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Abstract: We have developed and optimized an
enantioselective Michael reaction of malononitrile
with b,b-disubstituted nitroalkenes. This reaction
was catalyzed by a cinchona alkaloid derived thio-
urea catalyst, producing products of high yields (up
to 98 %) and stereoselectivities (up to 93 % ee).
One of the adducts was used as an intermediate for
the synthesis of dihydropyrrole derivative bearing
a synthetically valuable quaternary chiral center.
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The catalytic asymmetric conjugate addition reaction
of nucleophiles to electron-deficient alkenes has gar-
nered attention due to its wide applicability in the
synthesis of biologically relevant compounds.[1] One
of the most extensively studied asymmetric conjugate
addition reactions is the Michael reaction of nitroole-
fins, which represents a convenient access to nitroal-
kanes that are versatile intermediates in organic syn-
thesis.[2] However, the studies reported to date have
primarily focused on more reactive b-monosubstitut-
ed[3] or a,b-disubstituted[4] nitroolefins. The catalytic
asymmetric Michael reaction of b,b-disubstituted ni-
troalkenes is less studied, primarily because steric hin-
drance poses a potential problem. Particularly note-
worthy is that the synthetically important quaternary
chiral centers could be generated through the Michael
reaction of b,b-disubstituted nitroolefins with nucleo-
philes. However, only a handful of studies have fo-
cused on this particular reaction, likely due to low ac-
tivity profiles.[5–6]

a-Substituted b-nitroacrylate has recently been
documented as a Michael reaction acceptor with a va-

riety of nucleophiles, with the corresponding adduct
readily transformable to b-amino acids that are an im-
portant motif for b-peptides, b-lactams, and other bio-
logically important compounds.[7] Enones,[6a] aldehy-
des,[6b] indoles,[6c–e] oximes,[6f] and thiols[6g] have been
documented as ideal nucleophiles for this asymmetric
Michael addition process. Despite those recent advan-
ces, there is still a need for the development of new
nucleophilic reagents that are capable of generating
structurally diverse quaternary chiral centers through
Michael reaction with a-substituted-b-nitroacrylate.

Malononitrile is an equivalent to a 1,3-dicarbonyl
compound, and the nitrile group is a versatile func-
tional group for many further transformations.[8] Or-
ganocatalytic asymmetric Michael reactions using ma-
lononitrile as the nucleophile are relatively less ex-
plored due to its high reactivity and incapability of
two-point binding with the catalyst. Most of the ef-
forts in this field have been focused on the employ-
ment of a,b-unsaturated carbonyls as electrophiles.[9]

There have been very few studies using nitroolefins as
Michael reaction acceptors. Takemoto[10a] and
Yuan,[10b] respectively, reported the bifunctional thio-
urea catalyzed Michael reactions of malononitrile to
nitroolefins with modest enantioselectivity. Arai[10e]

synthesized a neural, chiral bis(imidazolidine)-derived
NCN-type palladium pincer complex and was able to
show an improved stereoselectivity. Although those
impressive reports have been published about this re-
action, the introduction of new electrophiles for the
synthesis of structurally more diversified compounds
with high enantioselectivity remains a challenging
task. Taking advantage of the high reactivity of malo-
nonitrile, we envisaged that the use of the more steri-
cally congested b,b-disubstituted nitroolefins, such as
a-substituted-b-nitroacrylate (2), as Michael reaction
acceptors might improve the stereoselectivity of this
reaction.
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To begin our investigation, the reaction of (Z)-tert-
butyl 3-nitro-2-phenylacrylate (2 a) and malononitrile
(3) was chosen as an initial model. This asymmetric
Michael reaction was evaluated with 10 mol% of bi-
functional organocatalysts (1 a–g)[11] in toluene under
¢10 88C with 3 è molecular sieves as additive. The re-
sults are summarized in Table 1. The thiourea moiety
is essential for the high stereoselectivity of this reac-
tion; replacing the thiourea group with a squaramide
moiety resulted in a low enantioselectivity of the
adduct 4 a (Table 1, entry 3). The tertiary amine group

of the catalysts is also an important factor for the re-
action to proceed smoothly.[9] Organocatalysts having
both a thiourea moiety and tertiary amino group al-
lowed the corresponding adduct to have both a high
yield and high stereoselectivity (Table 1, entries 1, 4–
7). The best result was obtained when cinchonine-de-
rived thiourea 1 g was used, producing a 92 % yield
and 86% ee (Table 1, entry 7).

