Journal of Medicinal Chemistry

Investigations on the 1-(2-Biphenyl)piperazine Motif: Identification of New Potent and Selective Ligands for the Serotonin₇ (5-HT₇) Receptor with Agonist or Antagonist Action in Vitro or ex Vivo

Enza Lacivita,[†] Daniela Patarnello,[†] Nikolas Stroth,^{||} Antonia Caroli,[‡] Mauro Niso,[†] Marialessandra Contino,[†] Paola De Giorgio,[†] Pantaleo Di Pilato,[†] Nicola A. Colabufo,[†] Francesco Berardi,[†] Roberto Perrone,[†] Per Svenningsson,^{||} Peter B. Hedlund,[§] and Marcello Leopoldo^{*,†}

[†]Dipartimento Farmaco-Chimico, Università degli Studi di Bari "A. Moro", via Orabona, 4, 70125, Bari, Italy

[‡]Department of Physics, Sapienza University, piazzale A. Moro, 5, 00185, Rome, Italy

[§]Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States

^{II}Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden

Supporting Information

ABSTRACT: Here we report the design, synthesis, and 5-HT₇ receptor affinity of a set of 1-(3-biphenyl)- and 1-(2-biphenyl)piperazines. The effect on 5-HT₇ affinity of various substituents on the second (distal) phenyl ring was analyzed. Several compounds showed 5-HT₇ affinities in the nanomolar range and >100-fold selectivity over 5-HT_{1A} and adrenergic α_1 receptors. 1-[2-(4-Methoxyphenyl)phenyl]piperazine (9a)

showed 5-HT₇ agonist properties in a guinea pig ileum assay but blocked 5-HT-mediated cAMP accumulation in 5-HT₇-expressing HeLa cells.

INTRODUCTION

The serotonin 5-HT_7 receptor was identified starting in 1993 by the application of targeted molecular biology techniques. It has been described in various species and remains the last 5-HT receptor to be discovered. The 5-HT_7 receptor is localized in discrete areas of the brain and in the periphery. Within the central nervous system (CNS), high levels of this receptor have been detected in the hippocampus, thalamus, and hypothalamus (especially within the suprachiasmatic nucleus).¹ Nearly two decades after its discovery, much information is available on the pathophysiological role of 5-HT_7 in the CNS.²

Pharmacological blockade of the 5-HT₇ receptor by 1 (SB-269970) (Figure 1) or inactivation of the 5-HT₇ receptor gene leads to an antidepressant-like behavioral profile in rodent forced swim test and tail suspension test. It has also been suggested that the atypical antipsychotic drug amisulpride exerts its antidepressant action through blockade of 5-HT₇ receptors.³ Recently, a study showed that the pharmacological blockade of 5-HT₇ receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine.⁴ This is particularly interesting, since antidepressants with a faster onset of action are an unmet need in depression therapy.

Several studies have suggested that 5-HT_7 receptors are involved in nociceptive processing. Activation of 5-HT_7 receptors exerts antinociceptive effects at the level of the spinal cord and pronociceptive effects in the periphery.⁵ Moreover,

Figure 1. Structures of selective 5-HT₇ receptor agents.

since subcutaneous administration of the selective 5-HT₇ receptor agonist 2 (E-55888) increased the analgesic potency of oral morphine, it has been proposed that 5-HT₇ receptor agonists could be used as adjuvants of opioid analgesia.⁶

Animal studies of learning and memory have suggested a potentially important role for the 5-HT₇ receptor in cognitive processes.⁷ 5-HT₇ drugs such as 1, 3 (DR-4004), and 4 (AS-19) (Figure 1) are able to reverse amnesia induced by post-

Received: March 16, 2012

Journal of Medicinal Chemistry

training administration of scopolamine (a cholinergic antagonist). This supports the hypothesis that cholinergic, glutamatergic, and serotonergic systems interact in cognitively impaired animals. Moreover, it shows that the 5-HT₇ receptor can significantly influence cognitive dysfunction and therefore represents a potential therapeutic target for the treatment of memory dysfunction in cognitive disorders (schizophrenia, Alzheimer's disease, age-related decline).⁸ Collectively, the aforementioned findings underscore the importance of developing new 5-HT₇ receptor drugs.

