-H bonds in benzamides with CO2. Org. Chem. Front. 2018, 5, 2086. (g) Song, L.; Zhu, L.; Zhang, Z.; Ye, J.-H.; Yan, S.-S.; Han, J.-L.; Yin, Z.-B.; Lan, Y.; Yu, D.-G. Catalytic Lactonization of Unactivated Aryl C-H Bonds with CO2: Experimental and Computational Investigation. Org. Lett. 2018, 20, 3776.

(7) Selected references on catalytic carboxylation reactions at nonacidic sp² C–H bonds with noble metals or stoichiometric organometallic reagents: (a) Suga, T.; Mizuno, H.; Takaya, J.; Iwasawa, N. Direct carboxylation of simple arenes with CO_2 through a rhodium-catalyzed C–H bond activation. *Chem. Commun.* **2014**, *50*, 14360. (b) Suga, T.; Saitou, T.; Takaya, J.; Iwasawa, N. Mechanistic Study of Rhodium-Catalyzed Carboxylation of Simple Aromatic Compounds with Carbon Dioxide. *Chem. Sci.* **2017**, *8*, 1454.

(8) For reviews of catalytic 1,4-migrations, see: (a) Ma, S.; Gu, Z. 1,4-Migration of Rhodium and Palladium in Catalytic Organometallic Reactions. *Angew. Chem., Int. Ed.* **2005**, *44*, 7512. (b) Rahim, A.; Feng, J.; Gu, Z. 1,4-Migration of Transition Metals in Organic Synthesis. *Chin. J. Chem.* **2019**, *37*, 929.

(9) To the best of our knowledge, 1,4-Ni migration can be affected only in a stoichiometric manner with dinuclear Ni(I) complexes. See: (a) Keen, A. L.; Johnson, S. A. Nickel(0)-Catalyzed Isomerization of an Aryne Complex: Formation of a Dinuclear Ni(I) Complex via C– H Rather than C-F Bond Activation. *J. Am. Chem. Soc.* 2006, 128, 1806. (b) Keen, L. A.; Doster, M.; Johnson, A. S. 1,4-Shifts in a Dinuclear Ni(I) Biarylyl Complex: A Mechanistic Study of C–H Bond Activation by Monovalent Nickel. *J. Am. Chem. Soc.* 2007, 129, 810.

(10) For selected examples of 1,4-Rh migration, see: (a) Shintani, R.; Okamoto, K.; Hayashi, T. Rhodium-Catalyzed Isomerization oftt-Arylpropargyl Alcohols to Indanones: Involvement of an Unexpected Reaction Cascade. J. Am. Chem. Soc. **2005**, 127, 2872. (b) Burns, D. J.; Best, D.; Wieczysty, M. D.; Lam, H. W. All-Carbon [3 + 3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C-H Functionalization and 1,4-Migration. Angew. Chem., Int. Ed. **2015**, 54, 9958. (c) Korkis, S. E.; Burns, D. J.; Lam, H. W. Rhodium-Catalyzed Oxidative C-H Allylation of Benzamides with 1,3-Dienes by Allyl-to-Allyl 1,4-Rh(III) Migration. J. Am. Chem. Soc. **2016**, 138, 12252. (d) Partridge, B. M.; Callingham, M.; Lewis, W.; Lam, H. W. Arylative Intramolecular Allylation of Ketones with 1,3-Enynes Enabled by Catalytic Alkenyl-to-Allyl 1,4-Rhodium(I) Migration. Angew. Chem., Int. Ed. **2017**, 56, 7227. (e) Bai, D.; Xia, J.; Song, F.; Li, X.; Liu, B.; Liu, L.; Zheng, G.; Yang, X.; Sun, J.; Li, X. Rhodium(III)-Catalyzed Diverse [4 + 1] Annulation of Arenes with 1,3-Enynes via sp³/sp² C-H Activation and 1,4-Rhodium Migration. Chem. Sci. **2019**, 10, 3987 and references therein.

