Synthesis, Structure, and Reactivity of Palladacycles That Contain a Chiral Rhenium Fragment in the Backbone: New Cyclometalation and Catalyst Design Strategies

Florian K. Friedlein, Klemenz Kromm, Frank Hampel, and J. A. Gladysz ${ }^{*[a]}$

Abstract

The bromocyclopentadienyl complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}\right) \mathrm{Re}(\mathrm{CO})_{3}\right]$ is converted to racemic $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}\right) \mathrm{Re}\right.$ $\left.(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$ (1b) similarly to a published sequence for cyclopentadienyl analogues. Treatment of enantiopure $\quad(S)-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\mathrm{CH}_{3}\right)\right]$ with $n \mathrm{BuLi}$ and I_{2} gives (S) -$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{I}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)\right] \quad((S)-$ $\mathbf{6 c} ; 84 \%$), which is converted $\left(\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}, \mathrm{PPh}_{2} \mathrm{H}, t \mathrm{BuOK}\right)$ to $(S)-$ $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{I}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$ $((S) \mathbf{- 1 c})$. Reactions of $\mathbf{1 b}$ and $(S) \mathbf{- 1} \mathbf{c}$ with $\quad \operatorname{Pd}\left[\mathrm{P}(t \mathrm{Bu})_{3}\right]_{2} \quad$ yield $\quad\left[\left\{\left(\eta^{5}-\right.\right.\right.$ $\left.\overleftarrow{\mathrm{C}}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \operatorname{Pd}(\mu-$ $\left.\mathrm{X})\}_{2}\right](\mathbf{1 0} ; \mathrm{X}=\mathbf{b}, \mathrm{Br}$, rac/meso, 88%; \mathbf{c}, $\mathrm{I}, S, S, 22 \%$). Addition of PPh_{3} to 10b gives $\left[\left(\eta^{5}-{ }_{5} \mathrm{H}_{4}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mu\right.$ -

\author{

$\left.\left.\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)(\mathrm{Br})\right] \quad(\mathbf{1 1 b} ; 92 \%)$. Reaction of $(S)-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right] \quad((S)-2)$ and $\mathrm{Pd}-$ $(\mathrm{OAc})_{2}(1.5$ equiv; toluene, RT) affords the novel $\mathrm{Pd}_{3}(\mathrm{OAc})_{4}$-based palladacycle $\quad(S, S)-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mu-\right.$ $\left.\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mu-\mathrm{OAc})_{2} \mathrm{Pd}(\mu-\mathrm{OAc})_{2} \mathrm{Pd}(\mu-$ $\left.\left.\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)(\mathrm{ON}) \operatorname{Re}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]$ ((S,S)-13; 71-90\%). Addition of LiCl and LiBr yields $(S, S) \mathbf{- 1 0 a , b}(73 \%)$, and $\mathrm{Na}\left(\right.$ acac- $\left.\mathrm{F}_{6}\right)$ gives $(S)-\left[\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}-$ (acac-F ${ }_{6}$)] ((S)-16, $\left.72 \%\right)$. Reaction of
 | |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

Keywords: cyclometalation • Heck reaction • palladacycle \cdot palladium \cdot rhenium • Suzuki coupling

Introduction

Although palladacycles that feature a neutral heteroatomic donor atom and a palladium-carbon σ bond have been known and studied for over 40 years, ${ }^{[1]}$ there has been a marked surge of interest in the last decade. ${ }^{[2]}$ Such palladacycles are most commonly prepared by donor-atom-templated insertions into carbon-hydrogen or carbon-halogen bonds. However, many other synthetic routes have been developed.

[^0]
Abstract

(S, S)-10b and pyridine affords $(S)-\left[\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}-$ $\left.\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)(\mathrm{Br})\right]((S) \mathbf{- 1 7 b}, 72 \%)$; other Lewis bases yield similar adducts. Reaction of $(S)-\mathbf{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.5 equiv; benzene, $80^{\circ} \mathrm{C}$) gives the spiropalladacycle trans- $(S, S)-\left[\left\{\left(\eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right\}_{2} \mathrm{Pd}\right]$ (39\%). The crystal structures of $(S)-\mathbf{6 c}$, 11b, (S, S) - and $(R, R)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8},(S, S)$ $\mathbf{1 0 b}$, and (S)-17b aid the preceding assignments. Both 10b (racemic or S, S) and (S)-16 are excellent catalyst precursors for Suzuki and Heck couplings.

Much of this recent activity has been prompted by the increasing use of palladacycles as catalyst precursors, particularly for carbon-carbon bond-forming reactions. ${ }^{[2]}$ Certain complexes effect extraordinarily high turnover numbers ($>$ 10^{6}), typically in coupling reactions involving aryl halides. ${ }^{[2,3]}$ Chiral palladacycles have also been synthesized in enantiomerically pure form and employed in enantioselective transformations. ${ }^{[4,5]}$

We have had a long-standing interest in catalysts that contain "spectator" metal fragments: in other words, ligandbased metals that do not participate directly in the catalytic cycle but whose steric and/or electronic properties may play important roles. ${ }^{[6-10]}$ A variety of palladacycles that incorporate ferrocenyl or ruthenocenyl moieties have been reported. ${ }^{[4,11]}$ However, only a handful with other types of metallic units have been synthesized. ${ }^{[5,12,13]}$ Representative examples are mentioned in the Discussion section. Some of these bimetallic palladacycles have been applied in catalysis, ${ }^{[4,5]}$ whereas others have been synthesized with different objectives in mind.

We speculated that new types of palladacycles might be generally available from half-sandwich complexes I and II (Scheme 1). These easily accessed building blocks feature li-

Scheme 1. Synthetic planning: palladacycles that contain a transition metal in the backbone.
gands containing donor atoms $-\mathrm{CH}_{2}-\mathrm{D}:(-\mathrm{D}:=$ halide, alkoxide, thioalkoxide, amide, phosphide) capable of binding a palladium precursor. For I, coordination of palladium(0) would be followed by an oxidative addition involving the halocyclopentadienyl ligand, giving the target species III. For II, coordination of palladium(II) would be followed by carbon-hydrogen bond activation and HX elimination. ${ }^{[2,14]}$ Alternatively, alkylcyclopentadienyl complexes with M-D: linkages might be employed similarly, as illustrated for the pentamethylcyclopentadienyl adduct IV.
Importantly, such cyclopentadienyl complexes are easily rendered chiral. Given the broad utility of palladacycles in catalysis, there is strong interest in the development of new chirality motifs. ${ }^{[4,5,11,12]}$ Herein, we report a) the successful application of the strategies in Scheme 1 to produce racemic and enantiomerically pure "chiral-at-metal" rhenium complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{X}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right](\mathrm{X}=$ halide, 1; $\mathrm{X}=\mathrm{H}, \mathbf{2}$), which feature phosphorus donor atoms; b) the detailed structural characterization of the resulting palladacycles, including an unusual species with a tripalladium core ; and c) the use of these palladacycles as catalyst precursors for Suzuki-Miyaura and Mizoroki-Heck reactions. Some of this work has been communicated. ${ }^{[10]}$

Results

Synthesis of halocyclopentadienyl complexes: At the outset of this work, we expected the more reliable route to palladacycles III to be from halocyclopentadienyl complexes I. We therefore sought to adapt previous syntheses of the racemic and enantiomerically pure parent compound $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right] \quad(2)^{[7 \mathrm{a}]} \quad$ from $\quad\left[\left(\eta^{5}-\right.\right.$
$\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{CO})_{3}\right]$ to brominated and iodinated analogues $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{X}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right] \quad(\mathbf{1 b}, \mathbf{c}) .{ }^{[15]}$ The bromocyclopentadienyl complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}\right) \mathrm{Re}(\mathrm{CO})_{3}\right](\mathbf{3 b})$ is readily available. ${ }^{[16]}$ Also, rhenium cyclopentadienyl complexes are often easily converted to lithiocyclopentadienyl complexes, ${ }^{[7 \mathrm{a}, \mathrm{b}, 9 \mathrm{a}, 17]}$ which can be functionalized with electrophiles. Accordingly, two approaches to the requisite halocyclopentadienyl species were investigated.

