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Figure 1. Structures of some representative 3-ylidenephthalides and
compounds.
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Following the recent identification of the naturally occurring 3-ylidene-4,5-dihydrophthalide ligustilide
and its oxidation product dehydroligustilide as novel TRPA1 modulators, a series of seventeen 3-ylide-
nephthalides was synthesized and tested on TRPA1 and TRPM8 channels. Most of these compounds acted
as strong modulators of the two channel types with EC50 and/or IC50 values distinctly lower than those of
the reference compounds.
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3-Ylidenephthalides [3-ylidene-1(3H)-isobenzofuranones]
represent an important group of both naturally occurring and syn-
thetic products endowed with remarkably wide-ranging biological
activities (Fig. 1).1 Most of them exist in the thermodynamically
more stable Z-configuration. In fact, (E)-3-ylidenephthalides have
appeared less frequently in the chemical literature, being isolated
with difficulty from E–Z mixtures in which the more stable
Z-isomers predominated.2 Typically, the content of (Z)-3-butylidene-
4,5-dihydrophthalide [(Z)-ligustilide] is about ten times higher
than that of the E-isomer in medicinal plants from the traditional
chinese medicine.3 The biological activity of ligustilide, which is
a major component of the aromas of celery (Apium graveolens)
and lovage (Levisticum officinale), has been extensively investigated
revealing an impressive pleiotropic pharmacological profile that
includes, inter alia, reduction of cerebral infarct volume and
improvement of neurobehavioral deficits, attenuation of lipop-
olysaccaride (LPS)-induced endotoxic shock, inhibition of vascular
smooth muscle cell proliferation, antioxidant, antiapoptotic, anti-
thrombotic, antinflammatory, and analgesic effects.3 The ability
of ligustilide to penetrate the brain when administered through
the nasal route deserves a special mention, because possibly rele-
vant to its neuroprotective actions.4

Recently, ligustilide has been reported to behave as a transient
receptor potential ankyrin type-1 (TRPA1) agonist (EC50 = 44 lM),
with only modest desensitizing properties on mustard oil
(MO)-induced activation of this channel.5 This profile of activity
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Scheme 1. Synthesis of compounds 4. Reagents and conditions: (a) AlCl3, 100 �C,
1 h; (b) (CF3SO2)2O, 2,6-di-tert-butyl-4-methylpyridine, CH2Cl2, rt, 16 h; (c) CO,
Pd(OAc)2 (dppp), Et3N (or K2CO3), DMF (or toluene), 60 �C (or 100 �C), 1–4 h.
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is reversed by aromatization to dehydroligustilide, which acts as
a potent blocker of MO-activated currents (IC50 = 23 lM). The ef-
fects of ligustilide and dehydroligustilide on mouse transient
receptor potential vanilloid type-1 (TRPV1) and melastatin
type-8 (TRPM8) channels have been tested as well. None of the
Table 1
Results of TRPA1 and TRPM8 assays of 3-ylidenephthalides 4a

Compound TRPA1
(efficacy)b

TRPA1
(EC50, lM)

TRPA1
(IC50, lM

O

O

4a

50.5 ± 1.4 24.5 ± 3.2 >100

O

O

4b

28.6 ± 1.0 24.2 ± 3.6 >100

O

O

4c

11.3 ± 0.4 50.8 ± 1.2 >100

O

O

4d

85.1 ± 1.9 17.2 ± 1.3 33.95 ± 1

O

O
F

4e

10.2 ± 0.5 32.2 ± 0.1 >100

O

O
MeO

4f

10.1 ± 0.2 42.8 ± 0.1 >100
compounds was able to activate significantly these channels
but, when TRPM8 was activated by menthol, a potent inhibition
was observed by application of either compound. These observa-
tions indicate that 3-ylidenephthalide could be a new and useful
template for the identification of TRPA1 and TRPM8 modulators.
Therefore, we decided, as a continuation of our ongoing interest
in the SAR exploration of natural product ligands of TRP chan-
nels,6 to prepare and test on TRPA1 and TRPM8 channels several
representative 3-ylidenephthalides, including dehydroligustilide
(compound 4j, Table 1).