Our research group has been involved for several years in the study of structure–activity relationships (SARs) of 4-substituted 1-arylpiperazine derivatives, the so-called "long-chain" arylpiperazines.^{9–13} Our studies have led to the identification of **5** (LP-211) (Figure 1) which showed high 5-HT₇ receptor affinity ($K_i = 0.58$ nM, rat cloned receptors), high selectivity over 5-HT_{1A} and D₂ receptors (324- and 245-fold, respectively), and agonist properties in an ex vivo assay of 5-HT₇ receptor activation. Disposition studies in mice evidenced that **5** undergoes N-dealkylation to **6a** (Table 1). This might be of relevance because N-unsubstituted 1-arylpiperazines can

	Tab	le 1.	Binding	Affinities	of	Target	Compound	ls
--	-----	-------	---------	------------	----	--------	----------	----

Ar^{1} NH $3 ^{2}$ NH Ar^{2}										
		-	K_i , nM ± S.E.M. ⁴							
compd	pos	Ar ²	5-HT7	5-HT1A	α_1					
6a	2		1.4^b	99^b	59.1 ± 2.5					
6b	3		25 ± 1.7	72.1 ± 3.3	(21%) ^c					
7a	2		2.7 ± 1.5	$(15\%)^d$	(14%)°					
7b	3		109 ± 64	63.2 ± 3.1	(3%)°					
8a	2		1.9 ± 0.6	$(22\%)^{d}$	165 ± 2					
8b	3	-{}−сн₃	93 ± 2	$(34\%)^d$	(7%)°					
9a	2		2.6 ± 0.1	476 ± 3	156 ± 2					
9b	3		> 5000	$(42\%)^{d}$	(29%)°					
10a	2		7.0 ± 1.2	$(16\%)^d$	105 ± 2					
10b	3		13 ± 4	31.4 ± 2.3	(8%)°					
11a	2	N=	23 ± 6	$(23\%)^d$	$(11\%)^{c}$					
11b	3		80 ± 4	14.9 ± 2.3	(27%)°					
12a	2	H ₃ CO	96 ± 11	$(21\%)^d$	(10%)°					
12b	3	H ₃ CO	7.1 ± 1.7	149 ± 2	(3%)°					
22a	2	H₃CO	18.4 ± 6.5							
22b	3	$ \rightarrow $	8.2 ± 1.9							
23a	2	H ₃ C	6.9 ± 0.3							
23b	3	$\langle \rangle$	1.4 ± 0.1	17.4 ± 1.5						
	5-C	Т	0.3 ± 0.1							
	5-H	Т		10 ± 1.5						
PI	nentol	amine			16 ± 2					

^{*a*}Values are the mean \pm SEM from three independent experiments. ^{*b*}Data taken from ref 15. ^{*c*}Displacement of [³H]prazosin from rat cerebral cortex membranes by a single concentration of test compound (100 nM). Data are the mean of two independent experiments. ^{*d*}Displacement of [³H]-8-OH-DPAT from human cloned 5-HT_{1A} receptors by a single concentration of test compound (100 nM). Data are the mean of two independent experiments. reach the brain and may display pharmacological effects opposite to those of their parent drugs. Therefore, the final pharmacological effect of such drugs might result from the interplay between the neurochemical actions of the parent drug and of its active metabolite.¹⁴ For this reason, the affinities for a range of 5-HT receptors of **6a** and **5** were evaluated under the same experimental conditions. Compound **6a** displayed higher S-HT₇ receptor affinity ($K_i = 1.4$ nM, human cloned receptor) and overall better selectivity profile than **5** ($K_i = 15$ nM, human cloned receptor).¹⁵ This was unexpected because the majority of the long-chain arylpiperazine derivatives described in the literature display higher 5-HT₇ receptor affinity than the N-(4)-unsubstituted counterparts.^{11,16,17} Thus, compound **6a** attracted our attention as a low molecular weight lead compound that could deliver a completely new set of selective 5-HT₇ receptor ligands.

CHEMISTRY

The synthesis of the target 1-arylpiperazine derivatives 6a,b– 12a,b (Table 1) required the key aniline intermediates 13a,b– 17a,b, 20a,b, and 21a,b (Scheme 1). Among these, 13a,b were

^aReagents: (A) $Pd(dppf)Cl_2$ and 5 N NaOH or tetrakis-(triphenylphosphino)palladium(0) and 2 M Na₂CO₃; (B) ammonium formate, 10% Pd/C; (C) bis(2-chloroethyl)amine hydrochloride, K₂CO₃, KI.

commercially available, whereas the remaining anilines where prepared according to literature methods by cross-coupling reaction of 2- or 3-iodoaniline and the appropriate benzeneboronic acid under Suzuki conditions (14a,b-17a,b) or through catalytic reduction of nitroderivatives 18a,b and 19a,b (anilines 20a,b and 21a,b). The target compounds 6a,b-12a,b were obtained by condensing the intermediate anilines 13a,b-17a,b, 20a,b, and 21a,b with bis(2-chloroethyl)amine hydrochloride.