Reaction of the bromocyclopentadienyl complex 3b and $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$(Scheme 2) gave the nitrosyl complex $\mathbf{4 b}^{+} \mathrm{BF}_{4}^{-}$ $(86 \%) .{ }^{[15]}$ Treatment of $\mathbf{4 b} \mathbf{b}^{+} \mathrm{BF}_{4}{ }^{-}$with PPh_{3} in refluxing

Scheme 2. Syntheses of racemic palladacycles via bromocyclopentadienyl rhenium complexes: a) $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-15^{\circ} \mathrm{C}$; b) $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; c) NaBH_{4}, THF, RT; d) 1.1 equiv $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}{ }^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$; e) 1.1 equiv $\mathrm{PPh}_{2} \mathrm{H},-60^{\circ} \mathrm{C}$ to RT; f) 1.2 equiv $t \mathrm{BuOK}$, THF, RT; g) 1.0 equiv $\mathrm{Pd}\left[\mathrm{P}(t \mathrm{Bu})_{3}\right]_{2}$, toluene, $\left.80^{\circ} \mathrm{C} ; \mathrm{h}\right) \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$.
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded the racemic chiral phosphine complex $\mathbf{5}{ }^{+}$ $\mathrm{BF}_{4}^{-}(68 \%)$. This substitution proceeded under much milder conditions than with the cyclopentadienyl analogue. ${ }^{[18]}$ Subsequent reduction with NaBH_{4} gave the methyl complex $\mathbf{6 b}$ (82%), which was stable for over a year in air, in contrast to the cyclopentadienyl analogue, which decomposes slowly over the course of several weeks.

Complex 6b was treated sequentially with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}^{-}$ and $\mathrm{PPh}_{2} \mathrm{H}$. Workup gave the phosphonium salt $7 \mathbf{b}^{+} \mathrm{BF}_{4}{ }^{-}$ (94%; Scheme 2). Deprotonation with $t \mathrm{BuOK}$ afforded the target complex 1b (95%) as orange prisms. This compound was also less air-sensitive than its cyclopentadienyl analogue

2, suggesting a general effect of the electron-withdrawing bromide substituent.
The new complexes in Scheme 2, and all the others that were isolated as part of this study, were characterized by IR and NMR spectrometry, mass spectrometry, and microanalysis, as summarized in the Experimental Section. Most features were routine, and have been analyzed in greater detail elsewhere. ${ }^{[19]}$ In the chiral complexes ($\mathbf{1 b}, \mathbf{5 b}^{+} \mathrm{BF}_{4}{ }^{-}, \mathbf{6 b}$, $7 \mathbf{b}^{+} \mathrm{BF}_{4}^{-}$) the two cyclopentadienyl CH groups α and β to the bromide substituents are diastereotopic. Accordingly, ${ }^{1} \mathrm{H}$ NMR spectra exhibited four broad singlets or multiplets. Similarly, ${ }^{13}$ C NMR spectra gave five cyclopentadienyl carbon signals.

A second synthetic approach to halocyclopentadienyl complexes is summarized in Scheme 3. The enantiopure

Scheme 3. Syntheses of enantiopure palladacycles via iodocyclopentadienyl rhenium complexes: a) 1.0 equiv $n \mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to RT ; b) 1.0 equiv $\mathrm{I}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$; c) 1.1 equiv $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; d) 1.8 equiv $\mathrm{PPh}_{2} \mathrm{H},-78^{\circ} \mathrm{C}$ to RT ; e) 1.5 equiv $t \mathrm{BuOK}$, toluene, RT; f) 1.0 equiv $\operatorname{Pd}\left[\mathrm{P}(t \mathrm{Bu})_{3}\right]_{2}$, toluene, RT.
methyl complex $\mathbf{8}$ and $n \mathrm{BuLi}$ react to give the enantiopure lithiocyclopentadienyl complex $9 .{ }^{[17 \mathrm{a}]}$ Thus, $(S)-\mathbf{8}$ was sequentially treated with $n \mathrm{BuLi}\left(-78^{\circ} \mathrm{C}\right.$, then RT) and $\mathrm{I}_{2}\left(-78^{\circ} \mathrm{C}\right)$. Workup gave the iodocyclopentadienyl complex (S)-6c (84%). ${ }^{[15]}$ This was treated with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$and $\mathrm{PPh}_{2} \mathrm{H}$ similarly to 6b, giving the phosphonium salt $(S)-\mathbf{7} \mathbf{c}^{+} \mathrm{PF}_{6}{ }^{-}$ (99%). Deprotonation to the target complex (S)-1c was effected in conjunction with the cyclopalladations described below.

Rd cubes of $(S)-6 \mathbf{c}$ were obtained from benzene/hexanes, and X-ray data were collected (see Table 1 and the Experi-
mental Section). Refinement gave the molecular structure depicted in Figure 1, confirming the rhenium configuration assigned above, which corresponds to retention from (S)-8. In accord with abundant precedent, all the other transformations in this paper are presumed to occur with retention at rhenium. ${ }^{[7,17 b]}$ Key bond lengths and angles in $(S)-6 \mathbf{c}$ are summarized in Figure 1. For most of the nonracemic complexes in this paper, both enantiomers were synthesized. ${ }^{[20]}$

Figure 1. Molecular structure of $(S) \mathbf{- 6 c}$. Key distances $\left[\AA\right.$] and angles [${ }^{\circ}$]: Re1-N1 1.755(4), Re1-P1 2.3348(11), Re1-C1 2.237(5), Re1-C11 2.252(5), C11-I1 2.084(4), N1-O1 1.209(5); P1-Re1-N1 92.68(13), N1-Re1-C1 94.6(2), C1-Re1-P1 92.42(17), Re1-C11-I1 123.9(2).

Palladacycles from halocyclopentadienyl complexes: Experiments were first conducted with the racemic bromocyclopentadienyl complex 1b and the commercially available palladium bis(phosphine) complex $\left[\operatorname{Pd}\left\{\mathrm{P}(t \mathrm{Bu})_{3}\right\}_{2}\right]$. The latter is known to undergo particularly facile phosphine displacement. ${ }^{[21]}$ Reaction in toluene at $80^{\circ} \mathrm{C}$ (Scheme 2, bottom) led to the target palladacycle $\mathbf{1 0 b}(88 \%)$. This material was thermally very stable (decomp $294^{\circ} \mathrm{C}$), but poorly soluble in organic solvents. The dimeric structure was evidenced by a molecular ion in the mass spectrum.

Complex 10b features two rhenium stereocenters. Hence, configurational diastereomers (rac/meso) are possible, as well as syn/anti isomers about the $\mathrm{Pd}_{2} \mathrm{Br}_{2}$ core. The ${ }^{31} \mathrm{P}$ NMR spectrum showed four pairs of PPh_{3} and $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ signals (all doublets) with area ratios of approximately 69:69:31:31. In view of the data below for enantiomerically pure $(S, S)-\mathbf{1 0 b}$, the two major signals must be rac and meso diastereomers of one syn/anti isomer, and the two minor signals analogous diastereomers of the other. Thus, there is negligible chiral recognition across the nearly planar $\mathrm{Pd}_{2} \mathrm{Br}_{2}$ core (see below). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 b}$ and most palladacycles below showed one cyclopentadienyl proton with a chemical shift distinctly upfield of the others ($\delta=$ $2.80-2.86$ versus $4.72-5.47 \mathrm{ppm}) .{ }^{[22]}$