(11) For selected 1,4-Pd migrations, see: (a) Dyker, G. Palladium-Catalyzed C-H Activation at Methoxy Groups for Cross-Coupling Reactions: A New Approach to Substituted Benzo blfurans. J. Org. Chem. 1993, 58, 6426. (b) Larock, C. R.; Tian, Q. Synthesis of 9-Alkylidene-9H-fluorenes by a Novel, Palladium-Catalyzed Cascade Reaction of Aryl Halides and 1-Aryl-1-alkynes. J. Org. Chem. 2001, 66, 7372. (c) Pan, J.; Su, M.; Buchwald, L. S. Palladium(0)-Catalyzed Intermolecular Amination of Unactivated C_{sp³}-H Bonds. Angew. Chem., Int. Ed. 2011, 50, 8647. (d) Piou, T.; Bunescu, A.; Wang, Q.; Neuville, L.; Zhu, J. Palladium-Catalyzed Through-Space C(sp³)-H and C(sp²)-H Bond Activation by 1,4-Palladium Migration: Efficient Synthesis of [3,4]-Fused Oxindoles. Angew. Chem., Int. Ed. 2013, 52, 12385. (e) Yu, Y.; Chakraborty, P.; Song, J.; Zhu, L.; Li, C.; Huang, X. Easy Access to Medium-Sized Lactones through Metal Carbene Migratory Insertion Enabled 1,4-Palladium Shift. Nat. Commun. 2020, 11, 461 and references therein.

(12) For selected 1,4-Co migrations, see: (a) Tan, H.-B.; Dong, J.; Yoshikai, N. Cobalt-Catalyzed Addition of Arylzinc Reagents to Alkynes to Form *ortho*-Alkenylarylzinc Species through 1,4-Cobalt Migration. *Angew. Chem., Int. Ed.* **2012**, *51*, 9610. (b) Wu, B.; Yoshikai, N. Versatile Synthesis of Benzothiophenes and Benzoselenophenes by Rapid Assembly of Arylzinc Reagents, Alkynes, and Elemental Chalcogens. *Angew. Chem., Int. Ed.* **2013**, *52*, 10496. (c) Tan, B.-H.; Yoshikai, N. Cobalt-Catalyzed Addition of Arylzinc Reagents to Norbornene Derivatives through 1,4-Cobalt Migration. *Org. Lett.* **2014**, *16*, 3392. (d) Yan, J.; Yoshikai, N. Cobalt-Catalyzed Arylative Cyclization of Acetylenic Esters and Ketones with Arylzinc Reagents through 1,4-Cobalt Migration. *ACS Catal.* **2016**, *6*, 3738 and references therein.

(13) For selected 1,4-Ir migrations, see: (a) Partridge, B. M.; Solana González, J.; Lam, H. W. Iridium-Catalyzed Arylative Cyclization of Alkynones by 1,4-Iridium Migration. *Angew. Chem., Int. Ed.* **2014**, *53*, 6523. (b) Ruscoe, R. E.; Callingham, M.; Baker, J. A.; Korkis, S. E.; Lam, H. W. Iridium-Catalyzed 1,5-(Aryl)Aminomethylation of 1,3-Enynes by Alkenyl-to-Allyl 1,4-Iridium(I) Migration. *Chem. Commun.* **2019**, *55*, 838 and references therein.

(14) For an example of 1,4-Cr migration at high temperature, see: Yan, J.; Yoshikai, N. Chromium-Catalyzed Migratory Arylmagnesiation of Unactivated Alkynes. *Org. Chem. Front.* **2017**, *4*, 1972.

(15) Selected examples: (a) Börjesson, M.; Moragas, T.; Martin, R. Ni-Catalyzed Carboxylation of Unactivated Alkyl Chlorides with CO₂. *J. Am. Chem. Soc.* **2016**, *138*, 7504. (b) Wang, X.; Liu, Y.; Martin, R. Ni-Catalyzed Divergent Cyclization/Carboxylation of Unactivated Primary and Secondary Alkyl Halides with CO₂. *J. Am. Chem. Soc.* **2015**, *137*, 6476. (c) Liu, Y.; Cornella, J.; Martin, R. Ni-Catalyzed Carboxylation of Unactivated Primary Alkyl Bromides and Sulfonates with CO₂. *J. Am. Chem. Soc.* **2014**, *136*, 11212. (d) Juliá-Hernández, F.; Moragas, T.; Cornella, J.; Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. *Nature* **2017**, *545*, 84.