RESULTS AND DISCUSSION

Structure–Activity Relationships for 5-HT₇ Receptor. The notion that N-(4)-unsubstituted 1-arylpiperazines can bind to the 5-HT₇ receptor was reported by Shen et al. in 1993.¹⁸ In particular, it was shown that 1-(1-naphthalenyl)piperazine, 1-(2-methoxyphenyl)piperazine, and 1-(3-chlorophenyl)-piperazine can bind at 5-HT₇ receptors with moderate to good affinities ($K_i = 83$ nM, 243 nM, and 352 nM, respectively). Over the years, the above-mentioned 1-arylpiperazines were used as starting points for the development of several classes of long-chain arylpiperazine derivatives.

Figure 2. (A) Main interactions of 6a (yellow), 7a (cyan), 8a (green), 9a (magenta), and 10a (blue) within the 5-HT₇ receptor binding site. The protonated piperazine N(4) nitrogen forms an ionic interaction with D3.32 at the distance of 2.57 Å. The oxygen of methoxy group of 9a forms hydrogen-bond contacts with S5.42 and Y5.38 at distances of 3.4 and 3.1 Å, respectively. The same pattern of interactions is shown by 7a and 10a. (B) Main interactions of 12b within the 5-HT₇ receptor binding site. (C) Main interactions of 22a,b and 23a,b within the 5-HT₇ receptor binding site.

In many cases the introduction of a large substituent on the basic nitrogen of the piperazine ring had a beneficial effect on the affinity and specificity for the 5-HT₇ receptor.^{11,16,17} Therefore, it was unexpected that removal of the pendant substituent from the basic nitrogen of **5** afforded the potent and selective 5-HT₇ ligand **6a**. Since no studies dealing with N-(4)-unsubstituted 1-arylpiperazines as 5-HT₇ receptor ligands can be found in the literature, we decided to explore the SARs of a set of compounds structurally related to **6a**. For our study, we have evaluated the 1-(2-biphenyl)piperazine derivatives **6a**–**12a**, focusing on the aromatic ring denoted as Ar² in the general structure reported in Table 1.

In particular, we wanted to explore if introduction of substituent(s) that could modify the electronic properties or the steric hindrance of the Ar² group had an effect on 5-HT₇ receptor affinity. We also evaluated the affinity for the 5-HT₇ receptor of the corresponding 1-(3-biphenyl)piperazine counterparts 6b-12b. The 1-(4-biphenyl)piperazine framework was not taken into consideration at this stage because a previous study showed that 1-(4-substituted-phenyl)piperazines were nearly devoid of 5-HT₇ receptor affinity.¹¹ The binding affinity values of the target compounds at the 5-HT₇ receptor are shown in Table 1. In comparison of the 5-HT7 affinity values of 6a (Ar² = phenyl), 7a (Ar² = 4-fluorophenyl), 8a (Ar² = 3,4-dimethylphenyl), 9a (Ar^2 = 4-methoxyphenyl), and 10a $(Ar^2 = 4$ -nitrophenyl), no great differences can be noted. This indicates that there is no preference between electron-rich and electron-poor aromatic rings in that position. Introduction of an aza group in **6a** afforded compound **11a** ($Ar^2 = 2$ -pyridyl), causing a >10-fold loss in affinity. The presence of substituents in different positions of the Ar² ring had different effects on 5- HT_7 receptor affinity. In particular, 8a (Ar² = 3,4dimethylphenyl) and 9a (Ar² = 4-methoxyphenyl) displayed affinities in the same range as 6a, suggesting that the binding pocket of the receptor is large enough to accommodate such substituents. By contrast, a marked decrease in affinity was observed in the case of 12a (Ar² = 2,6-dimethoxyphenyl). Next, we evaluated the effect on 5-HT₇ receptor affinity of shifting the Ar^2 ring from 2- to 3-position (derivatives 6b-12b). This modification reduced the 5-HT₇ receptor affinity (except for 12b) to various extents: compound 10b showed only half the affinity of its isomer 10a, whereas 9b was devoid of 5-HT₇ affinity ($K_i > 5000$ nM), contrary to the isomer **9a** ($K_i = 2.6$ nM). A notable exception to this trend was derivative 12b ($K_i =$

7.1 nM), which has higher affinity than its isomer 12a ($K_i = 96$ nM).