Table 1. Summary of crystallographic data. ${ }^{[a]}$

Complex	$(S)-6 \mathrm{c}$	$S P-4-4 \mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(S, S)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}{ }^{[\mathrm{b}]}$	$\begin{aligned} & \text { anti- }(S, S)- \\ & \mathbf{1 0 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{CHCl}_{3} \end{aligned}$	$S P-4-2(S, S)-\mathbf{1 7 b} \cdot \mathrm{CHCl}_{3}$
molecular formula	$\mathrm{C}_{24} \mathrm{H}_{22}$ INOPRe	$\mathrm{C}_{56} \mathrm{H}_{50} \mathrm{BrCl}_{4} \mathrm{NOP}_{3} \mathrm{PdRe}$	$\mathrm{C}_{94} \mathrm{H}_{90} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{Pd}_{3} \mathrm{Re}_{2}$	$\mathrm{C}_{75} \mathrm{H}_{66} \mathrm{Br}_{2} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Re}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{Br}_{2} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{PdRe}$
molecular weight	684.5	1360.2	2223.16	2179.80	126.54
diffractometer	Kappa CCD	Nonius MACH3	Kappa CCD	Kappa CCD	Kappa CCD
crystal system	orthorhombic	triclinic	orthorhombic	orthorhombic	orthorhombic
space group	$P 2_{1} 2_{1} 2_{1}$	$P \overline{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$
$a[\AA]$	9.0140(2)	13.512(3)	14.6308(2)	14.0864(3)	9.6911(2)
$b[\AA]$	14.2060(3)	14.098(3)	23.2935(2)	29.3197(5)	15.6896(3)
$c[\AA]$	17.7350(2)	16.710(3)	25.5324(4)	9.7284(2)	28.0415(4)
$\alpha\left[{ }^{\circ}\right]$	90	69.57(3)	90	90	90
$\beta\left[{ }^{\circ}{ }^{\circ}\right.$	90	77.05(3)	90	90	90
$\gamma\left[{ }^{\circ}\right]$	90	74.73(3)	90	90	90
$V\left[\AA^{3}\right]$	2271.02(7)	2846.6(10)	8701.5(2)	4017.92(14)	4263.70(13)
Z	4	2	4	2	4
$\rho_{\text {calcd }}\left[\mathrm{Mg} \mathrm{m}^{-3}\right]$	2.002	1.587	1.697	1.802	1.755
$\mu\left[\mathrm{mm}^{-1}\right]$	6.796	3.452	3.513	4.828	4.755
$F(000)$	1296	1340	4384	2108	2192
crystal size [mm]	$0.30 \times 0.25 \times 0.20$	$0.20 \times 0.20 \times 0.20$	$0.10 \times 0.05 \times 0.05$	$0.30 \times 0.20 \times 0.20$	$0.30 \times 0.20 \times 0.10$
θ range [${ }^{\circ}$]	1.84 to 27.50	2.62 to 26.33	2.29 to 27.51	1.39 to 27.49	1.45 to 27.46
index ranges ($h ; k ; l)$	-11,11;-18,18;-22,23	-16,16;-17,0;-20,19	-18,18;-30,30;-33,33	-18,18; $-37,38 ;-12,12$	$-12,12 ;-20,20 ;-36,36$
reflections collected	5175	12037	19866/19799	9169	9599
independent reflections	5175	$\begin{aligned} & 11546[R(\mathrm{int})= \\ & 0.0810] \end{aligned}$	19866	9169	9599
reflections $[I>2 \sigma(I)]$	4919	8262	15145	7719	8324
$\begin{aligned} & \text { completeness to } \theta= \\ & 27.47^{\circ} \end{aligned}$	$99.9 \%\left(\theta=27.50^{\circ}\right)$	99.7 \% ($\theta=26.33^{\circ}$)	99.6\%	99.9 \%	99.0\%
max. and min. transmission	0.3435 and 0.2350	0.5452 and 0.5452	0.8439 and 0.7202	0.4452 and 0.3253	0.6622 and 0.3459
data/restraints/parameters	5175/0/262	11546/0/613	19866/19/1036	9169/0/451	9599/0/478
goodness-of-fit on F^{2}	1.058	1.059	0.981	1036	1087
final R indices	$R_{1}=0.0240$	$R_{1}=0.0468$	$R_{1}=0.0418$	$R_{1}=0.0475$	$R_{1}=0.0384$
[$I>2 \sigma(I)$]	$w R_{2}=0.0550$	$w R_{2}=0.1122$	$w R_{2}=0.0820$	$w R_{2}=0.1222$	$w R_{2}=0.0846$
R indices (all data)	$\begin{aligned} & R_{1}=0.0265 \\ & w R_{2}=0.0557 \end{aligned}$	$\begin{aligned} & R_{1}=0.0875 \\ & w R_{2}=0.1338 \end{aligned}$	$\begin{aligned} & R_{1}=0.0717 \\ & w R_{2}=0.0921 \end{aligned}$	$\begin{aligned} & R_{1}=0.0610 \\ & w R_{2}=0.1331 \end{aligned}$	$\begin{aligned} & R_{1}=0.0503 \\ & w R_{2}=0.0929 \end{aligned}$
absolute structure (Flack) parameter	0.013(6)	-	-0.010(4)	-0.030(9)	-0.009(6)
largest diff. peak/hole [$\mathrm{e} \AA^{-3}$]	0.700/-1.045	1.691/-1.363	0.963/-0.889	2.656/-1.056	0.981/-1.126
[a] Data common to all structures: temp. of collection $[\mathrm{K}]=173(2)$; wavelength $[\AA]=0.71073$; refinement method: full-matrix least-squares on F^{2}. [b] Key data for the enantiomer $(R, R)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ (Ref. [10]): a/b/c $[\AA]=14.63350(10) / 23.3173(2) / 25.5322(2) ; V\left[\AA^{3}\right]=8711.94(12) ; \rho_{\text {calcd }}\left[\mathrm{Mg} \mathrm{m}^{-3}\right]=$ 1.695; goodness-of-fit $=1.066$; final R indices $[I>2 \sigma(I)], R_{1}=0.0288$ and $w R_{2}=0.0693 ; R$ indices (all data), $R_{1}=0.0398$ and $w R_{2}=0.0865$.					

A more soluble and monomeric palladacycle was sought. The reaction of $\mathbf{1 0 b}$ and PPh_{3} (Scheme 2) afforded 11b (92%). Although two geometric isomers are possible at palladium, only one was detected in solution. As observed for other palladacycles described below, the ${ }^{13} \mathrm{C}$ NMR signal of the palladium-bound cyclopentadienyl carbon atom ($\delta=$ 143.1 ppm) was far downfield from the others ($\delta=92.6-$ $85.6 \mathrm{ppm})$. The crystal structure of a solvate was determined (Table 1 and the Experimental Section). Key bond lengths and angles are listed in Table 2. The bromide ligand is trans to the cyclopentadienyl ligand (Figure 2), which according to modern nomenclature conventions can be designated as an $S P-4-4$ isomer. ${ }^{[23]}$
An analogous cyclopalladation was attempted with the enantiopure iodocyclopentadienyl complex (S)-1 c. This compound was first generated in situ from (S)-7c $\mathbf{c}^{+} \mathrm{PF}_{6}{ }^{-}$and $t \mathrm{BuOK}$ (Scheme 3). Crystal structures of the corresponding
cyclopentadienyl complexes have rigorously established retention of configuration at rhenium. ${ }^{[7 a]}$ Subsequent addition of $\left[\operatorname{Pd}\left\{\mathrm{P}(t \mathrm{Bu})_{3}\right\}_{2}\right]$ gave the bridging iodide complex $(S, S)-\mathbf{1 0} \mathbf{c}$ in 22% overall yield (unoptimized) as a $21: 79$ mixture of syn/anti isomers. The spectroscopic properties were very similar to those of $\mathbf{1 0 b}$.

Palladacycles from cyclopentadienyl complexes: The phosphonium salt (S)-12 ${ }^{+} \mathrm{PF}_{6}{ }^{-}, t \mathrm{BuOK}$ (1.2 equiv), and $\mathrm{Pd}-$ $(\mathrm{OAc})_{2}$ (1.5 equiv) were combined in toluene (Scheme 4). The first two reactants are known to generate (S)-2, ${ }^{[7 \mathrm{a}, 9 \mathrm{9a]}}$ and the last has been used to synthesize many dimeric Pd_{2} (OAc) 2_{2}-based palladacycles from organic heteroatom donors. Workup gave a palladacyclic product in high yield, as indicated by characteristic NMR data as described above. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR spectra clearly showed the presence of acetate residues. The same complex was ob-

Table 2. Key interatomic distances $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for rhenium-containing palladacycles.

	$S P-4-4$ 11b	$(S, S) \mathbf{- 1 3} /(R, R) \mathbf{- 1 3}$	anti-($(, S$)-10b	$S P-4-2(S) \mathbf{- 1 7 b}$
Pd1-C11	2.010(7)	1.985(7)/1.983(5)	1.994(8)	1.989(6)
Pd1-P1	2.287(2)	2.2007(19)/2.1988(14)	2.224(2)	2.2338(18)
Re1-C1	$2.186(8)$	2.205(7)/2.200(5)	2.183(7)	2.206 (6)
Re1-C11	2.355(7)	2.371(7)/2.376(5)	2.355(7)	2.380(6)
C1-P1	1.806(8)	1.782(7)/1.788(1)	1.794(8)	1.797(6)
sum of all bond lengths in the ring	10.647	10.547/10.547	10.553	10.608
$\mathrm{Pd} 1-\mathrm{X} 1^{[a]}$	2.353(2)	2.130(5)/2.133(4)	2.5414(9)	2.5014(8)
Pd1-X2 ${ }^{[b]}$	2.4910(11)	2.129(5)/2.126(4)	2.5327(9)	2.124(6)
Pd1-Pd3	-	2.9434(8)/2.9452(5)	-	-
$\mathrm{Pd} 2-\mathrm{Pd} 3$	-	$2.9292(8) / 2.9330(5)$	-	-
Pd1-P1-C1	113.5(3)	112.9(3)/112.89(19)	113.1(3)	113.2(2)
P1-C1-Re1	110.5(4)	109.0(3)/108.8(3)	109.4(4)	109.5(3)
C1-Re1-C11	82.6(3)	81.8(2)/81.92(19)	82.2(3)	80.7(2)
Re1-C11-Pd1	128.9(3)	127.6(3)/127.5(2)	128.2(4)	129.1(3)
C11-Pd1-P1	84.0(2)	82.8(2)/83.14(15)	83.5(2)	83.65(19)
$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{X} 1^{\left[{ }^{\text {a] }}\right.}$	169.44(7)	174.21(14)/174.08(11)	174.19(6)	172.89(5)
P1-Pd1-X2 ${ }^{[b]}$	93.09(6)	94.88(14)/94.70(11)	98.13(6)	96.56(16)
X1-Pd1-X2 $2^{[\mathrm{a}, \mathrm{b}]}$	93.63(6)	89.13(18)/89.41(15)	87.16(3)	90.54(16)
C11-Pd1-X1 $1^{[]^{\text {a }}}$	88.5(2)	92.9(2)/92.51(18)	91.4(2)	83.65(19)
C11-Pd1-X2 $2^{[\mathrm{b}]}$	174.1(2)	175.6(2)/176.13(18)	174.7(2)	174.8(3)
Pd1-X1-Pd2	-	-	92.74(3)	-
Pd1-Pd3-Pd2	-	177.73(3)/177.46(2)	-	-
plane(Pd1a-Pd1-Br1)- plane(Pd1a-Pd1-Br1a)	-	-	3.3	-

[a] $\mathrm{X} 1=$ atom trans to phosphorus in the ring. [b] $\mathrm{X} 2=$ atom cis to phosphorus in the ring.