TRPA1 and TRPM8 channels are involved in a wide array of
physiological functions and their dysfunction can cause various
pathological conditions, including pain, cancer and bladder, respi-
ratory and skeletal disorders.7 As a consequence, modulation of
TRPA1 and TRPM8 channels provides an attractive approach for
the treatment of the aforementioned ‘channelopathies’ and indeed
have been among the most actively investigated drug targets with-
in the TRP channel realm over the past few years.

The 3-ylidenephthalides 4 were synthesized by a palladium-
catalyzed cyclocarbonylation of 2-triflyloxyacetophenone deriva-
tives 3, an original approach to 3-ylidenephthalides disclosed by
us 20 years ago,8 which still offers distinct advantages over related
)c
TRPM8
(efficacy)d

TRPM8
(EC50, lM)

TRPM8
(IC50, lM)e

TRPM8
(IC50, lM)f

<10 ND >200 >200

<10 ND >200 >200

<10 ND >200 >200

.7 <10 ND 90.1 ± 1.8 128.4 ± 3.7

<10 ND >200 >200

<10 ND >200 >200

(continued on next page)



Table 1 (continued)

Compound TRPA1
(efficacy)b

TRPA1
(EC50, lM)

TRPA1
(IC50, lM)c

TRPM8
(efficacy)d

TRPM8
(EC50, lM)

TRPM8
(IC50, lM)e

TRPM8
(IC50, lM)f

O

O

Cl

4g

20.7 ± 0.5 4.7 ± 0.5 46.7 ± 7.2 <10 ND 74.2 ± 1.6 135.5 ± 14.1

O

O

MeO

4h

24.6 ± 0.7 21.7 ± 2.9 >100 <10 ND 161.4 ± 3.3 >200

O

O

4i

43.7 ± 1.5 15.8 ± 2.2 36.3 ± 4.3 <10 ND 7.7 ± 0.3 12.1 ± 0.2

O

O

4j

<10 ND 44.5 ± 3.8 <10 ND 140.7 ± 0.3 153.3 ± 5.6

O

O

4k

94.3 ± 1.9 2.8 ± 0.2 3.3 ± 0.3 <10 ND 2.5 ± 0.1 6.8 ± 0.1

O

O

4l

93.6 ± 6.3 3.0 ± 0.9 2.9 ± 0.2 <10 ND 8.3 ± 0.4 10.2 ± 0.1

O

O

4m

117.1 ± 2.9 1.1 ± 0.1 0.80 ± 0.03 <10 ND 1.0 ± 0.1 1.9 ± 0.1

O

O

4n

125.7 ± 2.6 4.3 ± 0.4 2.4 ± 0.1 <10 ND 7.2 ± 0.4 25.1 ± 2.6
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Table 1 (continued)

Compound TRPA1
(efficacy)b

TRPA1
(EC50, lM)

TRPA1
(IC50, lM)c

TRPM8
(efficacy)d

TRPM8
(EC50, lM)

TRPM8
(IC50, lM)e

TRPM8
(IC50, lM)f

O

O

Cl

4o

111.6 ± 1.3 2.0 ± 0.1 1.5 ± 0.1 <10 ND 14.9 ± 1.7 48.1 ± 0.3

O

O

OMe

4p

65.1 ± 0.5 1.3 ± 0.1 2.2 ± 0.2 12.9 ± 2.7 1.8 ± 0.1 3.4 ± 0.5 11.3 ± 0.1

O

O

4q

103.0 ± 1.5 3.1 ± 0.2 3.2 ± 0.2 <10 ND 2.4 ± 0.1 4.4 ± 0.5

a Data are means ± SEM of N = 3 determinations.
b As percent of the effect of allyl isothiocyanate (100 lM).
c Determined against the effect of allyl isothiocyanate (100 lM).
d As percent of the effect of ionomycin (4 lM).
e Determined against the effect of icilin (0.25 lM).
f Determined against the effect of menthol (50 lM). ND, not determined when efficacy is lower than 10%.
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transition metal-catalyzed heteroannulation reactions in terms of
starting materials availability (Scheme 1).9 The cyclocarbonylation
of triflates 3a–k,q was carried out at 60 �C under a CO atmosphere
in DMF as solvent, using Pd(OAc)2 as catalyst, 1,3-bis(diphenylph-
oshino)propane (dppp) as ligand, and Et3N as base. The reaction of
triflates 3l–p required somewhat different conditions (toluene as
solvent, K2CO3 as base, 100 �C) because, under standard conditions,
3l was completely rearranged to the corresponding triflone 5
through a base-catalyzed process (Scheme 2).8,10 Assignment of
(Z)-configuration to phthalides 4h–q was based on 1H NMR data,
in particular the chemical shift of the C-8 olefinic proton.1h,2b,9,11

