Reactivity and regioselectivity in the acylation of 2,4-diaminoquinazolines

Elina Marinho, M. Fernanda Proença *
Chemistry Department, University of Minho, Campos de Gualtar, 4710-057 Braga, Portugal

A R T I C L E I N F O

Article history:

Received 5 May 2016
Received in revised form 1 June 2016
Accepted 2 June 2016
Available online xxx

Keywords:

4-Aminoquinazolines
Acylation
Anhydrides
Isocyanates
Acyl chlorides

Abstract

2-(2-Aminophenyl)quinazoline-4-amines were selectively acylated at the phenylamino group by anhydrides, isocyanates or acyl chlorides, at room temperature. A similar selectivity was obtained in the reaction with ethoxymethylene derivatives and orthoesters. Acylation of the exocyclic imino substituent in the quinazolino-quinazoline tetracyclic structure also occurred under mild conditions with acetic anhydride and isocyanates. Hydrolysis to release the aniline substituent was performed with concd HCl (1 equiv at $60^{\circ} \mathrm{C}$) and with 3 M NaOH (3 equiv, rt), leading to the formylated derivative or cleaving the acyl group in the heterocyclic amine.

© 2016 Published by Elsevier Ltd.

1. Introduction

The quinazoline nucleus is an important pharmacophore, with a vast range of applications. The therapeutic activity depends on the position and nature of the substituents in their skeleton ${ }^{1}$ and includes, among others, sedative and hypnotics, anti-hypertensive, antipsychotic, anticancer, anti-diabetic, antimicrobial, analgesic, antiviral, anti-depressant, anti-inflammatory, antitubercular, or anticonvulsant activity. ${ }^{2}$ The synthetic strategies to prepare different quinazoline derivatives and their biological properties have been extensively documented in reviews ${ }^{2 e, 2 f, 3}$ and monographs. ${ }^{4}$ Numerous methods are based on the use of anilines or o-functionalized nitrobenzene. ${ }^{3 \mathrm{a}, 5}$

The amide bond can be considered one of the most important functional groups, widely present in natural products, bioactive compounds or in natural/man-made materials. ${ }^{6}$ It is estimated that more than 25% of the drugs currently on the market contain the amide group. ${ }^{7}$ Several representative medications containing both the quinazoline and amide scaffolds are exemplified in Fig. 1. Amides can be prepared from a wide variety of precursors by a range of different reaction pathways but classical methods are still the most commonly used procedures by the pharmaceutical industry. Traditionally, amides have been prepared from the reaction of amines with activated carboxylic acids, ${ }^{7,8}$ aldehydes, ${ }^{9}$ anhydrides, ${ }^{10}$

[^0]alkynes, ${ }^{11}$ esters, ${ }^{12}$ or alcohols. ${ }^{13}$ Some of these methods use metal catalysts such as ruthenium ${ }^{12 a, 13 a}$ or lanthanide ${ }^{9 a}$ complexes, nickel, ${ }^{9 \mathrm{~b}}$ copper, ${ }^{9 \mathrm{~d}} \mathrm{FeCl}_{2},{ }^{10 \mathrm{~b}}$ and also N -heterocyclic carbene. ${ }^{13 \mathrm{a}, 14}$

Fig. 1. Quinazoline-based bioactive compounds incorporating an amide unit.

In this work, a strategy was designed and implemented for the selective acylation of a substituted quinazoline incorporating two primary amines, one at the 4 -position of the quinazoline nucleus and another in the aromatic substituent linked to the 2-position of the heterocycle. The high nucleophilicity of the aromatic amine when compared to the heterocyclic amine, makes it impossible to acylate the less reactive nitrogen atom without affecting the other amine function. These studies aimed at the selective acylation of each of these amino groups, maintaining the second primary amine available for further chemical transformations.

2. Results and discussion

Quinazolino[3,4-a]quinazolines 1 (Scheme 1), used as starting material, were easily prepared by a one-pot reaction involving anthranilonitriles and triethyl orthoformate in the presence of acid, following a procedure previously developed in our group. ${ }^{15}$ Compound $\mathbf{1}$ was used as a precursor for 2-(2-amino)quinazolines $\mathbf{2}$, isolated in excellent yield from methanol and hydrochloric acid, at room temperature. ${ }^{16}$ Changing the solvent to DMSO and refluxing the solution for 5,15 or 20 min , led to the formation of compound 4a in $87-92 \%$. This compound was erroneously identified as $\mathbf{5 a}$ in our previous work, ${ }^{15}$ but we could now isolate its precursor 3a, slightly contaminated with $\mathbf{4 a}$ (ca. 60% yield), when the solution of 1a in DMSO was refluxed for one minute only. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a}\left(0.006 \mathrm{M}\right.$ DMSO solution at $\left.20^{\circ} \mathrm{C}\right)$, besides the formyl proton ($\delta 8.36 \mathrm{ppm}$) and the corresponding $\mathrm{N}-\mathrm{H}$ signal ($\delta 12.45 \mathrm{ppm}$) two broad singlets at $\delta 10.85$ and 10.66 ppm (in a 3:1 molar ratio and integrating for a total of one proton) were assigned to each possible tautomer of the heterocyclic $\mathrm{N}-\mathrm{H}$. Compound 3a was unstable in solution and progressively evolved to the cyclic structure $\mathbf{4 a}$.

Scheme 1. Ring-opening of compound 1.

Studies on the reactivity of compounds $\mathbf{1}$ and $\mathbf{2}$, in particular the acylation by anhydrides, isocyanates or ethyl chloroformate was expected to allow the regioselective formation of amides $\mathbf{6}$ or $\mathbf{8}$ from the exocyclic amino groups. The retrosynthetic analysis presented in Scheme 2 summarizes the strategy that was used for the synthetic approach: the more nucleophilic amino group of the aromatic ring in compound $\mathbf{2}$ would be acylated under mild conditions while the less reactive heteroaromatic amino substituent could be acylated in the tetracyclic structure 1. Hydrolysis of 7 would release the aromatic amine leading to $\mathbf{8}$ and allowing further transformations of this more reactive nucleophile.