Figure 2. Molecular structure of $S P-4-4 \mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with solvate molecules omitted
tained from (S)-12+ BF_{4}^{-}, the weaker base KOAc, and $\mathrm{Pd}-$ $(\mathrm{OAc})_{2}$. However, microanalyses and certain mass spectral peaks were not consistent with an acetate-bridged dimer, and the integrals for the acetate ${ }^{1} \mathrm{H}$ NMR signals did not fit.

Crystals of a solvate were obtained, and the structure was solved analogously to the others above. Interestingly, a tripalladium complex, ((S, S) - $\mathbf{1 3}$ (Figure 3), had in fact been isolated (71-90\% yields). Key bond lengths and angles are summarized in Table 2, and the configurations correspond to retention at rhenium. The crystal structure of the enantiomer $(R, R)-\mathbf{1 3}$ was also determined. Since this constitutes an independent determination of all metrical parameters, data are also included in Table 2.
The tripalladium complex (S, S) - $\mathbf{1 3}$ features an S-shaped $\mathrm{Pd}_{3}(\mathrm{OAc})_{4}$ core (Figure 3, bottom view). Despite the very large number of molecules that have been palladated by Pd$(\mathrm{OAc})_{2}$, such moieties are extremely rare (see the Discussion section). ${ }^{[4,24,25]}$ The three palladium atoms are approximately linear $\left(\Varangle 177.46(2)^{\circ}\right)$, with distances $(2.9434(8)$ and $2.9292(8) \AA$) between those in four other crystallographically characterized examples (range: $3.0457(5) \AA^{[4 f]}$ to 2.864(1) $\left.\AA^{[24 a]}\right)$. As analyzed elsewhere, these are considered to be outside the bonding range..$^{[4,26]}$ An idealized C_{2} axis passes through the central palladium (perpendicular to the plane of the paper in the bottom view). In this perspective, the palladium-bound PPh_{2} (and cyclopentadienyl) units appear syn. ${ }^{[27]}$

We wondered whether other reactant stoichiometries would also give the tripalladium complex $(S, S)-\mathbf{1 3}$. Isolated $(S)-\mathbf{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were combined in a 1.0:0.5 ratio in $\mathrm{C}_{6} \mathrm{D}_{6}$ (Scheme 5). A new species was detected by NMR spectroscopy ($\approx 81 \%$ yield). The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals for one intact cyclopentadienyl ring, and one that had been cyclopalladated (1:1). The ${ }^{31} \mathrm{P}$ NMR spectrum contained two pairs of PPh_{3} and $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ signals. The $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ signals were coupled, with a value $(432 \mathrm{~Hz})$ characteristic of palladium(II) complexes with trans phosphine ligands. ${ }^{[28]}$ Hence, the structure shown in Scheme 5, SP-4-2 $(S, S)-14,{ }^{[23]}$ is proposed.

When the sample was kept at $80^{\circ} \mathrm{C}$, a second cyclopalladation occurred. The spiropalladacycle $(S, S)-\mathbf{1 5}$ was isolated in 39% yield. Although crystals could be obtained, they were not suitable for X-ray diffraction. Nonetheless, other spiropalladacycles are known, ${ }^{[2 c, 13]}$ and the structure was supported by many data. For example, the mass spectrum exhibited a strong signal for the molecular ion, and the microanalysis was in excellent agreement. The NMR spectra showed only one type of ligand on palladium, and character-

(S) $-12^{+} Z^{-}$
(S)-2
$\mathrm{Z}^{-}=\mathrm{BF}_{4}^{-}, \mathrm{PF}_{6}$
b) $\downarrow 71-90 \%$

$(S, S)-13$

d) $\downarrow 72 \%$

(S, S)-10a,b

(S)-16
$X=a, C l$
b, Br

Scheme 4. Syntheses of enantiopure palladacycles from cyclopentadienyl rhenium complexes: a) 1.2 equiv $t \mathrm{BuOK}\left(\mathrm{Z}^{-}=\mathrm{PF}_{6}^{-}\right)$or $\mathrm{KOAc}\left(\mathrm{Z}^{-}=\right.$ $\mathrm{BF}_{4}{ }^{-}$), toluene, RT ; b) 1.5 equiv $\mathrm{Pd}(\mathrm{OAc})_{2}$, toluene, RT ; c) LiX , THF, RT; d) $\mathrm{Na}\left(\right.$ acac- F_{6}), acetone, RT.
istic chemical shifts for a $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pd}\right) \mathrm{Re}$ linkage. The ${ }^{13} \mathrm{C}$ NMR signals of the ortho carbon atoms of the diastereotopic PPh groups gave virtual triplets, ${ }^{[29]}$ consistent with a trans stereochemistry. The ${ }^{31} \mathrm{P}$ NMR signals of the PPh_{2} and PPh_{3} groups were also triplets.

Finally, isolated $(S)-\mathbf{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were combined in a 1.0:1.0 ratio in $\mathrm{C}_{6} \mathrm{D}_{6}$. Analysis by ${ }^{31} \mathrm{P}$ NMR showed that (S) $\mathbf{2}$ had been consumed, with (S, S) - $\mathbf{1 3}$ constituting $\approx 61 \%$ of the phosphorus-containing products. Several other signals were detected, but no species was present in more than 6% yield. Hence, acetate-bridged palladacycles with 1:1 or 2:2 $\mathrm{Re} / \mathrm{Pd}$ ratios do not form readily.

Palladacycles from palladacycles: Since the central palladium in $(S, S)-\mathbf{1 3}$ might serve as a source of catalytically active $\mathrm{Pd}(\mathrm{OAc})_{2}$, we sought to remove it. In one approach, the hexafluoroacetylacetonate salt $\mathrm{Na}\left(\right.$ acac- F_{6}) was added (Scheme 4, bottom right). Workup gave the monopalladium complex (S)-16 (72\%). In another approach, the halide salts LiCl and LiBr were added (Scheme 4, bottom left). Workups gave the chloride- and bromide-bridged dipalladium
complexes (S, S)-10a (73%) and $(S, S) \mathbf{- 1 0 b}(73 \%)$ as $35: 65$ and 25:75 mixtures of syn/anti isomers. Crystals of $(S, S)-\mathbf{1 0 b}$ were obtained, and the structure was solved analogously to the others above (Figure 4). Only the anti isomer crystallized. The $\mathrm{Pd}_{2} \mathrm{Br}_{2}$ core was nearly planar, with the two PdBr_{2} planes defining an angle of 3.3°. A C_{2} symmetry axis passes through the midpoint.

Complex $(S, S)-\mathbf{1 0 b}$ reacted with a variety of neutral twoelectron donor ligands (L) to give monopalladium complexes, $(S)-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{L})(\mathrm{Br})\right]$. The product $(S) \mathbf{- 1 7 b}$, with $\mathrm{L}=$ pyridine (Scheme 6), crystallized in 72% yield.

An X-ray structure (Figure 5) showed the bromide ligand to be trans to the $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ ligand, corresponding to an $S P$ -$4-2$ isomer. ${ }^{[23]}$ In the related complex $S P-4-4$ 11b (Figure 2), the bromide ligand is trans to the cyclopentadienyl ligand, and cis to both phosphorus donor ligands. However, NMR spectra of $(S)-\mathbf{1 7 b}$ showed signals for a second geometric isomer ($\approx 67: 33$), as well as an equilibrium with (S, S) - $\mathbf{1 0 b}$ and pyridine.