In addition, phthalides 4j and 4l exhibited physical properties well
in agreement with those reported in literature for known
Z-isomers.11f,12

Triflates 3 were in turn obtained by triflation of the correspond-
ing phenols 2. Non-commercially available 1-(2-hydroxy-
aryl)alkan-1-ones 2d, h–q were prepared by a AlCl3-promoted
Fries rearrangement of aryl esters 1d, h–q.

The 17 phthalides synthesized were tested for their ability to in-
duce Ca2+ elevation in HEK293 cells stably transfected with either
the rat TRPA1 or the rat TRPM8 cDNAs (Table 1).13 Control exper-
iments were carried out using non-transfected HEK293 cells. The
antagonist or desensitizing activity was evaluated by adding the
O

O

53l

OH

O

SO2CF3SO2CF3

Scheme 2. Base-catalyzed rearrangement of triflate 3l to triflone 5.
test compounds 5 min before stimulation of cells with reference
agonists.

3-Methylenephthalides 4a–g produced a moderate activation of
TRPA1 with efficiencies between 10.1% and 85.1% and EC50 values
between 4.7 and 50.8 lM and behaved, with the exception of 4d, g,
as weak TRPA1 desensitizers. They were, again with the exception
of 4d, g, essentially inactive in TRPM8 activity assays. The best
result in terms of activation and subsequent desensitization
properties towards TRPA1 was observed with the 5,7-dimethyl-
substituted phthalide 4d, followed by 5-chloro-6-methyl-3-meth-
ylenephtahilde 4g, a result that supports the hypothesis that
dehydroligustilide might bind to a hydrophobic pocket via a
non-covalent mechanism.5

Homologation of the methylene moiety, while maintaining the
5,7-dimethyl substitution (compounds 4i, k), greatly increased the
ability to elicit a ‘true’ antagonistic response on TRPM8 channels
(that is, inhibition without agonism per se, and hence not due to
desensitization) with IC50 values 610 lM. Phthalide 4k also dis-
played single-digit micromolar EC50 and IC50 values (2.8 and 3.3,
respectively), on TRPA1 channels.

In comparison with 4k, and in agreement with literature data,5

dehydroligustilide (4j) which lacks the 5,7-dimethyl substitution,
inhibited MO-induced activation of TRPA1 with a IC50 value of
44.5 lM, with no appreciable activating capacity towards both
TRPA1 and TRPM8 channels. Furthermore, preincubation of
TRPM8-HEK293 cells with dehydroligustilide and then continued
incubation with either icilin or menthol caused only a rather
modest inhibition of the TRPM8 response to these agonists, with
IC50 values �150 lM. Compared to literature data,5 4j was thus
found to be a weak TRPM8 inhibitor and this discrepancy could
be due to the use of TRPM8 from a different species. The large
activity gain observed following the introduction of two methyl
groups in dehydroligustilide is noteworthy and may be tenta-
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tively ascribed to an improvement of the fitting into a lipophilic
region of the channel.

A profile similar to that of 4k was exhibited by the 3-(2-phen-
ylethylidene)phthalide 4q and by most of the 3-benzylidenephtha-
lides (compounds 4l–p), which acted as robust TRPA1 activators
and desensitizers and TRPM8 antagonists. Again, the 5,7-dimethyl
substitution proved to be beneficial for both TRPA1 and TRPM8
modulating properties (compare compounds 4l and 4m), while
para-substituents on the benzylidene phenyl ring appeared to ex-
ert only little influence on activity, suggesting again a non-covalent
binding.

In conclusion, in this Letter we have presented a series of 3-
ylidenephtahlides that act as strong modulators of TRPA1 and/or
TRPM8 channels with EC50 and/or IC50 values distinctly lower than
those of ligustilide and dehydroligustilide. The 3-ylidenephthalide
structure qualifies as a versatile new template for the development
of novel TRP channel modulators.
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