Scheme 2. Retrosynthetic approach for the regioselective acylation of quinazoline $\mathbf{2}$.
Table 1 summarizes the selected experimental conditions for the monoacylation of 2-(2-aminophenyl)quinazolin-4-amine 2 , used as the hydrochloride.

Quinazolines 2a,b were reacted with a eightfold excess of acetic anhydride in the presence of triethylamine (1 or 1.5 molar equivalents). Compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ were isolated in 89% and 63% yield after, respectively, 1 h and 2 h at room temperature (Table 1, entries 1 and 2).

The reaction of $2 \mathbf{a}$ with succinic anhydride was carried out in acetonitrile. The reagents were combined in a $1: 2$ molar ratio, in the presence of triethylamine. The product $\mathbf{6 c}$ was isolated in 68% yield after 1 day at room temperature (entry 3). Similar experimental conditions were used for the reaction of 2a with maleic anhydride (entry 4) with the immediate formation of $\mathbf{6 d}$, isolated in 79% yield. The use of ethanol as solvent also led to a very fast reaction, giving the same product in 73% yield.

Table 1
Selected experimental conditions for the reaction of compound $\mathbf{2}$ with anhydrides, isocyanates and ethyl chloroformate

The reaction of compound 2a with ethyl chloroformate (1:2 molar ratio) was also performed in acetonitrile and triethylamine, at room temperature. The pure product was isolated after 8 h at room temperature and the amount of triethylamine that was used (1.5 or 3 molar equivalents) resulted in the hydrochloride of $\mathbf{6 e}$ (74%), or the neutral species $\mathbf{6 e}(71 \%$), respectively (entries 5 and 6). The reaction with isocyanates (1.2 equiv) was also performed at room temperature and in the presence of triethylamine (1.2 equiv). The product was isolated after $15 \mathrm{~min}(\mathbf{6 f}, 91 \%$, entry 7) or 10 min ($\mathbf{6 g}, 52 \%$, entry 8).

Attempts to induce intramolecular cyclization in 6a by stirring an ethanolic solution of this compound with nitric acid, at room temperature, failed to lead to the substituted tetracyclic derivative. After one day, only the nitrate of the starting material was isolated in 94% yield. These conditions were previously used to generate compound $\mathbf{1}$ from the formyl derivative $\mathbf{6}\left(\mathrm{R}^{1}=\mathrm{H}\right) .^{16}$

The acetimidate 9a was also prepared (Table 2, entry 1) but the product could only be isolated in good yield (86%) when 2 a was reacted with a large excess of triethyl orthoacetate (TEOA) and the mixture was refluxed for 4.5 h . Decreasing the reaction time to one hour resulted in a decrease in the isolated yield of this product to 52%. An experiment to test the possibility of intramolecular cyclization was performed in the NMR tube, by adding nitric acid to a solution of $9 \mathbf{a}$ in deuterated DMSO, at room temperature. The formation of compound 2a was immediately detected and after 6 days the starting material completely evolved to this product.

The reaction of 2a with 2 equiv of triethyl orthoformate (TEOF), led to the tetracyclic structure $\mathbf{1 a}$, isolated as the hydrochloride, after 15 h at room temperature (entry 2). The use of 1 equiv of TEOF and nitric acid, followed by reflux (1 day) led to the same product 1a, isolated as the nitrate (entry 3).

Ethoxymethylene compounds are known to react smoothly with amines, and this functional group can mimic the aldehyde, with elimination of the active methylene moiety, without the assistance of catalysts. ${ }^{17}$ The aminomethylene derivatives 11a and 11b (Table 2) were prepared by combining the corresponding reagents in ethanol at $55^{\circ} \mathrm{C}$ (3 days) or at $50^{\circ} \mathrm{C}$ (4 days), respectively (entries 4 and 5). There was no evidence for the formation of the cyclic product under these experimental conditions.

Table 2
Selected experimental conditions for the reaction of $\mathbf{2 a}$ with ethoxymethylene compounds and orthoesters

The presence of the exocyclic imine nitrogen in 1a was previously reported to lead to $\mathbf{7 a}-\mathbf{b}^{15}$ in acetic anhydride or phenyl isocyanate, respectively, at room temperature in the presence of triethylamine (Scheme 3). In this work, compound 1a was further reacted with cyclohexylisocyanate ($1: 3$ molar ratio), and 1.2 equiv of triethylamine. The product $7 \mathbf{c}$ was isolated in 90% yield after two daysat $50^{\circ} \mathrm{C}$.

Scheme 3. Reaction of compound $\mathbf{1 a}$ with acylating agents.
The reaction with ethyl chlorooxalate (2 equiv) was initially carried out using 2 equiv of triethylamine at room temperature. After 10 min , the solid isolated was a mixture of the hydrochloride of $\mathbf{1 a}$ and the product $\mathbf{7 d}$. Increasing the amount of triethylamine (3 equiv) and the reaction time to 55 min , led to the pure product $7 d$ in 84% yield.

The reaction with ethyl chloroformate was initially performed from the nitrate of $\mathbf{1 a}$, in acetonitrile. An excess of the acylating agent was always used ($3,4.5$ and 6 equiv) together with the same amount of triethylamine or pyridine, at room temperature or in an ice bath. The unreacted reagent 1a was always isolated in 70-96\% yield after 15 min to 5 days. The product $7 \mathbf{7 e}$ could only be isolated from a solution of the neutral compound 1a in a $1: 1$ mixture of ethanol:water, upon addition of 2 equiv of ethyl chloroformate, at room temperature. Immediate isolation of the solid product resulted in only 14% yield but increasing the reaction time to 15 min further decreased the yield to 10%. In both cases, the solid that precipitated from the mother liquor was identified as a complex mixture.