To rationalize the SARs, we developed a pharmacophore model (see Supporting Information). Matrix distances between the pharmacophoric features (i.e., a positively charged nitrogen atom and two aromatic rings that corresponded to Ar^1 and Ar^2) were in general agreement with those reported in the pharmacophore models by Kolaczkowski et al.¹⁹ (the general "affinity" hypothesis) and by Badarau et al.²⁰ (the "second hypothesis"). The analysis of aligned target compounds clearly indicated that the pharmacophoric groups of compounds 6a-12a matched the features of the pharmacophore model more closely than those of compounds 6b-12b (Figure SI3, Supporting Information). Next, docking simulations were conducted by use of the Autodock4 program²¹ to analyze the binding mode of 6a,b-12a,b. Kolaczkowski et al.¹⁹ defined the 5-HT₇ receptor binding site as constituted by the interaction point of the positively charged nitrogen atom and two pockets: one localized between transmembrane helices (TMHs) 4-6 in a deep cavity and the other one between TMHs 7-3 in the extracellular exposed area. According to our docking studies, the compounds reported in Table 1 preserve the crucial ionic interaction between protonated piperazine N(4) nitrogen with D3.32 (according to Ballesteros and Weinstein)²² and the $CH-\pi$ interaction between the phenyl ring attached to the piperazine ring (Ar¹) with F6.51 (Figure 2A). Moreover, the compounds with the highest affinities also showed $CH-\pi$ interaction between Ar^2 and F6.52. The binding mode analysis suggested that the TMH 4-6 pocket is not large enough to accommodate the Ar^2 group when it is in the 3-position of Ar^1 , thus explaining the lower affinity of 6b-11b as compared to 6a-11a. In particular, the conformations proposed for 9b do not allow the crucial ionic interaction with D3.32. On the other hand, a different binding scenario could be hypothesized for compound 12b: the methoxy group formed H-bonding interactions with Y5.38 and S5.42 that drove Ar² into a hydrophobic pocket formed by I3.29, V3.33, and F6.52 (Figure 2B). Consequently, the structure-based conformation of 12b showed that the orientation and distances of the essential triplet features were comparable with those observed for the compounds with highest affinity. To check this further, we have studied an additional small set of compounds having a 2methoxy- or a 2-methyl group on Ar², with Ar² in either 2- or 3position on Ar¹ (compounds 22a,b and 23a,b, Table 1). These compounds were prepared following the synthetic routes

Journal of Medicinal Chemistry

depicted in Scheme 1 (see Supporting Information). As in the case of compounds 12a,b, 1-(3-biphenyl)piperazine derivatives 22b and 23b showed higher 5-HT₇ receptor affinity than the 1-(2-biphenyl) counterparts 22a and 23a, but in this case, a small difference was shown. Docking analysis suggested that the methoxy or methyl substituent in 2-position of compounds 22a,b and 23a,b interacts with the pocket created by I3.29, V3.33, M3.34, T3.37, and I4.37 residues and allows optimal interaction of Ar¹ and Ar² with F6.51 and F6.52, respectively (Figure 2C). Therefore, affinity data and docking analysis of compounds 12a,b, 22a,b, and 23a,b indicate that the introduction of small substituents in one or both orthopositions of Ar² enables the molecules to adopt the optimal conformation for interaction through hydrophobic or hydrogen-bonding interactions. All in all, the binding mode analysis evidenced that the interaction of biphenyl piperazines with the 5-HT₇ receptor is driven essentially by steric and hydrophobic requirements. In the case of compound 12b, the hydrogenbond formation with Y5.38 and S5.42 is fundamental for the optimal orientation of Ar².

Selectivity over 5-HT_{1A} and Adrenergic α_1 Receptors. Target compounds were counterscreened for their affinity against the serotonin 5-HT_{1A} receptor because it is colocalized with the 5-HT7 receptor. Also, target compounds were evaluated for their adrenergic α_1 receptor affinity because it has been reported that the 1-(2-biphenyl)piperazinyl scaffold might have affinity for this receptor.²³ As far as the affinity for 5-HT_{1A} receptors is concerned, all the 2-biphenyl derivatives displayed poor affinities except **9a** (Ar = 4-methoxyphenyl, K_i = 476 nM). On the other hand, the 3-biphenyl derivatives showed a different trend. Compounds 6b, 7b, 10b, and 11b displayed good 5-HT_{1A} receptor affinity (72.1 nM < K_i < 14.9 nM), differently from 8b and 9b. With regard to the adrenergic α_1 receptor, all compounds showed weak affinities, except **6a** and 10a (K_i = 59.1 nM and 105 nM, respectively). Taken together, these data indicated that the 1-(2-biphenyl)piperazine motif can deliver high-affinity 5-HT7 ligands and that an appropriate substitution pattern around the Ar² ring can lead to selective 5-HT₇ receptor ligands.

