Tetrahedron Letters 60 (2019) 151120

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A novel approach to biologically relevant oxazolo[5,4-*d*]pyrimidine-5,7diones *via* readily available diazobarbituric acid derivatives

Saint Petersburg State University, Saint Petersburg 199034, Russian Federation

ARTICLE INFO

Article history: Received 4 August 2019 Revised 31 August 2019 Accepted 5 September 2019 Available online 6 September 2019

Keywords: Diazobarbituric acid Rh(II) catalysis 1,3-Oxazoles [2+3]-Cycloaddition

ABSTRACT

An alternative route from 1,3-disubstituted barbituric acids to biologically relevant oxazolo[5,4-d]pyrimidine-5,7-diones was developed that features sulfonyl-azide-free (SAFE) diazo transfer and Rh₂(esp)₂-catalyzed cycloaddition of the resulting 5-diazobarbituric acids with aliphatic and aromatic nitriles. Besides being shorter compared to the previously described approaches, the method allows introduction of alkyl substituents at the 1,3-oxazole ring of the fused heterocyclic system.

© 2019 Elsevier Ltd. All rights reserved.

The pyrimidine-2,4-dione core is typically introduced into more complex heterocyclic frameworks *via* the use of barbituric acid and its derivatives as building blocks. The latter have been utilized in the design and synthesis of diverse types of heterocyclic and carbocyclic compounds [1]. Besides the prominence of barbiturates as central nervous system drugs [2], fused polycyclic pyrimidine-2,4-diones can be regarded as privileged motifs [3], considering the diversity of biological activities displayed by such compounds. One such chemotype, oxa2olo[5,4-d]pyrimidine-5,7-diones, has recently attracted our attention. It is featured in biologically active compounds such as FGFR1 inhibitor **1** for cancer treatment [4], metalloproteinase inhibitor **2** for the treatment of arthritis, inflammation and cancer [5], adenosine receptor antagonist **3** to treat neurodegenerative disease [6] and Syngenta's pesticide series represented by compound **4** (Fig. 1) [7].

The currently described strategies to assemble oxazolo[5,4-*d*] pyrimidine-5,7-diones are rather limited and rely on 5-aminopyrimidine-2,4,6-trione **5** prepared, in turn, over two steps (nitrosation followed by nitroso group reduction) from barbituric acid derivatives **6**. In the most exploited approach [4,8–10], amine **5** is first condensed with aromatic aldehydes and the respective intermediate imines are cyclodehydrated with SOCl₂ [4,8,9] or *N*-bromosuccinimide [10] to give the target compounds (**7**). Alternatively, the latter can be formed by heating amine **5** in aroyl chlorides as a solvent [11] (Scheme 1). One isolated report [12] described the synthesis of **7** by direct condensation of 5-nitroso-1,3-dimethylbarbituric acid with various Wittig phosphonium ylides; however, subsequent research in the area has not utilized this methodology and the approach depicted in Scheme 1 currently remains the principal means to synthesize oxazolo[5,4-*d*]pyrimidine-5,7-diones **7**. The following drawbacks of this synthesis are apparent: it is multistep and the R' substituent diversity is limited to (hetero)aryl groups. Our recent experience preparing heterocycle-fused oxazoles

from heterocyclic α-diazocarbonyl compounds [13] via Rh(II)-catalyzed [2+3]-cycloaddition with nitriles prompted us to consider an alternative disconnection of scaffold 7. We reasoned that the oxazole ring could be obtained from a similar coupling of nitriles (R'CN) with metal carbenes derived from 5-diazobarbituric acids **8**. The latter were introduced as early as 1952 [14] and have been shown to undergo selected transformations which are typical of α diazocarbonyl compounds. In particular, Rh(II)-catalyzed OHinsertion, [15] CAr-H insertion, [16] dichlorination reactions [17] and [2+3]-cycloadditions with styrenes and arylacetylenes [18] have been reported, thus making 5-diazobarbituric acids versatile building blocks (Fig. 2). Thus, we decided to investigate 5-diazobarbituric acids **8** in the Rh^{II}-catalyzed cycloaddition with nitriles, which would constitute a simpler and more flexible entry into oxazolo[5,4-d]pyrimidine-5,7-diones 7 compared to previously reported approaches. Herein, we present the results of these studies.