The possibility to open the pyrimidine ring in compound 7 maintaining the acyl group in the exocyclic amine was initially tested for compound $\mathbf{7 a}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}\right)$, in water and in the presence of 1 equiv of TFA. After 17 h at room temperature, the solid product was identified as 12a (isolated quantitatively) (Scheme 4). Decreasing the reaction time to 8 h led to the same product in 93% yield. Increasing the acid strength (conc. $\mathrm{HCl}, 1$ equiv) with warming at $60{ }^{\circ} \mathrm{C}$ for 1 h led also to 12a (85\%). The structure of compound 12a was further confirmed by its synthesis from 13 in the presence of an eightfold excess of acetic anhydride in acetonitrile and 1 equiv of triethylamine. After three days at $50^{\circ} \mathrm{C}$, when

Scheme 4. Acid-catalyzed hydrolysis of compounds 7a, 7c and 7e.
the starting material was no longer identified by TLC, the product 12a was isolated in 83% yield.

Hydrolysis of $\mathbf{7 c}$ and $\mathbf{7 d}$ was performed under similar reaction conditions (1 equiv of concd HCl) and the corresponding products $\mathbf{1 2 b}$ and 12c were quantitatively isolated after one hour at $60^{\circ} \mathrm{C}$.

Cleavage of the formyl group, maintaining the acyl moiety, was attempted in base, considering that acidic conditions failed to achieve this goal. When a suspension of 12a in 3 M of NaOH was stirred at room temperature, the solid isolated after 18 h was identified as product 13 (87\%). In this case, cleavage of the acetyl group was occurring preferably.

Considering that this experiment failed to generate the desired product, the evolution of compound 12a was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, in acid medium. A solution of $\mathbf{1 2 a}(3.4 \mathrm{mg})$ in DMSO$d_{6}(600 \mu \mathrm{~L})$ and TFA ($5 \mu \mathrm{~L}$), was kept at room temperature for 19 h . As the reaction mixture was stable under these conditions, the NMR tube was warmed at $60{ }^{\circ} \mathrm{C}$. After 19 h , the presence of a mixture of compounds 12a, 2a, acetic acid ($\delta_{\mathrm{H}} 1.90 \mathrm{ppm}$) and formic acid ($\delta_{\mathrm{H}} 8.12 \mathrm{ppm}$) in a 1.5:0.4:1.5:0.4 ratio could be identified. After seven days, the evolution to compound $\mathbf{2 a}$ (present in the protonated form) was complete and remained stable after 14 days. This study showed that heating in the presence of acid does not allow the selective cleavage of the formyl group.

All compounds were characterized by the usual analytical and spectroscopic techniques and a selection was also studied by ${ }^{15} \mathrm{~N} /{ }^{1} \mathrm{H}$ HMBC correlation spectra (Table 3). All the tetracyclic compounds 7 exhibit high chemical shifts ($\delta 210.7-257.5 \mathrm{ppm}$) for the N1 and N3 nitrogen atoms and a considerably lower chemical shift was assigned to N 2 ($\delta 159.0-164.9 \mathrm{ppm}$). A similar pattern was observed for compound 4a, but in this case N3 shows a chemical shift of $\delta 184.2 \mathrm{ppm}$, approximately 25 ppm higher when compared to the same N atom in compounds 7. This is likely to reflect the electron-withdrawing effect of the adjacent carbonyl group, absent in the analogous tetracyclic compounds. For the bicyclic structure 12a, the chemical shift of N 2 and N 3 is compatible with the presence of an aromatic pyrimidine system and that of N 1 and N 2 confirm their incorporation in the amide bond.

3. Conclusions

In summary, the diaminoquinazoline $\mathbf{2}$ was selectively acylated in the aromatic amino group by anhydrides, isocyanates and acyl chlorides. The reaction is equally selective with orthoesters and ethoxymethylene cyanoacetate or malononitrile. The products were isolated in $52-91 \%$ yield by simple filtration from the reaction medium. Intramolecular cyclization of the acylated derivatives was never observed. The less nucleophilic imine nitrogen in the tetracyclic quinazoline $\mathbf{1}$ was also acylated in $84-90 \%$ yield by reaction with acetic anhydride or isocyanates. The reaction with ethyl chloroformate required an extensive search for the most convenient experimental conditions and the isolated yield of the acylated product never exceeded 14%. Hydrolysis of the modified quinazoline 1 to release the aromatic amino group was attempted in aqueous HCl and in NaOH leading only to the formylated amine with eventual cleavage of the acyl substituent in the heterocyclic amine or the recovery of the starting diaminoquinazoline 2.

4. Experimental section

4.1. General methods

All compounds were fully characterized by elemental analysis and spectroscopic data. The NMR spectra were recorded at room temperature, on a Varian Unity Plus ($1 \mathrm{H}: 300 \mathrm{MHz}, 13 \mathrm{C}$: 75 MHz), or on a Bruker Avance III 400 ($1 \mathrm{H}: 400 \mathrm{MHz}, 13 \mathrm{C}: 100 \mathrm{MHz}$) including the $1 \mathrm{H}-13 \mathrm{C}$ and $1 \mathrm{H}-15 \mathrm{~N}$ correlation spectra (HMQC and HMBC).

Table 3
Data for ${ }^{15} \mathrm{~N}$ chemicals shifts by HMBC correlation to ${ }^{1} \mathrm{H}$ NMR signals, obtained in DMSO- d_{6} solution

Compound		$\delta \mathrm{N}_{1}$	$\delta \mathrm{N}_{2}$	$\delta \mathrm{N}_{3}$	$\delta \mathrm{N}_{4}$
	4a	256.56	184.23	221.75	-
	7a	251.65	160.21	210.70	273.90
	7c	-	159.03	-	-
	7d	257.50	164.90	-	-
	7 e	-	160.82	-	-
	12a	134.96	264.54	245.15	138.56

Deuterated DMSO was used as solvent. The peak patterns are indicated as follows: s , singlet; d , doublet; t , triplet; m , multiplet; q , quartet and br, broad. The coupling constants J, are reported in hertz (Hz). IR spectra were recorded on a FTIR Bomem MB 104 using Nujol mulls and NaCl cells. All reactions were monitored by thin layer chromatography (TLC) using silica gel 60 F254 (Merck). The melting points were determined on a Stuart SMP3 melting point apparatus and are uncorrected. Elemental analyses were performed on a LECO CHNS-932 instrument.