Activation of 5-HT₇ Receptors in Guinea Pig Ileum. 5-HT₇ receptor activation is known to mediate relaxation of gastrointestinal smooth muscle. Previous studies have demonstrated that activation of 5-HT7 receptors inhibits contractions induced by substance P in the guinea pig ileum.²⁴ We investigated the effect of compounds 6a-9a, which showed the highest 5-HT₇ receptor affinity and selectivity values among the newly reported compounds, on substance P-induced contractions in the guinea pig ileum. The assays were conducted in the presence of a cocktail of non-5-HT7 receptor antagonists (see Supporting Information) in order to elucidate whether or not the relaxation response in this particular tissue is due to direct activation of the 5-HT₇ receptor. For comparative purposes, we also tested 4, a selective 5-HT₇ ligand that behaves as a potent ($EC_{50} = 9 \text{ nM}$) partial 5-HT₇ receptor agonist (77% maximal effect compared to 5-HT) toward cAMP accumulation in HEK-293F/h5-HT₇ cells.²⁵ As already reported,¹¹ the 5-HT₇ agonist 5-CT was able to reduce 40% of the contraction induced by substance P, an effect that was competitively reverted by the antagonist 1. Compounds 6a-9a were able to induce relaxation of substance P-mediated contraction (Figure 3). However, the effects elicited by 6a (0.5 μ M and 1 μ M) and 8a (2 μ M) were not 5-HT₇ receptormediated because they were not reverted by 1 (3 μ M). On the

Figure 3. Percent relaxation of substance P-mediated contraction induced by 5-HT₇ agonists in isolated guinea pig ileum.

other hand, 7a and 9a were able to induce 5-HT₇ receptormediated relaxation at concentrations of 0.5 μ M and 1 μ M, because the effects were abolished by 1 (3 μ M). Finally, 4 induced relaxation at concentrations of 1 μ M and 2 μ M but not at 0.5 μ M (data not shown), the effects being reverted by 1 (3 μ M). All in all, these data indicate that compounds 7a and 9a behave as 5-HT₇ competitive agonists in this assay with specificity as good as 4, contrary to 6a and 8b.

Activity at 5-HT₇ Receptors Stably Expressed in HeLa Cells. Compounds 6a and 9a were active in the guinea pig ileum assay, but the effect of 6a appeared not to be specific to 5-HT₇ (no blockade with 1). To further characterize their function, we therefore tested both compounds against 5-HT_{7(a)} receptors stably expressed in HeLa cells. Neither 6a nor 9a stimulated cAMP accumulation (data not shown), and both compounds behaved as antagonists instead. Thus, cAMP accumulation induced by 1 μ M 5-HT was inhibited by 6a and 9a with IC₅₀ values of 531 and 438 nM, respectively (Figure 4A). To confirm their inhibitory action at recombinant

Figure 4. Effects of compounds 6a and 9a on (A) 5-HT- and (B) forskolin-induced cAMP accumulation in vitro.

S-HT_{7(a)}, the compounds were compared with established receptor antagonists regarding their capacity to block forskolininduced cAMP. Similar to 1, clozapine, and ketanserin, 6a and 9a significantly inhibited cAMP accumulation, thus providing further evidence for antagonist effects, at least in the context of a heterologous system (Figure 4B).

CONCLUSIONS

The main aim of the present study was exploration of the SARs of a set of 1-(2-biphenyl)- and 1-(3-biphenyl)piperazines, toward the goal of identifying new high-affinity 5-HT₇ ligands. This goal was achieved, as several compounds with K_i s in the low nanomolar range were identified. The SARs showed that various substituents can be introduced in the distal phenyl ring of the 1-(2-biphenyl)piperazine scaffold without affecting 5-HT₇ receptor affinity. On the other hand, the 1-(3-biphenyl)-piperazine scaffold appears to be more sensitive to the presence and position of substituents. Considering the selectivity over 5-

Journal of Medicinal Chemistry

 $\mathrm{HT}_{1\mathrm{A}}$ and α_1 receptors, it is noteworthy that, despite their low molecular weight, several ligands herein reported showed affinities 2 orders of magnitude lower than those at 5-HT₇ receptors. All in all, affinity and computational data indicate that both 1-(2-biphenyl)- and 1-(3-biphenyl)piperazine scaffolds can deliver high-affinity 5-HT₇ ligands or can be starting points for development of newer long-chain arylpiperazines capable of binding at 5-HT₇ receptors.

Investigation of signaling through the 5-HT₇ receptor yielded interesting results. While compounds **9a** and **10a** induced relaxation of guinea pig ileum in the same fashion as 5-CT and the selective 5-HT₇ receptor agonist **4**, compounds **6a** and **9a** failed to stimulate cAMP accumulation in 5-HT_{7a}-expressing HeLa cells. Instead, inhibition was observed when cells were cotreated with 5-HT and **6a** or **9a**. Moreover, similar to established antagonists of 5-HT₇²⁶ both compounds inhibited forskolin-stimulated cAMP. Thus, at least in the context of our heterologous system, **6a** and **9a** displayed antagonist properties.