(16) Selected examples: (a) Burkhart, G.; Hoberg, H. Oxanickelacyclopentene Derivatives from Nickel(0), Carbon Dioxide, and Alkynes. *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 76. (b) Li, S.; Yuan, W.; Ma, S. Highly Regio- and Stereoselective Three-Component Nickel-Catalyzed syn-Hydrocarboxylation of Alkynes with Diethyl Zinc and Carbon Dioxide. *Angew. Chem., Int. Ed.* **2011**, *50*, 2578. (c) Wang, X.; Nakajima, M.; Martin, R. Ni-catalyzed Regioselective Hydrocarboxylation of Alkynes with CO₂ by Using Simple Alcohols as Proton Sources. *J. Am. Chem. Soc.* **2015**, *137*, 8924. (d) Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. Site-Selective Catalytic Carboxylation of Unsaturated Hydrocarbons with CO₂ and Water. *J. Am. Chem. Soc.* **2017**, *139*, 12161.

(17) Selected reviews of reductive cross-coupling reactions: (a) Gu, J.; Wang, X.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Alkyl Halides with Other Electrophiles: Concept and Mechanistic Considerations. *Org. Chem. Front.* **2015**, *2*, 1411. (b) Weix, J. D. Methods and Mechanisms for Cross-Electrophile Coupling of Csp² Halides with Alkyl Electrophiles. *Acc. Chem. Res.* **2015**, *48*, 1767. (c) Moragas, T.; Correa, A.; Martin, R. Metal-Catalyzed Reductive Coupling Reactions of Organic Halides with Carbonyl-Type Compounds. *Chem. - Eur. J.* **2014**, *20*, 8242. (d) Knappke, C. E. I.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Reductive Cross-Coupling Reactions between Two Electrophiles. *Chem. - Eur. J.* **2014**, *20*, 6828.

(18) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide. *J. Am. Chem. Soc.* **2012**, *134*, 9106.

(19) See the Supporting Information for details.

(20) Mass balance accounts for olefins derived from M-hydride elimination pathways.

(21) 1,10-Phenanthroline or 2,2'-bipyridine ligands lacking *ortho* substituents afforded negligible amounts of **2a**.

(22) Harnying, W.; Berkessel, A. Vinylation of Aldehydes Using Mn/Cr Alloy and a N_4 -Ligand/Ni^{II}-Catalyst. Chem. - Eur. J. **2015**, 21, 6057.

(23) Unfortunately, a cascade consisting of a 5-exo-dig or 7-exo-dig cyclization followed by 1,4-Ni migration did not result in sp² C–H carboxylation. While the former led to exclusive formation of vinyl carboxylic acids, a complex mixture of carboxylic acids was obtained in the latter. In this case, a formal 6-exo-dig/1,4-Ni product was identified as the major product, likely arising from initial 4-hydride elimination followed by migratory insertion prior to 6-exo-dig cyclization. Still, the results in Scheme 4 (bottom) show the ability to access non-benzo-fused benzoic acids. In addition, a screening was conducted with a representative set of additives to further assess the functional group compatibility beyond the compounds employed in Table 2.¹⁹.