The reaction of $(S, S) \mathbf{- 1 0 b}$ and excess $2,4,6$-trimethylpyridine gave an adduct analogous to (S) $\mathbf{- 1 7 b}$, as assayed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. A similar reaction of $(S, S)-\mathbf{1 0 b}$ and excess PPh_{3} showed complete conversion to $S P-4-4(S)-\mathbf{1 1 b}$, the racemate of which was synthesized according to Scheme 2. Finally, (S, S)-13 and PPh_{3} (10 equiv) were combined in an NMR tube. The ${ }^{31} \mathrm{P}$ NMR spectrum suggested the formation of a PPh_{3} analogue of $S P-4-2(S, S)-14$.

Catalysis: Suzuki-Miyaura couplings using racemic 10b as the catalyst precursor were screened under conditions similar to those developed by Buchwald ${ }^{[30]}$ and employed for previous papers in this series. ${ }^{[9]}$ However, because of the exceptional activities, much lower catalyst loadings could be used. As summarized in Table 3, entries 1 and 3-5, $\mathrm{PhB}(\mathrm{OH})_{2}$ (1.5 equiv), the boron-activating base $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv), an aryl bromide (1.0 equiv), an internal standard, and $\mathbf{1 0 b}(0.01 \mathrm{~mol} \%)$ were combined in toluene. Couplings proceeded smoothly over the course of $2-55 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$, giving the expected biaryls in $86-91 \%$ yields as analyzed by GC.

Two additional couplings were conducted with $0.001 \mathrm{~mol} \%$ catalyst loadings (Table 3, entries 2, 6). These also proceeded to completion, although longer reaction times were required. The turnover numbers were very close to 100000 , and the yields were slightly higher ($96-99 \%$).

Next, $(S, S) \mathbf{- 1 0 b}$ was evaluated as a catalyst precursor for Mizoroki-Heck couplings of methyl acrylate and 4-bromoacetophenone, 4-iodotoluene, and iodobenzene. Reactions were carried out using $0.36-0.59 \mathrm{mmol} \%$ loadings in DMF at $140^{\circ} \mathrm{C}$ in the presence of $\mathrm{NaOAc},(n \mathrm{Bu})_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$, and an internal standard, as summarized in the Supporting Information and our previous communication. ${ }^{[10]}$ After 48 h , consumption of the aryl halides was $>92 \%$, and the corresponding methyl cinnamate derivatives had formed in 64$76 \%$ yields. The turnover numbers were $64100-91400$. Reactions with (S)-16 gave comparable data.

Figure 3. Molecular structure of $(S, S) \cdot \mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ with solvate molecules and PPh_{2} and $o, m, p-\mathrm{PPh}_{3}$ carbon atoms omitted.

(S)-2
trans-(S, S)-15

Scheme 5. Other cyclopalladation modes of (S)-2.

Figure 4. Molecular structure of anti- $(S, S) \mathbf{- 1 0 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{CHCl}_{3}$ with solvate molecules and $o, m, p-\mathrm{PPh}_{2}$ and $o, m, p-\mathrm{PPh}_{3}$ carbon atoms omitted.

Scheme 6. Synthesis of a monopalladacyclic pyridine complex.

Figure 5. Molecular structure of $S P-4-2 \mathbf{1 7 b} \cdot \mathrm{CHCl}_{3}$ with solvate molecules and $o, m, p-\mathrm{PPh}_{2}$ carbon atoms for one phenyl omitted.

However, TEM measurements showed the formation of colloidal palladium nanoparticles. A representative result is shown in Figure 6. Similar phenomena have been noted with other "high turnover" Mizoroki-Heck catalysts, ${ }^{[2,3,31,32]}$ especially in recipes that involve $(n \mathrm{Bu})_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$. ${ }^{[312]}$ Complex $(S, S)-\mathbf{1 0 b}$ was also evaluated in Mizoroki-Heck reactions that operate at lower temperatures and yield chiral products, ${ }^{[33]}$ but racemates were always obtained, as detailed elsewhere. ${ }^{[34]}$ Together, these observations suggest that the active catalyst is either nonmolecular or a low-coordinate non-palladacyclic palladium (0) species. ${ }^{[2,31,32]}$

Table 3. Suzuki-Miyaura reactions using the racemic palladacycle catalyst precursor 10b. ${ }^{[a]}$

Entry	R	$[\mathrm{ArBr}] /[\mathrm{Pd}]^{[b]}$	$t[\mathrm{~h}]$	Conversion ${ }^{[\text {c] }}$ [\%]	Yield ${ }^{[c]}$ [\%]	TON ${ }^{[b, \mathrm{~d}]}$
1	H	10000	55	93	91	9100
$2^{[\mathrm{e}]}$	H	100000	96	98	96	96350
3	CH_{3}	10000	32	93	91	9100
4	$\mathrm{CH}_{3} \mathrm{O}$	10000	32	88	86	8600
5	$\mathrm{CH}_{3} \mathrm{CO}$	10000	2	96	89	8900
$6^{[e]}$	$\mathrm{CH}_{3} \mathrm{O}$	100000	76	99	99	99780

[a] Conditions: $\mathrm{ArBr}(1.000 \mathrm{mmol}), \mathrm{PhB}(\mathrm{OH})_{2}(1.50 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(2.00 \mathrm{mmol})$, toluene $(4.00 \mathrm{~mL})$. [b] Normalized for the number of palladium atoms in $\mathbf{1 0 b}$. [c] Conversion of the aryl hydride and yield of the biaryl product were determined by GC using tridecane as internal standard. [d] Based on the product yield. [e] Conducted on a 10.00 mmol scale (ArBr). Catalyst was added as a 0.050 mm solution in toluene.
metal fragments is striking. Current examples are restricted to cobalt (VI, VII) ${ }^{[5,12]}$ and chromium (VIII) (Scheme 7, top). ${ }^{[13]}$ In contrast to our complexes, in which the rhenium is part of the palladacycle backbone, the metals in VI-VIII can be viewed as exocyclic substituents. This further reflects the tremendous architectural diversity that can be realized with metal-containing building

Figure 6. Transmission electron microscopy (TEM) image taken from the Mizoroki-Heck reaction of methyl acrylate and 4-iodotoluene using (S)16 (see Supporting Information).

Discussion

Syntheses of palladacycles: To our knowledge, the new rhe-nium-containing palladacycles described in Schemes 2-6 are without precedent. Furthermore, there is every reason to assume that these syntheses can be extended to a variety of other metals, donor groups, and ancillary ligands as generalized in Scheme 1. Building blocks of the IV type are perhaps even more accessible than I and II. For example, halides of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Fe}(\mathrm{L})_{2}(\mathrm{X})\right]$ or $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Mo}(\mathrm{L})_{3}(\mathrm{X})\right]$, or related thiolates, are easily prepared. Investigations involving such compounds will be described in future publications.

As noted above, a large number ferrocene-containing palladacycles have been reported, ${ }^{[4,11]}$ many of which are chiral and have been isolated in enantiomerically pure form. However, the scarcity of palladacycles that contain other types of

VI
$\mathrm{X}=\mathrm{Cl}, \mathrm{OCOCF}_{3}, \mathrm{OCOCH}_{3}$, acac- F_{6}, acac- H_{6}

VII
$\mathrm{X}=\mathrm{Cl}, \mathrm{OCOCF}_{3}$
$X / X^{\prime}=\mathrm{Cl} / \mathrm{Cl}, \mathrm{Cl} / \mathrm{pyr}$, and related compounds

IX

Scheme 7. Previously synthesized palladacycles that contain nonferrocenyl transition metal fragments (top) or a $\mathrm{Pd}_{3}(\mathrm{OAc})_{4}$ core (bottom).
blocks. A few palladacycles in which ferrocenes are part of the backbone have also been reported. ${ }^{[4 f, 11 f]}$

Rhenium-containing palladacycles are equally available via insertions into carbon-halogen bonds (Schemes 2, 3) and carbon-hydrogen bonds (Schemes 4, 5). However, formation of the tripalladium tetraacetate complex $(S, S)-\mathbf{1 3}$ was very unexpected. To our knowledge, only three other molecules with such $\mathrm{Pd}_{3}(\mathrm{OAc})_{4}$ cores have been characterized crystallographically. ${ }^{[4 f, 24]}$ One (IX; Scheme 7, bottom) was obtained recently from an analogous cyclopalladation. However, there is good support from spectroscopic data for several other such complexes. ${ }^{[25]}$

The bridging acetate ligands fold the palladium square planes essentially on top of each other (Figure 3). In contrast, the $\mathrm{Pd}_{2} \mathrm{Br}_{2}$ core in $(S, S) \mathbf{- 1 0 b}$ deviates only slightly from planarity (Figure 4), thereby extending the square planes laterally. The folded $\mathrm{Pd}_{2}(\mathrm{OAc})_{2}$ linkages may account
for the absence of any detectable acetate-bridged dipalladium complex, as steric interactions between rhenium ligands would be difficult to avoid. Interestingly, the bond lengths and angles associated with the $\mathrm{Re}-\mathrm{CH}_{2}-\mathrm{P}-\mathrm{Pd}-\mathrm{C}$ linkages in the crystallographically characterized palladacycles (Table 2) are nearly identical, within experimental error.