It has previously been shown that a given 5-HT receptor ligand can act as agonist in one and antagonist in another receptor-expressing system. For example, the 5-HT₄ ligand 4amino-5-chloro-2-methoxybenzoic acid 2-(1-piperidinyl)ethyl ester (ML 10302) is a partial agonist in guinea pig ileum but an antagonist of cAMP accumulation in guinea pig hippocampus.²⁷ Similarly, partial agonist as well as antagonist properties at central 5-HT1A receptors have been described for 8-{2-[4-(methoxyphenyl)-1-piperazinyl]ethyl}-8-azaspiro[4.5]decane-7,9-dione (BMY 7378).²⁸ Our present results demonstrate that dual agonist/antagonist ligands also exist for the 5-HT₇ receptor, exemplified by compound 9a. In light of this finding, we believe that the reinvestigation of agonists and antagonists previously published by our laboratory and others will tell us if the dual agonist/antagonist feature of 9a is shared by other 5-HT₇ ligands. This might ultimately help to explain the observed inconsistencies in the role of 5-HT₇ receptors in the CNS.⁸

EXPERIMENTAL SECTION

General Procedure for the Preparation of Piperazines 6a,b– 12a,b, 22a,b, and 23a,b. A mixture of the appropriate aniline (4.0 mmol), bis(2-chloroethyl)amine hydrochloride (0.71 g, 4.0 mmol), K₂CO₃ (0.55 g, 4.0 mmol), and KI (0.66 g, 4.0 mmol) in xylene (30 mL) was refluxed for 48 h. After cooling, the solvent was distilled off in vacuo and the residue was taken up with AcOEt (30 mL) and 5% aqueous NaOH solution (30 mL). The organic phase was separated and then washed with brine. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was chromatographed with CHCl₃/MeOH, 9:1, to afford the desired compounds as pale yellow oil. The purity of the tested compounds **6a,b−12a,b**, **22a,b**, and **23a,b** was assessed by RP-HPLC and combustion analysis. All compounds showed ≥95% purity.

1-[2-(4-Methoxyphenyl)phenyl]piperazine (9a). Yield 30%. ¹H NMR (CDCl₃) δ 1.71 (br s, 1H, D₂O exchanged), 3.12 (br s, 8H), 3.84 (s, 3H), 6.94 (d, 2H, *J* = 8.8 Hz), 7.00 (d, 1H, *J* = 8.0 Hz), 7.10–7.15 (m, 1H), 7.22–7.30 (m, 2H), 7.46 (d, 2H, *J* = 8.8 Hz). GC-MS *m*/*z* 269 (M⁺ + 1, 11), 268 (M⁺, 56), 226 (100), 210 (43), 167 (24). The hydrochloride salt melted at 198–200 °C (from MeOH/Et₂O). Anal. (C₁₇H₂₀N₂O·HCl·0.5 H₂O) C, H, N.

Radioligand Binding Assays. Binding of [³H]-5-CT at human cloned 5-HT₇ receptor was performed according to Jasper et al.²⁹ Binding of [³H]-8-OH-DPAT at human cloned 5-HT_{1A} receptors was performed as previously described.³⁰ Binding of [³H]prazosin at α_1 -adrenoceptors was performed according to Glossmann and Hornung.³¹

Isolated Guinea Pig lleum Assay. Inhibition of substance P-induced contraction in guinea pig ileum by 5-HT₇ receptor agonists was performed as previously described.¹¹

Measurement of Intracellular cAMP Accumulation. HeLa cells stably expressing human 5-HT_{7(a)} (kindly provided by Dr. Mark Hamblin) were cultured as described³² and seeded into 96-well plates before treatment. Intracellular cAMP was measured by a commercial enzyme-linked immunosorbent assay (ELISA; Abnova, Taipei City, Taiwan).

ASSOCIATED CONTENT

S Supporting Information

Additional text, three figures, and two tables with synthetic details and spectral data for **6a,b–12a,b**, **15a,b**, **17a,b**, and **20a,b–23a,b**; elemental analysis of **6a,b–12a,b**, **22a,b**, and **23a,b**; matrix distances; molecular modeling and molecular docking methods; PHASE alignment analysis; training set for pharmacophore model identification; list of inactive compounds; and biological methods and statistical analysis. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone +39-080-5442798; fax 39-080-5442231; e-mail leopoldo@farmchim.uniba.it.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Research was performed as part of the "ADHD-sythe" younginvestigator project (principal investigator, W. Adriani; local unit, E.L.), assigned by the Italian Ministry of Health, "under-40 call 2007". Studies by P.S. and N.S. were funded by Vetenskapsrådet (Swedish Research Council). "Fondazione Roma" is gratefully acknowledged for the financial support to A.C.

REFERENCES

(1) Hedlund, P. B.; Sutcliffe, J. G. Functional, molecular and pharmacological advances in 5-HT₇ receptor research. *Trends Pharmacol. Sci.* **2004**, 25, 481–486.