4.2. Synthesis of \boldsymbol{N}-(2-(4-oxo-3,4-dihydroquinazolin-2-yl) phenyl) formamide 3a

DMSO $(100 \mu \mathrm{~L})$ was added to the nitrate of 13 H -quinazoline[3,4-a]quinazolin-13-imine $\mathbf{1 a}$ ($0.04 \mathrm{~g} ; 0.12 \mathrm{mmol}$) and the reaction
mixture was refluxed for 1 min . The white solid that precipitated after addition of water was filtered and washed with water. The product $(0.02 \mathrm{~g})$ was identified by ${ }^{1} \mathrm{H}$ NMR as N -(2-(4-oxo-3,4-dihydroquinazolin-2-yl)phenyl) formamide 3a slightly contaminated with 4a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 12.45$ (br s, 1H), 10.85 (br s, 0.75 H), 10.66 (br s, 0.25 H), 8.36 (s, 1H), 8.32 (d, J=8.0 Hz, 1 H), 8.16 (dd, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 162.12, 160.40, 152.51, 147.99, 136.30, 134.51, 134.38, 131.17, 129.72, 127.38, 126.83, 125.70, 122.48, 122.48, 121.55. IR (Nujol mull): 3180, 1650, 1609, 1579, $1528 \mathrm{~cm}^{-1}$.

4.3. General procedure for the synthesis of amides 6a-d

A yellow suspension of compound 2a, triethylamine ($1-3 \mathrm{M}$ equiv) and anhydride ($2-8 \mathrm{M}$ equiv), in acetonitrile or without solvent was stirred at room temperature for $5 \mathrm{~min}(\mathbf{6 d})$, $50 \mathrm{~min}(\mathbf{6 a}), 2 \mathrm{~h}(\mathbf{6 b})$ or 1 day ($\mathbf{6 c}$). The solid was filtered and washed with water, leading to the pure product.
4.3.1. N-[2-(4-Aminoquinazolin-2-yl)phenyl] acetamide 6a. White solid, 89\%. Mp 229-231 ${ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3400, 3317, 3213, 1671, $1645,1627,1604,1589,1578,1544,1504 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 13.63$ (s, 1H), 8.61 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.57 (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.30$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.12 (br s, 2H), 7.83 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (td, $J=1.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (td, $J=1.5,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15$ (td, $J=1.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta 168.19,161.58,160.61,148.39,139.84,133.64,130.82$, $130.36,126.95,125.94,123.78,122.89,122.10,119.65,112.68,25.26$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}$: C, 66.46; $\mathrm{H}, 5.31$; $\mathrm{N}, 19.38$. Found: C, 66.69; H, 5.36; N, 19.14.
4.3.2. N-[2-(4-Amino-7-chloroquinazolin-2-yl)-5-chlorophenyl]acetamide 6b. White solid, 63% Mp $>300{ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3445, 3332, 3204, 1667, 1650, 1619, 1600, 1589, 1576, 1544, $1536 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 13.31$ (s, 1H), $8.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.57 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.29 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (br s, 2H), 7.79 (t, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (dd, $J=2.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20 (dd, $J=2.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=168.59,161.25,160.72$, 148.38, 140.60, 138.14, 135.31, 131.90, 126.15, 125.69, 125.57, 121.80, 121.31, 118.89, 111.25, 25.02. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}$: C, 54.49; H, 3.61; N, 15.89. Found: C, 54.51; H, 3.62; N, 15.92.
4.3.3. 4-\{[2-(4-Aminoquinazolin-2-yl)phenyl] amino\}-4-oxobutanoic acid 6c. White solid, 68% Mp $214-216{ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3411, $3337,3245,1770,1719,1665,1648,1611,1579,1536,1505 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 13.72$ (br s, 1H), 12.13 (s, 1H), 8.60 (dd, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.57$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (br s, 2H), 7.85 (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (td, $J=1.2,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 173.74,169.99,161.60,160.62,148.36,139.80,133.61$, $130.83,130.36,126.85,125.93,123.72,122.86,122.04,119.65,112.68$, 32.31, 28.92. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.14 ; \mathrm{H}, 4.92$; N, 16.37. Found: C, 63.16; H, 4.70; N, 16.25.
4.3.4. 4-\{[2-(4-Aminoquinazolin-2-yl)phenyl] amino\}-4-oxobut-2enoic acid 6d. Yellow solid, 79%. Mp 190-193 ${ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3472, 3324, 3224, 1775, 1626, 1602, 1575, $1539 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 14.08$ (br s, 1H), 13.09 (s, 1H), 8.64 (dd, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (br s, 2H), 7.83 (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (td, $J=1.2,8.4 \mathrm{~Hz}$, 1H), 6.73 (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ ($\mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta=166.66,163.36,161.63,160.39,148.12,139.35,133.83$,
129.07, 133.63, 130.99, 130.39, 126.79, 126.05, 123.70, 123.17, 122.88, 119.97, 112.70. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.80$; H , 4.32; N, 16.54. Found: C, 63.85; H, 4.14; N, 16.54.