Having identified the best catalyst (1 g), the effects
of solvent and temperature were also investigated to
further improve the efficiency of this Michael reac-

Table 1. Reaction condition optimization.[a]

Entry Catalyst Solvent Time [h] Yield [%][b] ee [%][c, g]

1 1 a toluene 20 93 79 (S)
2 1 b toluene 20 64 31 (S)
3 1 c toluene 20 67 20 (R)
4 1 d toluene 20 79 85 (R)
5 1 e toluene 20 92 86 (R)
6 1 f toluene 20 95 83 (S)
7 1 g toluene 20 92 86 (S)
8[d] 1 g toluene 20 93 83 (S)
9 1 g EA 24 trace –
10 1 g CH2Cl2 12 89 87 (S)
11 1 g THF 18 trace –
12 1 g Et2O 18 44 81 (S)
13 1 g CH3CN 18 67 4 (S)
14 1 g C6H5Cl 13 98 90 (S)
15 1 g ClCH2CH2Cl 20 73 86 (S)
16 1 g CH3Cl 13 95 89 (S)
17 1 g m-xylene 20 95 88 (S)
18[e] 1 g C6H5Cl 27 96 91 (S)
19[f] 1 g C6H5Cl 32 98 92 (S)

[a] Unless noted reactions were performed with 2 a (0.1 mmol), 3 (0.2 mmol), 1 a–g (10 mol %), and 3 è MS (40 mg) in
0.5 mL of solvent at ¢10 88C.

[b] Isolated yield.
[c] Determined by HPLC analysis using a chiral stationary phase.
[d] Conducted without 3 è MS.
[e] Conducted at ¢25 88C.
[f] Conducted at ¢30 88C.
[g] The absolute configurations were determined by comparing the specific rotations of adducts with 4 g.
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tion. As shown in Table 1, the reaction media has
a substantial influence on the reactivity and stereose-
lectivity. The reaction proceeded sluggishly in tetrahy-
drofuran and ethyl acetate; only trace amounts of
product 4 a were detected. A less polar solvent like
chlorobenzene was shown to be the optimal solvent
for this transformation with the highest enantioselec-
tivity (Table 1, entry 14). The temperature also slight-
ly affected the stereoselectivity of this reaction. At
¢30 88C with a prolonged reaction time, the reaction
gave the product in 98% yield and 92% ee (Table 1,
entry19).

Using those optimized reaction conditions, we in-
vestigated the asymmetric Michael reactions of malo-
nonitrile with a variety of a-substituted-b-nitroacry-
lates (2 a-p), with the results presented in Table 2. In
general, the electronic nature of the substituents on
the phenyl ring of a-aryl-b-nitroacrylates (2 d–m) had
little effect on the reactivity and stereoselectivity of
the reaction; both the electron-donating and electron-
withdrawing groups were well tolerated and produced
the corresponding products in excellent yields and
enantioselectivities (Table 2, entries 4–13). It is note-
worthy that 2-naphthyl and 2-thienyl substrates react-
ed smoothly to afford the products in 98 and 84 %
yields, respectively, both in 92 % ee (Table 2, en-
tries 14 and 15). However, alkylated substrate 2 p re-
acted well with malononitrile (3), but the stereoselec-

tivity was low (Table 2, entry 16). The ester group on
the a-position of 2 affected the stereoselectivity sig-
nificantly as a result of steric hindrance. Use of iso-
propyl and benzyl a-phenyl-b-nitroacrylate (2 b and
2 c) yielded products with low stereoselectivities
(Table 2, entries 2 and 3).