Importantly, two other diastereomers of (S, S) - $\mathbf{1 3}$ with identical $\mathrm{Pd}_{3}(\mathrm{OAc})_{4}$ conformations are possible. These can be termed anti (XI) and syn' (XII) (Figure 7). In our opinion, there is no obvious reason why the diastereomer that crystallizes (\mathbf{X}) should be preferred thermodynamically. However, only a single set of NMR signals is observed, including the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances of the acetate ligands, which should be at least somewhat sensitive to the relative orientations of palladacycles on the termini. Furthermore,

Figure 7. Possible stereoisomers of (S, S)-13.
the acetate ligands trans to the cyclopentadienyl and $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ ligands exhibit distinct ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals, one of which is coupled to phosphorus. This argues against a rapidly equilibrating mixture of diastereomers.

The chloride-, bromide-, and iodide-bridged palladacycles $(S, S) \mathbf{- 1 0 a}, \mathbf{b}, \mathbf{c}$ exhibit much lower syn/anti selectivities. Interestingly, the equilibrium ratios become progressively more biased (35:65, 25:75, 21:79). Although it is not possible to rigorously assign the major isomers, the crystal structure of $(S, S)-\mathbf{1 0 b}$ suggests that they are anti. This crystal structure also shows an absence of steric interactions across the $\mathrm{Pd}_{2} \mathrm{Br}_{2}$ core, and space-filling models suggest the same for the syn isomer. Thus, electronic effects may play a role in the equilibrium ratios.

Catalysis: Like many other palladacycles, those described above are effective catalyst precursors for the SuzukiMiyaura and Mizoroki-Heck couplings of aryl halides. High turnover numbers can be achieved, although still higher values have been established for other palladacycles. ${ }^{[2,3]}$

However, there are several indications that our palladacycles are not the active catalysts. These include the generation of palladium nanoparticles, as evidenced by TEM (Figure 6), and the formation of racemates in coupling reactions that lead to chiral products. ${ }^{[34]}$ Given the large number of detailed investigations that have established catalysis by nanoparticles or low-coordinate palladium(0) species for related complexes, ${ }^{[31,32]}$ parallel studies were not undertaken.

Nonetheless, there remain several opportunities for future research. For example, according to some models for the formation of low-coordinate palladium(0) species, ${ }^{[2,35]}$ the spiropalladacycle $(S, S)-\mathbf{1 5}$ would lead to an active catalyst $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{X}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right\}_{n} \mathrm{Pd}\right](n=1$ or 2$)$. In other words, there would be a high probability of chiral supporting ligands, enhancing the prospects for enantioselective catalysis. Furthermore, there are many other types of reactions that are catalyzed by palladacycles, ${ }^{[2]}$ and for which current evidence suggests that the gross structures remain intact. Several of these involve the formation of new stereocenters. ${ }^{[4,5,36]}$

Also, the extrusion of metal from our palladacycles might prove exploitable. For example, the second metal in III or \mathbf{V} could be engineered to have a labile set of ligands. This might allow the formation under suitable conditions of bimetallic colloidal nanoparticles or related nonmolecular species. Such assemblies can be challenging to synthesize, but often exhibit unique and useful properties. ${ }^{[37]}$

Conclusion

We have established two simple and high-yield routes to a novel new class of palladacycles that contain half-sandwich metal cyclopentadienyl moieties in the backbone (Scheme 1). One involves the reaction of a palladium(0) species with a halocyclopentadienyl complex, and the other the reaction of a palladium(II) species with a cyclopentadienyl complex. Suitable starting materials for the latter route are ubiquitous, and a variety of related syntheses are readily envisioned. Hence, this new methodology should allow the facile and rapid preparation of a very large number of such palladacycles.

Fortuitously, one of our palladacycles is isolated with a rarely occurring $\mathrm{Pd}_{3}(\mathrm{OAc})_{4}$ core, probably for steric reasons. Although all of these complexes are effective catalyst precursors for common cross-coupling reactions of aryl halides, the available data suggest that either palladium nanoparti-
cles or achiral low-coordinate palladium(0) species are involved. Nonetheless, many other attractive applications for these compounds are easily conceived, and are currently under investigation.