4.4. General procedure for the synthesis of carbamate $6 e$

Ethylchloroformate (2 M equiv) was added to a suspension of compound 2a in acetonitrile (1 mL). After 20 min , triethylamine ($1.5-3 \mathrm{M}$ equiv) was added to the mixture. The reaction mixture was stirred at room temperature for 8 h . The solid was filtered and washed with acetonitrile, leading to the pure product.
4.4.1. Ethyl [2-(4-aminoquinazolin-2-yl)phenyl] carbamate hydrochloride 6e. Beige solid, $74 \% . \mathrm{Mp}>300{ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3264, 3056, 1734, 1654, 1630, 1608, 1590, 1569, $1537 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 14.18$ (s, 1H), 9.83 (br s, 2H), 9.64 (br s, 1H), 8.55 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (td, $J=8.4 \mathrm{~Hz}$, 1 H), 7.60 (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (td, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 163.19,158.87,153.81,140.36,137.39,136.16,132.32,130.71,127.89$, 124.96, 123.33 (2C), 121.93, 120.08, 111.45, 60.68, 14.47. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl} .0 \cdot 2 \mathrm{H}_{2} \mathrm{O}$: C, 58.60 ; H, 5.04; N, 16.08. Found: C, 58.37; H, 5.05; N, 16.34.
4.4.2. Ethyl [2-(4-aminoquinazolin-2-yl)phenyl] carbamate 6e(free base). Pink solid, 71%. Mp 175-178 ${ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3440, 3343, 3252, 1707, 1650, 1624, 1596, 1578, 1547, $1501 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$): $\delta 13.35$ (s, 1H), 8.60 (dd, $J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.32 (dd, $J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (br s, 2 H), 7.85 (td, $J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (td, $J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (td, $J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (td, $J=1.2,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta 161.65,160.66,153.37,148.12,139.96,133.70,131.05$, $130.43,126.51,125.97,123.78,122.40,121.35,118.22,112.72,60.32$, 14.54. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.70$; $\mathrm{H}, 5.38$; N , 17.76. Found: C, 64.62; H, 5.09; N, 17.49.

4.5. General procedure for the synthesis of ureas $\mathbf{6 f}$ and $\mathbf{6 g}$

Isocyanate (1.2 M equiv) and triethylamine (1.2 M equiv) were added to a suspension of compound $\mathbf{2 a}$ in acetonitrile. The reaction mixture was stirred at room temperature for $10 \mathrm{~min}(\mathbf{6 g})$ or 15 min ($\mathbf{6 f}$). The solid was filtered and washed with water, leading to the pure product.
4.5.1. 1-[2-(4-Aminoquinazolin-2-yl)phenyl]-3-phenylurea 6f. White solid, 91%. Mp $240-242^{\circ} \mathrm{C}$. IR (Nujol mull) 3498, 3391, 3286, 1659, 1650, 1611, 1595, $1548 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd_{6}): $\delta 12.57(\mathrm{~s}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (br s, 2H), 7.94 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=1.2,8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.52 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (td, $J=1.2$, $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98 (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 161.44, $160.54,152.52,149.00$, $140.54,140.00,133.28,130.34,130.29,128.60$ (2C), 127.67, 125.65, 123.50, 123.32, 121.95, 120.86, 120.82, 119.09 (2C), 112.60. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.60 ; \mathrm{H}, 4.87$; $\mathrm{N}, 19.61$. Found: C, 70.57; H, 4.92; N, 19.43.
4.5.2. 1-(2-(4-Aminoquinazolin-2-yl)phenyl)-3-cyclohexylurea 6g. Yellow solid, 52%. Mp 202-204 ${ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3490, 3299, 3179, 1630, 1569, 1545, $1503 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 12.00(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (td, $J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (td, $J=1.6,8.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.98(\mathrm{td}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.53(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.62(\mathrm{~m}, 1 \mathrm{H})$, $1.21-1.33(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): δ 161.36, 160.75, $154.45,149.18,141.38,133.29,130.28,130.25,127.73,125.56,123.50$, 122.69, 120.31, 119.99, 112.54, 48.39, 33.36 (2C), 25.37, 24.92 (2C). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$: C, 69.77; $\mathrm{H}, 6.46 ; \mathrm{N}, 19.38$. Found: C, 69.82; H, 6.46; N, 19.32.

4.6. Synthesis of N-[13H-quinazolino[3,4-a]quinazolin-13ylidene] cyclohexylurea 7c

Cyclohexylisocyanate ($0.11 \mathrm{~g} ; 0.87 \mathrm{mmol} ; 115 \mu \mathrm{~L} ; 3 \mathrm{M}$ equiv) and triethylamine (1.2 M equiv) were added to a yellow suspension of compound 2a ($0.09 \mathrm{~g} ; 0.29 \mathrm{mmol}$) in acetonitrile (2 mL). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$. After 2 days, the reaction was complete by TLC. The white solid was filtered and washed with water leading to the pure product N-[13H-quinazolino[3,4-a]qui-nazolin-13-ylidene] cyclohexylurea 7c The presence of the exocyclic imine nitrogen in 1a was previously reported to lead to $7 \mathbf{a}-\mathbf{b}^{15}$ in acetic anhydride or phenyl isocyanate, respectively, at room temperature in the presence of triethylamine (Scheme 3). In this work, compound 1a was further reacted with cyclohexylisocyanate (1:3 molar ratio), and 1.2 equiv of triethylamine. The product $7 \mathbf{c}$ was isolated in 90% yield after two days at $50^{\circ} \mathrm{C}$. 3277, 1635, 1604, 1545, $1521 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (dd, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (td, $J=1.6$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, \mathrm{J}=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ ($\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.56-3.63$ (m, 1H), $1.88-1.91$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 163.38,150.48,146.37,144.02,139.48$, $135.06,134.55,132.84,128.41,128.08,127.25,126.47,125.80,120.61$, 119.30, 115.32, 48.30, 32.90, 25.36, 24.72. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$: C, 71.13; H, 5.71 ; N, 18.86. Found: C, 71.31; H, 5.86; N, 19.01.