(24) Similar yields were obtained regardless of whethe the reaction started with Z- or E-vinyl bromide **3b**. Control experiments were conducted to understand the origin of the E/Z isomerization found for **4a-d**.¹⁹

(25) Selected references: (a) Liu, X.; Li, X.; Chen, Y.; Hu, Y.; Kishi, Y. On Ni Catalysts for Catalytic, Asymmetric Ni/Cr-Mediated Coupling Reactions. J. Am. Chem. Soc. **2012**, 134, 6136. (b) Ranjith Kumar, G.; Kumar, R.; Rajesh, M.; Sridhar Reddy, M. A nickelcatalyzed anti-carbometallative cyclization of alkyne-azides with organoboronic acids: synthesis of 2,3-diarylquinolines. Chem. Commun. **2018**, 54, 759. For a similar proposal within the context of Pd catalysis, see: (c) Fruchey, E. R.; Monks, B. M.; Patterson, A. M.; Cook, S. P. Palladium-catalyzed alkyne insertion/reduction route to trisubstituted olefins. Org. Lett. **2013**, 15, 4362.

(26) Chen, T.; Yeung, Y.-Y. Trifluoroacetic Acid Catalyzed Highly Regioselective Bromocyclization of Styrene-Type Carboxylic Acid. *Org. Biomol. Chem.* **2016**, *14*, 4571.

(27) Yang, X.; Jin, X.; Wang, C. Manganese-Catalyzed *ortho*-C-H Alkenylation of Aromatic N-H Imidates with Alkynes: Versatile Access to Mono-Alkenylated Aromatic Nitriles. *Adv. Synth. Catal.* **2016**, 358, 2436.

(28) Minami, T.; Nishimoto, A.; Nakamura, Y.; Hanaoka, M. Synthesis of 3-substituted isocourmarins through acyloxypalladation of *o*-alkenylbenzoic acids. *Chem. Pharm. Bull.* **1994**, *42*, 1700.

(29) Sunderhaus, J. D.; Lam, H.; Dudley, G. B. Oxidation of Carbon-Silicon Bonds: The Dramatic Advantage of Strained Siletanes. *Org. Lett.* **2003**, *5*, 4571.

(30) Simmons, E. M.; Hartwig, J. F. On the Interpretation of Deuterium Kinetic Isotope Effects in C–H Bond Functionalizations by Transition-Metal Complexes. *Angew. Chem., Int. Ed.* **2012**, *51*, 3066.

(31) (a) Shields, B. J.; Kudisch, B.; Scholes, G. D.; Doyle, A. G. Long-Lived Charge-Transfer States of Nickel(II) Aryl Halide Complexes Facilitate Bimolecular Photoinduced Electron Transfer. *J. Am. Chem. Soc.* **2018**, *140*, 3035. (b) Lee, E.; Hooker, J. M.; Ritter, T. Nickel-Mediated Oxidative Fluorination for PET with Aqueous [¹⁸F] Fluoride. *J. Am. Chem. Soc.* **2012**, *134*, 17456 (see ref 19 for details).

(32) Although crystals suitable for X-ray diffraction could be obtained for both **10** and **11**, the poor resolution and instability of the latter prevented us from obtaining high-quality crystallographic data.

(33) This notion was given further credence by the fact that 2a was obtained in 74% yield (93:7) upon exposure of 1a to stoichiometric amounts of Ni(cod)₂ and L5 in the absence of metal reductant.

(34) Somerville, R. J.; Martin, R. Relevance of Ni(I) in Catalytic Carboxylation Reactions. In *Nickel Catalysis in Organic Synthesis*; Ogoshi, S., Ed.; Wiley, 2019; pp 285–330.

(35) Reported examples of CO_2 insertion into Ni(II)–C bonds under forcing conditions: (a) Mousa, A. H.; Bendix, J.; Wendt, O. F. Synthesis, Characterization and Reactivity of PCN Pincer Nickel Complexes. *Organometallics* **2018**, *37*, 2581. (b) Jonasson, K. J.; Wendt, O. F. Synthesis and Characterization of a Family of POCOP Pincer Complexes with Nickel: Reativity Towards CO_2 and Phenylacetylene. *Chem. - Eur. J.* **2014**, *20*, 11894. (c) Schmeier, T. J.; Hazari, N.; Incarvito, C. D.; Raskatov, J. A. Exploring the reactions with CO_2 with PCP supports nickel complexes. *Chem. Commun.* **2011**, *47*, 1824.