(2) Leopoldo, M.; Lacivita, E.; Berardi, F.; Perrone, R.; Hedlund, P. B. Serotonin 5-HT₇ receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. *Pharmacol. Ther.* **2011**, *129*, 120–148.

(3) Abbas, A. I.; Hedlund, P. B.; Huang, X. P.; Tran, T. B.; Meltzer, H. Y.; Roth, B. L. Amisulpride is a potent 5-HT₇ antagonist: relevance for antidepressant actions in vivo. *Psychopharmacology (Berlin)* **2009**, 205, 119–128.

(4) Mnie-Filali, O.; Faure, C.; Lambás-Señas, L.; El Mansari, M.; Belblidia, H.; Gondard, E.; Etiévant, A.; Scarna, H.; Didier, A.; Berod, A.; Blier, P.; Haddjeri, N. Pharmacological blockade of 5-HT₇ receptors as a putative fast acting antidepressant strategy. *Neuropsychopharmacology* **2011**, *36*, 1275–1288.

(5) Brenchat, A.; Zamanillo, D.; Hamon, M.; Romero, L.; Vela, J. M. Role of peripheral versus spinal 5-HT₇ receptors in the modulation of pain undersensitizing conditions. *Eur. J. Pain* **2012**, *16*, 72–81.

(6) Brenchat, A.; Ejarque, M.; Zamanillo, D.; Vela, J. M.; Romero, L. Potentiation of morphine analgesia by adjuvant activation of 5-HT₇ receptors. *J. Pharmacol. Sci.* **2011**, *116*, 388–391.

(7) Roberts, A. J.; Hedlund, P. B. The S-HT₇ receptor in learning and memory. *Hippocampus* **2012**, *22*, 762–771.

(8) Matthys, A.; Haegeman, G.; Van Craenenbroeck, K.; Vanhoenacker, P. Role of the 5-HT₇ receptor in the central nervous system: from current status to future perspectives. *Mol. Neurobiol.* **2011**, *43*, 228–253.

(9) Perrone, R.; Berardi, F.; Colabufo, N. A.; Lacivita, E.; Leopoldo, M.; Tortorella, V. Synthesis and structure–affinity relationships of 1-[omega-(4-aryl-1-piperazinyl)alkyl]-1-aryl ketones as 5-HT₇ receptor ligands. *J. Med. Chem.* **2003**, *46*, 646–649.

(10) Leopoldo, M.; Berardi, F.; Colabufo, N. A.; Contino, M.; Lacivita, E.; Perrone, R.; Tortorella, V. Studies on 1-arylpiperazine derivatives with affinity for rat 5-HT₇ and 5-HT_{1A} receptors. *J. Pharm. Pharmacol.* **2004**, *56*, 247–255.

(11) Leopoldo, M.; Berardi, F.; Colabufo, N. A.; Contino, M.; Lacivita, E.; Niso, M.; Perrone, R.; Tortorella, V. Structure–affinity relationship study on N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinealkylamides, a new class of 5-hydroxytryptamine₇ receptor agents. J. Med. Chem. **2004**, 47, 6616–6624.

(12) Leopoldo, M.; Lacivita, E.; Contino, M.; Colabufo, N. A.; Berardi, F.; Perrone, R. Structure–activity relationship study on N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides, a class of 5-HT₇ receptor agents. 2. J. Med. Chem. **2007**, 50, 4214–4221.

(13) Leopoldo, M.; Lacivita, E.; De Giorgio, P.; Fracasso, C.; Guzzetti, S.; Caccia, S.; Contino, M.; Colabufo, N. A.; Berardi, F.; Perrone, R. Structural modifications of *N*-(1,2,3,4-tetrahydronaph-thalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT₇ receptor activity. Part III. *J. Med. Chem.* **2008**, *51*, 5813–5822.

(14) Caccia, S. N-dealkylation of arylpiperazine derivatives: disposition and metabolism of the 1-aryl-piperazines formed. *Curr. Drug Metab.* **2007**, *8*, 612–622.

(15) Hedlund, P. B.; Leopoldo, M.; Caccia, S.; Sarkisyan, G.; Fracasso, C.; Martelli, G.; Lacivita, E.; Berardi, F.; Perrone, R. LP-211 is a brain penetrant selective agonist for the serotonin 5-HT₇ receptor. *Neurosci. Lett.* **2010**, 481, 12–16.

(16) Medina, R. A.; Sallander, J.; Benhamú, B.; Porras, E.; Campillo, M.; Pardo, L.; López-Rodríguez, M. L. Synthesis of new serotonin 5- HT_7 receptor ligands. Determinants of $5-HT_7/5-HT_{1A}$ receptor selectivity. J. Med. Chem. 2009, 52, 2384–2392.