4.7. Synthesis of ethyl oxo[13H-quinazolino[3,4-a]quinazolin-13-ylideneamino]acetate 7d

Triethylamine ($185 \mu \mathrm{~L} ; 3 \mathrm{M}$ equiv) was added to a yellow suspension of compound $\mathbf{1 a}(0.11 \mathrm{~g}, 0.44 \mathrm{mmol})$ in acetonitrile (1 mL) followed by ethyl chlorooxalate ($0.12 \mathrm{~g} ; 0.88 \mathrm{mmol} ; 100 \mu \mathrm{~L}$; 2 M equiv). The beige suspension was stirred at room temperature. After 40 min , the TLC show absence of starting material, and the yellow solid precipitate was filtered and washed with a mixture of water and acetonitrile. The product was identified as ethyl oxo [13H-quinazolino[3,4-a]quinazolin-13-ylideneamino] acetate 7d ($0.13 \mathrm{~g} ; 0.37 \mathrm{mmol} ; 84 \%$). Mp $224-226^{\circ} \mathrm{C}$. IR (Nujol mull): 1731, 1650, 1623, 1595, 1565, 1541, $1509 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.41 (dd, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-8.05$ (m, 2H), 7.90 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.77-7.81(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta=172.19,163.02,158.12,147.73,144.42$, $139.27,135.64,135.27,134.70,129.10,129.04,127.59,127.46,126.18$, 120.12, 117.97, 116.10, 61.17, 13.88. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}$, 65.88; H, 4.08; N, 16.18. Found: C, 65.93; H, 4.08; N, 16.15.

4.8. Synthesis of ethly N -[13H-quinazolino[3,4-a]quinazolin-13-ylidene]carbamate 7e

Ethyl chloroformate ($0.05 \mathrm{~g} ; 0.42 \mathrm{mmol} ; 40 \mu \mathrm{~L} ; 2 \mathrm{M}$ equiv) was added to a yellow suspension of compound $\mathbf{1 a}(0.05 \mathrm{~g} ; 0.21 \mathrm{mmol})$ in water:ethanol ($1: 1.1 \mathrm{~mL}$). The mixture was stirred at room temperature leading immediately to a homogeneous solution and shortly after, to a white solid precipitate. The solid was filtered and washed with water-ethanol to give ethyl N -[13H-quinazolino[3,4-a]quinazolin-13-ylidene]carbamate 7 ($0.01 \mathrm{~g} ; 0.03 \mathrm{mmol} ; 14 \%$).
$\mathrm{Mp} 248-250^{\circ} \mathrm{C}$. A second crop was isolated from the mother liquor and identified as a complex mixture. IR (Nujol mull): 1695, 1630, 1601, $1543 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 9.47$ ($\mathrm{s}, 1 \mathrm{H}$), 8.47 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.92 (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.72(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta=163.70,152.96$, 147.61, 144.35, 139.55, 135.59, 135.22, 133.89, 129.01, 128.75, 127.60, 126.77, 126.12, 120.47, 118.50, 115.87, 61.24, 14.83. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 67.90; H, 4.44; $\mathrm{N}, 17.60$. Found: C, 68.01; H, 4.51; N , 17.79.

4.9. Synthesis of ethyl N-[2-(2-\{[1-ethoxyethylidene]amino\} phenyl)quinazolin-4-yl]ethanimidoate 9a

Triethyl orthoacetate (1 mL) was added 2-(2-aminophenyl) quinazolin-4-amine hydrochloride $\mathbf{2 a}$ ($0.06 \mathrm{~g} ; 0.22 \mathrm{mmol}$). The reaction mixture was refluxed for 4.5 h . Partial removal of the liquid reagent in the rotary evaporator led to a solid precipitate. The dark yellow solid was identified as ethyl N-[2-(2-\{[1-ethoxyethylidene] amino\}phenyl)quinazolin-4-yl] ethanimidoate 9a 0.07 g ; $0.19 \mathrm{mmol} ; 86 \%$). Mp $108-110^{\circ} \mathrm{C}$. IR (Nujol mull) 1692, 1666, 1615, 1598, 1567, $1542 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.02$ (dd, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (dd, $J=1.2,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84$ (dd, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (td, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}$, 3H), 1.37 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 165.41,163.77,161.69,160.47,150.74,148.21,133.95$, $130.87,130.25,130.02,127.66,126.99,124.92,122.23,121.85,117.14$, 60.62, 60.77, 17.17, 17.14, 14.00. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$: C, 68.64; H, 6.23; N, 14.86. Found: C, 68.86; H, 6.53; N, 14.60.

4.10. Synthesis of diethyl (\{[2-(4-aminoquinazolin-2-yl) phenyl]amino\}methylene) malonate hydrochloride 11a

Diethyl 2-(ethoxymethylene)malonate ($0.09 \mathrm{~g} ; 0.37 \mathrm{mmol}$; 1 M equiv; $76 \mu \mathrm{~L}$) was added to a yellow suspension of 2-(2-aminophenyl)quinazolin-4-amine hydrochloride 2a (0.10 g; 0.37 mmol) in ethanol (1 mL). The reaction mixture was stirred at $55^{\circ} \mathrm{C}$. After 3 days the yellow solid was filtered and washed with diethyl ether leading to the hydrochloride of diethyl (\{[2-(4-aminoquinazolin-2-yl)phenyl]amino\}methylene) malonate 11a ($0.10 \mathrm{~g} ; 0.24 \mathrm{mmol} ; 65 \%$). Mp 209-211 ${ }^{\circ} \mathrm{C}$. IR (Nujol mull) 3445 , 3331, 3147, 1706, 1649, 1622, 1574, 1562, $1530 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 13.02(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.96$ (br s, 1H), 8.47 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.76$ ($\mathrm{m}, 3 \mathrm{H}$), $7.36(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta 167.21,165.00$, 162.01, 157.07, 150.35, 141.51, 139.64, 136.15, 133.98, 131.19, 127.97, $124.75,124.02,121.44,120.44,116.88,111.44,95.37,59.92,59.76$, 14.29, 14.22. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}: \mathrm{C}, 59.65 ; \mathrm{H}, 5.25$; N , 12.65. Found: C, 59.50 ; H, 5.02; N, 12.47.