Experimental Section

General: All experiments were carried out under nitrogen unless noted otherwise. NMR spectra were recorded on standard $300-400 \mathrm{MHz}$ FT spectrometers, referenced to the residual solvent signal ($\delta:{ }^{1} \mathrm{H}: \mathrm{CHCl}_{3}$, 7.27; $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}, 7.15 ;\left[\mathrm{D}_{5}\right]$ acetone, $2.05 ;{ }^{13} \mathrm{C}: \mathrm{CDCl}_{3}, 77.0 ; \mathrm{C}_{6} \mathrm{D}_{6}, 128.0$; [D_{6}]acetone, 29.9) or $\mathrm{H}_{3} \mathrm{PO}_{4}\left(\delta:{ }^{31} \mathrm{P}\right.$, internal capillary, $85 \%, 0.0$), and recorded at $25-28^{\circ} \mathrm{C}$. IR spectra were recorded on an ASI React IR ${ }^{\circledR}-1000$ spectrometer. Optical rotations were measured as described previously ${ }^{[38]}$ using a Perkin-Elmer model 341 polarimeter. Mass spectra were obtained with a Micromass Zabspec instrument. Gas chromatography was conducted on a ThermoQuest Trace GC 2000 instrument (OPTIMA-5 $0.25 \mu \mathrm{~m}$ capillary column, $25 \mathrm{~m} \times 0.32 \mathrm{~mm}$). DSC and TGA data were recorded with a Mettler-Toledo DSC821 instrument and treated by standard methods. ${ }^{[39]}$ Elemental analyses were determined with a Carlo Erba EA1110 CHN instrument. TEM data were recorded on a Philips CM 300 UT microscope.
Chemicals were treated as follows: ether, THF, hexanes, pentane, and toluene, distilled from Na /benzophenone; DMF, benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and CHCl_{3}, distilled from CaH_{2}; ethyl acetate and acetone, simple distillation; $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CDCl}_{3}$, and $\left[\mathrm{D}_{6}\right]$ acetone (Deutero GmbH), stored over molecular sieves; $n \mathrm{BuLi}$ (2.5 m in hexanes; Acros), standardized before use; ${ }^{[40]} \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}^{-}$($>98 \%$; Fluka) and $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$(95.0%; Fluka), stored under argon at $-32^{\circ} \mathrm{C} ;{ }^{[44]}$ pyridine (99.5%; Grüssing), dried over molecular sieves. Other compounds were used as received from common commercial suppliers (Supporting Information).
$\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{4} \mathbf{B r}\right) \operatorname{Re}(\mathbf{N O})(\mathbf{C O})_{2}\right]^{+} \mathbf{B F}_{4}{ }^{-} \quad\left(\mathbf{4 b}^{+} \mathbf{B F}_{4}{ }^{-}\right):$A Schlenk flask was charged with $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}\right) \mathrm{Re}(\mathrm{CO})_{3}\right]\left(\mathbf{3 b} ;{ }^{[16 \mathrm{a}]} 3.461 \mathrm{~g}, 8.358 \mathrm{mmol}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, and cooled to $-15^{\circ} \mathrm{C}$. Then $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}(1.562 \mathrm{~g}$, 13.373 mmol) was added with stirring. The heterogeneous mixture turned yellow-brown. After 2 h , the cold bath was removed. After 12 h , the solvent was removed by oil-pump vacuum. The residue was extracted with acetone $(\approx 100 \mathrm{~mL})$. The extract was filtered through a plug of Celite ($3 \mathrm{~cm} \times 5 \mathrm{~cm}$). The solvent was removed by rotary evaporation. The residue was dried ($10^{-3} \mathrm{mbar}, 2 \mathrm{~h}$) and washed with THF until the supernatant was colorless $(\approx 2 \times 10 \mathrm{~mL})$. The yellow powder was collected by filtration and dried ($10^{-3} \mathrm{mbar}, 2 \mathrm{~h}$) to give $\mathbf{4 b} \mathrm{BF}_{4}^{-}(3.608 \mathrm{~g}, 7.169 \mathrm{mmol}$, 86%), decomp $238-240^{\circ} \mathrm{C}$ (capillary). Elemental analysis calcd (\%) for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BBrF}_{4} \mathrm{NO}_{3} \operatorname{Re}$ (503.0): C 16.71, H 0.80, N 2.78 ; found: C 16.48, H $0.94, \mathrm{~N} 2.66 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone $): \delta=\mathrm{C}_{5} \mathrm{H}_{4}$ at $6.96\left(\mathrm{t},{ }^{2} J-\right.$ $(\mathrm{H}, \mathrm{H})=2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61 \mathrm{ppm}\left(\mathrm{t},{ }^{2} J(\mathrm{H}, \mathrm{H})=2 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=182.1(\mathrm{~s}, \mathrm{CO}), \mathrm{C}_{5} \mathrm{H}_{4}$ at 97.2 (s), 96.5 (s), $96.0 \mathrm{ppm}(\mathrm{s})$; IR (powder film): $\tilde{v}=2104$ (s, CO), 2042 (s, CO), 1799 (s, NO), $1034 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{BF})$; MS : ${ }^{[42]} 416$ (100) [4b] ${ }^{+}$
$\left.\left[\left(\boldsymbol{\eta}^{\mathbf{5}}-\mathbf{C}_{\mathbf{5}} \mathbf{H}_{\mathbf{4}} \mathbf{B r}\right) \mathbf{R e}(\mathbf{N O})\left(\mathbf{P P h}_{\mathbf{3}}\right)(\mathbf{C O})\right]^{+} \mathbf{B F}_{\mathbf{4}}{ }^{-} \quad \mathbf{(5 b}^{+} \mathbf{B F}_{\mathbf{4}}{ }^{-}\right)$: A Schlenk flask was charged with $\mathbf{4 b}{ }^{+} \mathrm{BF}_{4}^{-}(3.500 \mathrm{~g}, 6.958 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, and $\mathrm{PPh}_{3}(5.470 \mathrm{~g}, 20.88 \mathrm{mmol})$, and fitted with a condenser. The sample was aspirated with N_{2} and refluxed. After 3 h , the mixture was cooled to $0^{\circ} \mathrm{C}$ and added to THF (200 mL) with stirring. After 12 h , the precipitate was collected by filtration, washed with THF $(3 \times 3 \mathrm{~mL})$ and ether ($2 \times$ 30 mL), and dried ($10^{-3} \mathrm{mbar}, 1 \mathrm{~h}$) to give $\mathbf{5}^{+} \mathrm{BF}_{4}^{-}$as a yellow powder ($3.694 \mathrm{~g}, 5.010 \mathrm{mmol}, 72 \%$). Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether gave $\mathbf{5 b}{ }^{+}$ $\mathrm{BF}_{4}{ }^{-}(3.489 \mathrm{~g}, 4.732 \mathrm{mmol}, 68 \%)$ as olive-green needles, decomp $202^{\circ} \mathrm{C}$ (capillary). Elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BBrF}_{4} \mathrm{NO}_{2} \mathrm{PRe}$ (737.3): C 39.10, H 2.60, N 1.90; found: C 39.22, H 2.67, N $1.82 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.56\left(\mathrm{~m}, 9 \mathrm{H}\right.$ of $\left.3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.35-7.31(\mathrm{~m}, 6 \mathrm{H}$ of $\left.3 \mathrm{C}_{6} \mathrm{H}_{5}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $6.17($ brs, 1 H$), 6.14($ brs, 1 H$), 5.83($ brs, 1 H$), 5.59 \mathrm{ppm}$ (brs, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.6(\mathrm{~s}, \mathrm{CO}), \mathrm{PPh}_{3}$ at $133.0\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o\right), 132.6\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}, p\right), 129.9\left(\mathrm{~d},{ }^{1} J-\right.$ $(\mathrm{C}, \mathrm{P})=61 \mathrm{~Hz}, i), 129.8\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, m\right) ; \mathrm{C}_{5} \mathrm{H}_{4}$ at $96.5(\mathrm{~s}), 96.1$ (s), 95.4 (s), 94.4 (s), $91.5 \mathrm{ppm}(\mathrm{s}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
$11.5 \mathrm{ppm}\left(\mathrm{s}, \mathrm{PPh}_{3}\right)$; IR (powder film): $\tilde{v}=2019(\mathrm{~s}, \mathrm{CO}), 1760(\mathrm{~s}, \mathrm{NO})$, $1054 \mathrm{~cm}^{-1}$ (s, BF); MS ${ }^{[42]} 650$ (100) [5b] ${ }^{+}$, 542 (6) $[\mathbf{5 b}-\mathrm{Br}-\mathrm{CO}]^{+}$
$\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{4} \mathbf{B r}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{C H}_{3}\right)\right] \mathbf{(6 b)}:$ A Schlenk flask was charged with $\mathbf{5 b} \mathbf{b}^{+} \mathrm{BF}_{4}^{-}(0.5000 \mathrm{~g}, 0.6781 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$. Then NaBH_{4} $(0.0769 \mathrm{~g}, 2.034 \mathrm{mmol})$ was added with stirring. After 2 h , the red suspension was filtered through a plug of Celite. The solvent was removed by oil-pump vacuum at room temperature. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\approx 10 \mathrm{~mL})$. The extract was filtered through $\mathrm{SiO}_{2}(4 \times 2 \mathrm{~cm})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ rinses. The solvent was removed from the filtrate. The orange residue was dissolved in benzene ($\approx 10 \mathrm{~mL}$) and a layer of hexanes was added gently. After two days, the supernatant was decanted and the red prisms dried $\left(10^{-3} \mathrm{mbar}, 2 \mathrm{~h}\right)$ to give $\mathbf{6 b} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(0.3762 \mathrm{~g}, 0.5560 \mathrm{mmol}$, 82%), decomp $136-138^{\circ} \mathrm{C}$ (capillary). Elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrNOPRe} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ (676.6): C 47.93, H 3.72, N 2.07; found: C 47.82, H 3.81, N $2.00 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.35(\mathrm{~m}$, $\left.3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.15\left(\mathrm{~s}, 0.5 \mathrm{C}_{6} \mathrm{H}_{6}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.26(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~m}$, $1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}) ; 1.01 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{P})=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=\mathrm{PPh}_{3}$ at $135.6\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=52 \mathrm{~Hz}, i\right), 133.6(\mathrm{~d}$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o\right), 130.1\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}, p\right), 128.3\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=\right.$ $10 \mathrm{~Hz}, m)$; $128.3\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{6}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $93.7(\mathrm{~s}), 89.8(\mathrm{~s}), 88.0\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $3 \mathrm{~Hz}), 87.2\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}\right), 87.1(\mathrm{~s}) ;-28.7 \mathrm{ppm}\left(\mathrm{d},{ }^{2} J(\mathrm{C}, \mathrm{P})=7 \mathrm{~Hz}\right.$, CH_{3}) ; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.4 \mathrm{ppm}\left(\mathrm{s}, \mathrm{PPh}_{3}\right)$; IR (powder film): $\tilde{v}=1617 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{NO}) ;$ MS ${ }^{[42]} 637$ (100) [6b] ${ }^{+}$, 622 (10) $\left[\mathbf{6 b}-\mathrm{CH}_{3}\right]^{+}, 557(5)[\mathbf{6 b}-\mathrm{Br}]^{+}, 542(12)\left[\mathbf{6 b}-\mathrm{Br}-\mathrm{CH}_{3}\right]^{+}$.