The absolute configuration of 4 g was determined
to be S based on the single crystal X-ray structure
analysis (Figure 1).[12] A plausible transition state is
depicted in Figure 2, based on this analysis and previ-
ous reported results on cinchona alkaloid derived thi-
ourea catalysis. As we have described in the catalyst
screening part, the thiourea moiety and tertiary
amine group of the catalyst 1 g are important factors
for the high yields and stereoselectivities of this reac-
tion. The a-aryl-b-nitroacrylate (2) is activated
through double hydrogen bonding of the thiourea
moiety to the nitro group, while the deprotonated ma-
lononitrile becomes a pronucleophile through hydro-
gen bonding with the protonated tertiary amine of 1 g.
The Re face attack at the a-position of a-aryl-b-nitro-
acrylate (2) is favored to afford the corresponding
product in S configuration.

Finally, the synthetic utility of the asymmetric Mi-
chael reaction was investigated. The reaction was
scaled up to 4 mmol of 2a and 8 mmol of malononi-
trile (3). Product 4 a was isolated with an 86% yield
retaining high enantioselectivity (Scheme 1). The cor-

Table 2. Substrate scope of nitroacrylate.[a]

Entry R1 R2 Product Time [h] Yield [%][b] ee [%][c]

1 C6H5 t-butyl 4 a 32 98 92
2 C6H5 isopropyl 4 b 32 90 86
3 C6H5 benzyl 4 c 40 95 73
4 3-MeC6H4 t-butyl 4 d 32 85 90
5 3-MeOC6H4 t-butyl 4 e 40 98 91
6 3-FC6H4 t-butyl 4 f 45 87 89
7 3-ClC6H4 t-butyl 4 g 45 86 90
8 4-MeC6H4 t-butyl 4 h 48 92 92
9 4-MeOC6H4 t-butyl 4 i 33 95 93
10 4-FC6H4 t-butyl 4 j 32 78 89
11 4-ClC6H4 t-butyl 4 k 36 83 90
12 4-BrC6H4 t-butyl 4 l 48 89 90
13 4-CF3C6H4 t-butyl 4 m 45 70 87
14 2-naphthyl t-butyl 4 n 42 98 92
15 2-thienyl t-butyl 4 o 48 84 92
16 2-phenylethyl t-butyl 4 p 36 80 7

[a] Unless noted reactions were performed with 2 a–p (0.1 mmol), 3 (0.2 mmol), 1 g (10 mol %) and 3 è MS (40 mg) in
0.5 mL of chlorobenzene at ¢30 88C.

[b] Isolated yield.
[c] Determined by HPLC analysis using a chiral stationary phase.
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responding dihydropyrrole 5 was readily obtained in
an 80 % yield by the reduction of the nitro group with
reduced iron and concentrated hydrochloric acid in
THF/EtOH (1:1, v/v) under 90 88C. The dihydropyrrole
moiety is a functional core of various natural products
and pharmaceutical agents[13] and could be used as an
intermediate for the synthesis of various nitrogen-con-
taining biologically relevant heterocyclic com-
pounds.[14]

In conclusion, we have developed an enantioselec-
tive Michael reaction of malononitrile to a-substitut-
ed-b-nitroacrylates. This reaction was catalyzed effi-
ciently by a cinchonine-derived bifunctional thiourea
catalyst, and the corresponding adducts bearing qua-
ternary chiral centers were obtained in high yields
and enantioselectivities. More importantly, this strat-
egy could be used for the synthesis of dihydropyrrole
derivatives for biological and pharmaceutical applica-
tions.

Experimental Section

Typical Procedure for the Asymmetric Michael
Reaction

A sample bottle equipped with a magnetic stirring bar was
charged with 2 (0.1 mmol), 3 (13.2 mg, 0.2 mmol, 2.0 equiv),
chlorobenzene (0.5 mL) and 3 è molecular sieve (40 mg).
After the temperature had been cooled down to ¢30 88C, 1 g
(5.6 mg, 0.01 mmol, 0.1 equiv) was added. The reaction mix-
ture was stirred at ¢30 88C until 2 was consumed (determined
by TLC). The reaction mixture was directly purified by
silica gel column chromatography (petroleum ether/ethyl
acetate=15:1 v/v as eluent) to give the product 4.
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