4.11. Synthesis of (\{[2-(4-aminoquinazolin-2-yl)phenyl] amino\}methylene) malononitrile hydrochloride 11b

(Ethoxymethylene)malononitrile ($0.04 \mathrm{~g} ; 0.29 \mathrm{mmol} ; 1.2$ equiv) was added to a yellow suspension of 2-(2-aminophenyl)quinazolin-4-amine hydrochloride $\mathbf{2 a}$ (0.06 g ; 0.24 mmol) in ethanol (2 mL). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$. After 4 days the yellow solid was filtered and washed with diethyl ether leading to the hydrochloride of (\{[2-(4-aminoquinazolin-2-yl)phenyl]amino $\}$ methylene)malononitrile 11b ($0.05 \mathrm{~g} ; 0.15 \mathrm{mmol}$; 63%). Mp $217-219{ }^{\circ} \mathrm{C}$. IR (Nujol mull): 3351, 2222, 1700, 1642, 1609,
$1563 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 13.09$ ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 9.07 (br $\mathrm{s}, 1 \mathrm{H}$), 8.96 (br s, 1H), 8.81 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.32 (br s, 1H), 8.04 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 162.17,158.63,156.43,139.61,138.47,135.13$, 134.08, 132.67, 130.93, 127.28, 124.94, 124.22, 122.68, 117.83, 114.57 (2C), 112.08, 53.59. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{Cl}$: C, 61.91; H, 3.76; N, 24.10. Found: C, 61.91; H, 3.94; N, 24.22.

4.12. Synthesis of \boldsymbol{N}-(2-(2-formamidophenyl)quinazolin-4-yl) acetamide 12a

TFA ($17 \mu \mathrm{~L} ; 1$ equiv) was added to a white suspension of compound $7 \mathbf{7 a}(0.06 \mathrm{~g} ; 0.22 \mathrm{mmol})$ in water $(1 \mathrm{~mL})$ leading immediately to a yellow suspension. The mixture was stirred at room temperature. After 17 h , the yellow solid was filtered and washed with water leading to the pure product N -(2-(2-formamidophenyl)qui-nazolin-4-yl)acetamide 12a ($0.07 \mathrm{~g} ; 0.22 \mathrm{mmol}$; 100\%). Mp $246-248{ }^{\circ}$ C. IR (Nujol mull): 3325, 3286, 3176, 1722, 1660, 1630, $1595,1549 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 13.21(\mathrm{~s}, 1 \mathrm{H})$, $11.01(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=2.0,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right): \delta 170.35,160.45,158.44,155.05,151.07,138.89,134.69,131.46$, $130.25,128.38,127.20,123.59,123.07,123.03,121.08,113.48,25.13$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 66.65; H, 4.62; $\mathrm{N}, 18.29$. Found: C, 66.74; H, 4.68; N, 18.47.

4.13. Synthesis of N-\{2-[2-(formylamino)phenyl]quinazolin-4-yl\}-N ${ }^{\prime}$-cyclohexylurea 12b

Concentrated $\mathrm{HCl}(12 \mu \mathrm{~L} ; 1 \mathrm{M}$ equiv) was added to a white suspension of compound $7 \mathbf{c}(0.06 \mathrm{~g} ; 0.15 \mathrm{mmol})$ in water (1 mL). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$. After 1 h , the yellow solid was filtered and washed with water leading to the pure product N -\{2-[2-(formylamino)phenyl]quinazolin-4-yl\}-N N^{\prime}-cyclohexylurea 12b ($0.06 \mathrm{~g} ; 0.15 \mathrm{mmol} ; 100 \%$). Mp $238-240{ }^{\circ} \mathrm{C}$. IR (Nujol mull): 3220, 3145, 3102, 1680, 1621, 1581, 1548, $1503 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 12.90(\mathrm{~s}, 1 \mathrm{H}), 10.17(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.73(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.30,158.07,156.40,152.12,149.24$, 138.24, 133.95, 130.93, 129.66, 127.75, 126.84, 123.38, 122.74, 122.61, 120.67, 112.39, 48.04, 32.28 (2C), 24.89, 23.87 (2C). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 67.84; H, 5.96; N, 17.98. Found: C, 67.93; H, 6.01; N, 17.91.

4.14. Synthesis of Ethyl (\{2-[2-(formylamino)phenyl] quina-zolin-4-yl\}amino)(oxo) acetate 12c

Concentrated HCl ($14 \mu \mathrm{~L}$; 1 equiv) was added to a white suspension of compound $\mathbf{7 e}(0.06 \mathrm{~g} ; 0.17 \mathrm{mmol})$ in water (1 mL). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$. After 1 h , the yellow solid was filtered and washed with water leading to the pure product ethyl (\{2-[2-(formylamino)phenyl]quinazolin-4-yl\}amino)(oxo)acetate 12c ($0.06 \mathrm{~g} ; 0.17 \mathrm{mmol} ; 100 \%$). Mp $242-244{ }^{\circ} \mathrm{C}$. IR (Nujol mull): 3321, 3279, 3177, 1733, 1680, 1666, 1599, 1551, 1521, $1501 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 12.69$ (s, 1H), 12.15 (s, 1H), 8.63 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.18$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{td}, J=1.2$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}$,
$J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 161.10,160.77,160.64,158.68,155.68,150.09,138.57,135.33$, 131.83, 130.54, 128.17 (2C), 123.88, 123.10, 122.65, 121.04, 113.62, 62.33, 13.66. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 62.62; $\mathrm{H}, 4.43$; $\mathrm{N}, 15.38$. Found: C, 62.69; H, 4.34; N, 15.41.

Acknowledgements

We gratefully acknowledge the financial support by the University of Minho and FCT through the Portuguese NMR network (RNRMN), the Project F-COMP-01-00124-FEDER-022716 (ref. FCT PEst-C/QUI/UI0686/2011) FEDER- COMPETE, and a PhD grant awarded to E.M. (SFRH/BD/73659/2010).