^{*} Corresponding author at: Laboratory of Chemical Pharmacology, Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Peterhof 198504, Russian Federation.

E-mail address: m.krasavin@spbu.ru (M. Krasavin). URL: http://krasavin-group.org (M. Krasavin).

Fig. 1. Examples of biologically active compounds containing the oxazolo[5,4-*d*] pyrimidine-5,7-dione core.

Scheme 1. Typical approaches to oxazolo[5,4-*d*]pyrimidine-5,7-diones reported in the literature.

Fig. 2. Examples of reactions described for 5-diazobarbituric acids **8** in the literature [15–18] and the approach investigated in this work.

Table 1

Condition screening for the cycloaddition of 8a and acetonitrile.

^a Isolated yield.

^b according to TLC analysis of the reaction mixture.

 $^{\rm c}\,$ reaction was carried out at 130 °C under conventional heating for 3 h.

Utilizing the previously developed conditions for the Rh^{II}-catalyzed [2+3]-cycloaddition of α -diazo homophthalimides [13], we screened a number of transition metal catalysts and BF₃•OEt₂ as representative Lewis acid (Table 1). The best result (86% yield) was obtained in the Rh₂(esp)₂-catalyzed reaction between 1,3dimethyl-5-diazobarbituric acid (**8a**) and acetonitrile conducted at 120 °C under microwave irradiation over 2 h (Entry 4). While shortening the 120 °C reaction time to 1 h under microwave irradiation led to incomplete conversion, slightly increasing the reaction temperature (130 °C) and time (3 h) resulted in full conversion and a comparable yield (82%) under conventional heating (Entry 5), thus making the newly discovered transformation amenable to both modes of activation.

Having identified the optimal conditions for the synthesis of oxazolo[5,4-*d*]pyrimidine-5,7-diones, we proceeded to investigate its scope using a set of 5-diazobarbituric acids **8a–f** (Fig. 3) conveniently prepared from their 5-unsubstituted counterparts by the recently developed sulfonyl-azide-free (SAFE) diazo transfer protocol [19].

The results of these experiments are presented in Scheme 2. The formation of target oxazolo[5,4-d]pyrimidine-5,7-diones **7** was efficient in the case of symmetrically 1,3-disubstituted diazo cores **8a–c** and **8f** and proceeded well under conventional heating or microwave irradiation with aliphatic and aromatic nitriles while tolerating labile haloalkyl groups (albeit with diminished yields, *cf.* **7e–f**). Non-symmetric 5-diazobarbituric acid **8d** reacted primarily at the more 'enolizable' carbonyl to give **7j** as the major product. Its identity (as well as that of its regioisomer **7j**') was established by HMBC correlations (Fig. 4). Monosubstituted 5-diazobarbituric acid **8e** failed to give the desired 1,3-oxazole product **7l**.

Attempts to transfer the [2+3]-cycloadditions described herein to diazo Meldrum's acid **9** gave a curious result. While the reaction gave full conversion and good isolable yield of a product, its structure was assigned to 2,5-dimethyl-7*H*-oxazolo[4,5-*e*] [1,3]oxazin-7-one (**10**) rather than the expected adduct **11**. Considering that the reaction was conducted under prolonged microwave irradiation in acetonitrile as a solvent, it is realistic to expect product **10** to arise from a known [20] elimination of an acetone molecule, formation of acyl ketene **12** and Diels-Alder-like cyclocondensation [21] of the latter with another molecule of acetonitrile (Scheme 3).

In summary, we have developed a novel approach to biologically relevant oxazolo[5,4-*d*]pyrimidine-5,7-diones. It relies on the convenient synthesis of 5-diazobarbituric acids by *SAFE* diazotransfer and Rh₂(esp)₂-catalyzed cycloaddition with nitriles conveniently conducted under conventional heating or microwave irradiation. Besides the practical convenience, the synthesis affords greater diversity of substituents on the 1,3-oxazole ring compared to the previous cyclodehydration-based methods which work only for (hetero)aryl-substituted substrates.