(17) Volk, B.; Barkóczy, J.; Hegedus, E.; Udvari, S.; Gacsályi, I.; Mezei, T.; Pallagi, K.; Kompagne, H.; Lévay, G.; Egyed, A.; Hársing, L. G.; Spedding, M.; Simig, G. (Phenylpiperazinyl-butyl)oxindoles as selective 5-HT₇ receptor antagonists. *J. Med. Chem.* **2008**, *51*, 2522–2532.

(18) Shen, Y.; Monsma, F. J., Jr.; Metcalf, M. A.; Jose, P. A.; Hamblin, M. W.; Sibley, D. R. Molecular cloning and expression of a 5hydroxytryptamine₇ serotonin receptor subtype. *J. Biol. Chem.* **1993**, 268, 18200–18204.

(19) Kołaczkowski, M.; Nowak, M.; Pawłowski, M.; Bojarski, A. J. Receptor-based pharmacophores for serotonin 5-HT₇R antagonists implications to selectivity. *J. Med. Chem.* **2006**, *49*, 6732–6741.

(20) Badarau, E.; Bugno, R.; Suzenet, F.; Bojarski, A. J.; Finaru, A. L.; Guillaumet, G. SAR studies on new bis-aryls 5-HT7 ligands: Synthesis and molecular modeling. *Bioorg. Med. Chem.* **2010**, *18*, 1958–1967.

(21) Goodsell, D. S.; Morris, G. M.; Olson, A. J. Automated docking of flexible ligands: applications of AutoDock. *J. Mol. Recognit.* **1996**, *9*, 1–5.

(22) Ballesteros, J. A.; Weinstein, H. Integrated methods for modeling G-protein coupled receptors. *Methods Neurosci.* 1995, 25, 366–428.

(23) Elworthy, T. R.; Ford, A. P.; Bantle, G. W.; Morgans, D. J.; Ozer, R. S.; Palmer, W. S.; Repke, D. B.; Romero, M.; Sandoval, L.; Sjogren, E. B.; Talamás, F. X.; Vazquez, A.; Wu, H.; Arredondo, N. F.; Blue, D. R.; De Sousa, A.; Gross, L. M.; Kava, M. S.; Lesnick, J. D.; Vimont, R. L.; Williams, T. J.; Zhu, Q. M.; Pfister, J. R.; Clarke, D. E. *N*-arylpiperazinyl-*N'*-propylamino derivatives of heteroaryl amides as functional uroselective alpha 1-adrenoceptor antagonists. *J. Med. Chem.* **1997**, 40, 2674–2687.

(24) Carter, D.; Champney, M.; Hwang, B.; Eglen, R. M. Characterization of a postjunctional 5-HT receptor mediating relaxation of guinea-pig isolated ileum. *Eur. J. Pharmacol.* **1995**, *280*, 243–250.

(25) Brenchat, A.; Romero, L.; García, M.; Pujol, M.; Burgueño, J.; Torrens, A.; Hamon, M.; Baeyens, J. M.; Buschmann, H.; Zamanillo, D.; Vela, J. M. 5-HT₇ receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. *Pain* **2009**, *141*, 239–247.

(26) Klein, M. T.; Teitler, M. Antagonist interaction with the human 5-HT₇ receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect. *Br. J. Pharmacol.* **2011**, *162*, 1843–1854.

(27) Hegde, S. S.; Eglen, R. M. Peripheral 5-HT₄ receptors. *FASEB J.* **1996**, *10*, 1398–1407.

(28) Sharp, T.; Backus, L. I.; Hjorth, S.; Bramwell, S. R.; Grahame-Smith, D. G. Further investigation of the in vivo pharmacological properties of the putative 5-HT_{1A} antagonist, BMY 7378. *Eur. J. Pharmacol.* **1990**, *176*, 331–340.

(29) Jasper, J. R.; Kosaka, A.; To, Z. P.; Chang, D. J.; Eglen, R. M. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT₇ receptor (h5-HT_{7b}). *Br. J. Pharmacol.* **1997**, *122*, 126–132.

(30) Fargin, A.; Raymond, J. R.; Regan, J. W.; Cotecchia, S.; Lefkowitz, R. J.; Caron, M. G. Effector coupling mechanisms of the cloned S-HT_{1A} receptor. *J. Biol. Chem.* **1989**, *264*, 14848–14852.

(31) Glossmann, H.; Hornung, R. alpha-Adrenoceptors in rat brain: sodium changes the affinity of agonists for prazosin sites. *Eur. J. Pharmacol.* **1980**, *61*, 407–408.

(32) Sjögren, B.; Hamblin, M. W.; Svenningsson, P. Cholesterol depletion reduces serotonin binding and signaling via human 5-HT_{7a} receptors. *Eur. J. Pharmacol.* **2006**, *552*, 1–10.