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2016.06.003.

References and notes

1. Foucourt, A.; Bernard-Dubouilh, C.; Chosson, E.; Corbière, C.; Buquet, C.; Iannelli, M.; Leblond, B.; Marsais, F.; Besson, T. Tetrahedron 2010, 66, 4495-4502 and references therein.
2. (a) Seijas, J. A.; Vásquez-Tato, M. P.; Martínez, M. M. Tetrahedron Lett. 2000, 41, 2215-2217 and references therein; (b) Alvarado, M.; Barceló, M.; Carro, L.; Masaguer, C. F.; Raviña, E. Chem. Biodiversity 2006, 3, 106-117; (c) Aly, M. M.; Mohamed, Y. A.; El-Bayouki, K. A. M.; Basyouni, W. M.; Abbas, S. Y. Eur. J. Med. Chem. 2010, 45, 3365-3373; (d) Maurya, H.; Verma, R.; Alam, S.; Pandey, S.; Pathak, V.; Sharma, S.; Srivastava, K. K.; Negi, A. S.; Gupta, A. Bioorg. Med. Chem. Lett. 2013, 23, 5844-5849; (e) Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Eur. J. Med. Chem. 2014, 76, 193-244 and references therein; (f) Ugale, V. G.; Bari, S. B. Eur. J. Med. Chem. 2014, 80, 447-501; (g) Chaudhari, C.; Siddiki, S. M. A. H.; Tamura, M.; Shimizu, K. RSC Adv. 2014, 4, 53374-53379.
3. (a) Connolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153-10202; (b) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Chem. Rev. 2009, 109, 4140-4182 and references therein; (c) Wang, D.; Gao, F. Chem. Cent. J. 2013, 7, 95 1-15.
4. (a) Alawode, O. E.; Naganaboina, V. K.; Liyanage, T.; Desper, J.; Rayat, S. Org. Lett. 2014, 16, 1494-1497; (b) Mendoza-Martínez, C.; Correa-Basurto, J.; NietoMeneses, R.; Marquez-Navarro, A.; Aguilar-Suarez, R.; Montero-Cortes, M. D.; Nogueda-Torres, B.; Suarez-Contreras, E.; Galindo-Sevilla, N.; Rojas-Rojas, A.; Rodriguez-Lezama, A.; Hernandez-Luis, F. Eur. J. Med. Chem. 2015, 96, 296-307; (c) Yan, Y.; Xu, Y.; Niu, B.; Xie, H.; Liu, Y. J. Org. Chem. 2015, 80, 5581-5587; (d) Quintero, C.; Valderrama, M.; Becerra, A.; Daniliucb, C. G.; Rene, S.; Rojas, R. S. Org. Biomol. Chem. 2015, 13, 6183-6193.
5. (a) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2009, 74, 4934-4942; (b) Yin, P.; Liu, N.; Deng, Y.-X.; Chen, Y.; Deng, Y.; He, L. J. Org. Chem. 2012, 77, 2649-2658.
6. Patel, O. P. S.; Anand, D.; Maurya, R. K.; Yadav, P. P. Green Chem. 2015, 17, 3728-3732.
7. Lanigan, R. M.; Starkov, P.; Sheppard, T. D. J. Org. Chem. 2013, 78, 4512-4523.
8. (a) Lundberg, H.; Adolfsson, H. ACS Catal. 2015, 5, 3271-3277; (b) Wangngae, S.; Duangkamol, C.; Pattarawarapan, M.; Phakhodee, W. RSC Adv. 2015, 5, 25789-25793.
9. (a) Seo, S.; Marks, T. J. Org. Lett. 2008, 10, 317-319; (b) Allen, C. L.; Davulcu, S.; Williams, J. M. J. Org. Lett. 2010, 12, 5096-5099; (c) Liu, X.; Jensen, K. F. Green Chem. 2012, 14, 1471-1474; (d) Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Chai, C. L. L.; Chen, A. J. Org. Chem. 2012, 77, 8007-8015; (e) Leow, D. Org. Lett. 2014, 16, 5812-5815.
10. (a) Naik, S.; Bhattacharjya, G.; Talukdar, B.; Patel, B. K. Eur. J. Org. Chem. 2004, 1254-1260; (b) Li, Y.; Ma, L.; Jia, F.; Li, Z. J. Org. Chem. 2013, 78, 5638-5646; (c) Marinho, E.; Proença, M. F. Synthesis 2015, 47, 1623-1632.
11. (a) Chan, W. K.; Ho, C.-M.; Wong, M.-K.; Che, C.-M. J. Am. Chem. Soc. 2006, 128 , 14796-14797; (b) Mak, X. Y.; Ciccolini, R. P.; Robinson, J. M.; Tester, J. W.; Danheiser, R. L. J. Org. Chem. 2009, 74, 9381-9387.
12. (a) Gnanaprakasam, B.; Milstein, D. J. Am. Chem. Soc. 2011, 133, 1682-1685; (b) Morimoto, H.; Fujiwara, R.; Shimizu, Y.; Morisaki, K.; Ohshima, T. Org. Lett. 2014, 16, 2018-2021.
13. (a) Chen, C.; Zhang, Y.; Hong, S. H. J. Org. Chem. 2011, 76, 10005-10010; (b) Liu, X.; Jensen, K. F. Green Chem. 2013, 15, 1538-1541.
14. Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796-13797.
15. Marinho, E.; Aráujo, R.; Proença, F. Tetrahedron 2010, 66, 8681-8689.
16. Marinho, E.; Proença, M. F. RSC Adv. 2016, 6, 6138-6143.
17. Marinho, E. R.; Proeeça, F. P. Arkivoc 2009, xvi, 346-361 and references therein.

[^0]: * Corresponding author. Tel.: +351 253 604379; fax: +351 253 604382; e-mail address: fproenca@quimica.uminho.pt (M.F. Proença).