Fig. 3. 5-Diazobarbituric acids 8 employed in this study.

^a Conditions: A - μW irradiation, 120 °C, 2 h; B - 130 °C, 3 h

Scheme 2. Preparation of oxazolo[5,4-d]pyrimidine-5,7-diones 7a-l.

Fig. 4. HMBC correlations permitting the distinction between 7j and $7j^\prime$ regioisomers.

Scheme 3. Attempted reaction with diazo Meldrum's acid (9).

Acknowledgements

This research was supported by the Russian Science Foundation (project grant 19-75-30008). We thank the Research Centre for Magnetic Resonance, the Center for Chemical Analysis and Materials Research of Saint Petersburg State University Research Park for obtaining the analytical data.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tetlet.2019.151120.

References

- [1] G.M. Ziarani, F. Aleali, N. Lashgari, RSC Adv. 6 (2016) 50895.
- [2] T. Ito, T. Suzuki, S.E. Wellman, I.K. Ho, Life Sci. 59 (1996) 169.
- [3] M.E. Welsch, S.A. Snyder, B.R. Stockwell, Curr. Opin. Chem. Biol. 14 (2010) 1.
 [4] F. Ye, Y. Wang, S. Nian, Y. Wang, D. Chen, S. Yu, S. Wang, J. Enzyme Inhib. Med.
- Chem. 30 (2015) 961. [5] M.W. Wilson, Chem. Abs. 140 (2004), PCT Int. Appl. WO 2004014916 193101.
- [6] R.F. Bruns, Biochem. Pharmacol. 30 (1981) 325.
- [7] S.A.M. Jeanmart, D. Stierli, T.J. Hoffman, J.H. Schaetzer, T. Pitterna, J.D.H.
- Gagnepain, Chem. Abs. 162 (2015), PCT Int. Appl. WO201503881 228832. [8] K. Senga, J. Sato, S. Nishigaki, Heterocycles 6 (1977) 689.
- [9] K. Senga, J. Sato, S. Nishigaki, Chem. Pharm. Bull. 26 (1978) 765.
- [10] K. Senga, J. Sato, K. Shimizu, S. Nishigaki, Heterocycles 1977 (1919) 6.
- [11] C.E. Mueller, C. Roegler, J. Hockemeyer, Heterocycles 79 (2009) 703.
- [12] R.F. Barghash, W.M. Abdou, Trends Heterocycl. Chem. 10 (2005) 57.
- [13] G. Kantin, D. Dar'in, M. Krasavin, Eur. J. Org. Chem. (2018) 4857.
- [14] F.G. Fischer, W.P. Neumann, J. Roch, Chem. Ber. 85 (1952) 752.
- [15] (a) A.C. Hunter, S.C. Schlitzer, J.C. Stevens, B. Almutmalli, I. Sharma, J. Org. Chem. 83 (2018) 2744;
- (b) A.C. Hunter, B. Almutwalli, A.I. Bain, I. Sharma, Tetrahedron 74 (2018) 5451.
- [16] D. Best, D.J. Burns, H.W. Lam, Angew. Chem. Int. Ed. 54 (2015) 7410.

- [17] K.E. Coffey, G.K. Murphy, Synlett 26 (2015) 1003.
 [18] (a) K.B.S. Magar, Y.R. Lee, S.H. Kim, Mol. Divers. 17 (2013) 679; (b) X. Wang, Y.R. Lee, Bull. Korean Chem. Soc. 34 (2013) 1735.
 [19] D. Dar'in, G. Kantin, M. Krasavin, Chem. Commun. 55 (2019) 5239.
- [20] (a) I.R. Gudipati, D.V. Sadasivam, D.M. Birney, Green Chem. 10 (2008) 275;
 (b) B. Freiermuth, C. Wentrup, J. Org. Chem. 56 (1991) 2286.
 [21] G. Kollenz, S. Ebner, Sci. Synth. 23 (2006) 271.