$(\boldsymbol{S})-\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{4} \mathbf{I}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{C H}_{3}\right)\right] \quad((\boldsymbol{S})-6 \mathbf{c}):$ A Schlenk flask was charged with $(S)-\mathbf{8}(0.7313 \mathrm{~g}, 1.309 \mathrm{mmol})^{[43]}$ and freshly distilled THF $(20 \mathrm{~mL})$, and cooled to $-78^{\circ} \mathrm{C}$. Then $n \mathrm{BuLi}(2.6 \mathrm{M}$ in hexanes; 0.504 mL , 1.309 mmol) was added by syringe with stirring. The cold bath was removed. After 1 h , the deep red solution was cooled to $-78^{\circ} \mathrm{C}$ and solid I_{2} $(0.3325 \mathrm{~g}, 1.309 \mathrm{mmol})$ was added. After 45 min , the cold bath was removed. After a further 1 h , the solvent was removed by oil-pump vacuum. Toluene (4 mL) was added. ${ }^{[44]}$ The suspension was filtered through a plug of $\mathrm{SiO}_{2}(2.5 \mathrm{~cm} \times 6 \mathrm{~cm})$ with toluene rinses under N_{2}. The orange filtrate was concentrated, and $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $(8 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v})$ was added. The solvents were removed by oil-pump vacuum $\left(5 \times 10^{-3} \mathrm{mbar}\right.$, 1 day) to give (S)-6c ($0.757 \mathrm{~g}, 1.106 \mathrm{mmol}, 84 \%$) as an orange microcrystalline powder, decomp $145^{\circ} \mathrm{C}$ (capillary, gradual darkening without melting). Elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{22}$ INOPRe (684.5): C 42.11, H 3.23, N 2.04; found: C 42.22, H 3.28, N $1.96 ;[\alpha]_{21}^{589}=+27^{\circ} \pm 3^{\circ}$ $\left(c=1.23 \mathrm{mg} \mathrm{mL}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.54-7.50$ $\left(\mathrm{m}, 6 \mathrm{H}\right.$ of $\left.3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.03-6.94\left(\mathrm{~m}, 9 \mathrm{H}\right.$ of $\left.3 \mathrm{C}_{6} \mathrm{H}_{5}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $4.93(\mathrm{~m}, 1 \mathrm{H})$, $4.39(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}) ; 1.44 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{P})=6 \mathrm{~Hz}\right.$, $\left.\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}_{1}^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=\mathrm{PPh}_{3}$ at $136.5\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})\right.$ $=51 \mathrm{~Hz}, i), 134.0\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o\right), 130.1\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}\right.$, p); ${ }^{[45]} \mathrm{C}_{5} \mathrm{H}_{4}$ at 97.5 (s), 94.8 (s), 92.4 (s), 89.6 (s), $47.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $4 \mathrm{~Hz}) ;-28.7 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J(\mathrm{C}, \mathrm{P})=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=25.7 \mathrm{ppm}\left(\mathrm{s}, \mathrm{PPh}_{3}\right)$; IR (powder film): $\tilde{v}=1625 \mathrm{~cm}^{-1}(\mathrm{~s}$, NO); MS: $:^{[42]} 685$ (100) $[\mathbf{6 c}]^{+}, 557$ (6) $[\mathbf{6 c}-\mathrm{I}]^{+}, 543$ (20) $\left[\mathbf{6 c}-\mathrm{I}-\mathrm{CH}_{3}\right]^{+}$.
$\left.\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{4} \mathbf{B r}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{C H}_{2} \mathbf{P P h}_{2} \mathbf{H}\right)\right]^{+} \mathbf{B F}_{4}^{-}{ }^{\left(7 \mathbf{b}^{+}\right.} \mathbf{B F}_{4}{ }^{-}\right)$: A Schlenk flask was charged with $\mathbf{6 b} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(0.150 \mathrm{~g}, 0.222 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$, and was cooled to $-60^{\circ} \mathrm{C}$. Then $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}^{-}(0.0805 \mathrm{~g}$, $0.244 \mathrm{mmol})$ was added with stirring. After $30 \mathrm{~min}, \mathrm{PPh}_{2} \mathrm{H}(0.0454 \mathrm{~g}$, $0.244 \mathrm{mmol})^{[46]}$ was added to the light yellow solution. After 10 min , the cold bath was removed. The solution turned orange. After a further 1.5 h , the sample was concentrated (to $\approx 3 \mathrm{~mL}$) by oil-pump vacuum. The solution was layered with hexanes (20 mL). After 24 h , the orange-red prisms were collected by filtration, washed with pentane $(2 \times 3 \mathrm{~mL})$, and dried $\left(10^{-3} \mathrm{mbar}, 15 \mathrm{~min}\right)$ to give $\mathbf{7 b}^{+} \mathrm{BF}_{4}{ }^{-} \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(0.2073 \mathrm{~g}$, $0.2084 \mathrm{mmol}, 94 \%$), m.p. $205^{\circ} \mathrm{C}$ (capillary). Elemental analysis calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{BBrF}_{4} \mathrm{NOP}_{2} \mathrm{Re} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (994.6): C 44.88, H 3.45, N 1.41 ; found: C 45.04, H 3.59, N $1.36 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.87-7.30(\mathrm{~m}$, $5 \mathrm{C}_{6} \mathrm{H}_{5}$), 7.26 (ddd (doublet of doublet of doublets), ${ }^{1} J(\mathrm{H}, \mathrm{P})=492 \mathrm{~Hz}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=10 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H}, \mathrm{H}^{\prime}\right)=6 \mathrm{~Hz}, \mathrm{HP}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.49(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}$, $1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}) ; 5.31\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 2.65(\mathrm{~m}, \mathrm{CHH})$, $\left.2.11 \mathrm{ppm}\left(\mathrm{m}, \mathrm{CH} H^{\prime}\right) ;{ }^{13} \mathrm{C}^{[1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=\mathrm{PPh}_{3}$ at $134.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=52 \mathrm{~Hz}, i\right), 133.8\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o\right), 131.6(\mathrm{~s}, p)$, $129.5\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, m\right) ; \mathrm{PPhPh}^{\prime}$ at $134.6(\mathrm{~s}, p), 134.2\left(\mathrm{~s}, p^{\prime}\right), 132.5$ $\left(\mathrm{d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o\right), 132.2\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o^{\prime}\right), 130.3\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})\right.$
$=12 \mathrm{~Hz}, m), 130.1\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}, m^{\prime}\right), 123.5\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=51 \mathrm{~Hz}\right.$, i), $122.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=65 \mathrm{~Hz}, i^{\prime}\right) ; \mathrm{C}_{5} \mathrm{H}_{4}$ at 93.7 (s), 91.1 (s), 90.9 (s), 90.0 (s), $87.5(\mathrm{~s}) ; 53.5\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),-27.4 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J(\mathrm{C}, \mathrm{P})=30 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(122 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=31.4\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=13 \mathrm{~Hz}, \mathrm{PPh}_{2} \mathrm{H}\right)$, $21.3 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=13 \mathrm{~Hz}, \mathrm{PPh}_{3}\right)$; IR (powder film): $\tilde{v}=1660 \mathrm{~cm}^{-1}(\mathrm{~s}$, NO); MS: ${ }^{[42]} 822$ (58) [7b] ${ }^{+}$, 636 (100) [7b- $\left.\mathrm{PPh}_{2} \mathrm{H}\right]^{+}, 557$ (74) $\left[7 \mathbf{b}-\mathrm{PPh}_{2} \mathrm{H}-\mathrm{Br}\right]^{+}$
(S) $-\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{4} \mathbf{I}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{C H}_{2} \mathbf{P P h}_{2} \mathbf{H}\right)\right]^{+} \mathbf{P F}_{6}{ }^{-}\left((S)-7 \mathbf{c}^{+} \mathbf{P F}_{6}{ }^{-}\right)$: Complex $(S)-6 \mathbf{c} \quad(0.6033 \mathrm{~g}, \quad 0.8814 \mathrm{mmol}), \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(15 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}$ $(0.3465 \mathrm{~g}, 0.9695 \mathrm{mmol})$, and $\mathrm{PPh}_{2} \mathrm{H}(0.295 \mathrm{~g}, 1.584 \mathrm{mmol})^{[46]}$ were combined at $-78^{\circ} \mathrm{C}$ in a procedure similar to that for $\mathbf{7} \mathbf{b}^{+} \mathrm{BF}_{4}^{-}$. The concentrated sample ($\approx 8 \mathrm{~mL}$) was layered with hexanes ($\approx 25 \mathrm{~mL}$). After 20 h , the supernatant was decanted. The orange prisms were washed with pentane ($4 \times 5 \mathrm{~mL}$) and dried by oil-pump vacuum ($5 \times 10^{-3} \mathrm{mbar}, 1 \mathrm{~h}$) to give (S) $\mathbf{- 7} \mathbf{c}^{+} \mathrm{PF}_{6}{ }^{-}(0.885 \mathrm{~g}, 0.872 \mathrm{mmol}, 99 \%)$, decomp $154-156^{\circ} \mathrm{C}$ (capillary, gradual darkening without melting). Elemental analysis calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{NOF}_{6} \mathrm{P}_{3} \operatorname{IRe}$ (1030.7): C 42.61, H 3.17, N 1.38; found: $\mathrm{C} 42.70, \mathrm{H}$ 3.21, N 1.44; $[\alpha]_{25}^{589}=-209^{\circ} \pm 5^{\circ}\left(c=1.21 \mathrm{mg} \mathrm{mL}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.85-7.32\left(\mathrm{~m}, 25 \mathrm{H}\right.$ of $\left.5 \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 6.55$ (ddd, ${ }^{3} J$ $\left.(\mathrm{H}, \mathrm{H})=11.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}\left(\mathrm{H}, \mathrm{H}^{\prime}\right)=4.8 \mathrm{~Hz}, \mathrm{HP}\right) ;{ }^{[47]} \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.55(\mathrm{~m}, 1 \mathrm{H}), 5.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}) ; 2.74-2.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}^{\prime}\right), 2.26-$ $2.15 \mathrm{ppm}\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=\mathrm{PPh}_{3}$ at $133.8\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o\right), 133.5\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=59 \mathrm{~Hz}, i\right), 131.6(\mathrm{~s}$, $p), 129.5\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, m\right) ; \mathrm{PPhPh}^{\prime}$ at $134.7(\mathrm{~s}, p), 134.3\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})\right.$ $\left.=4 \mathrm{~Hz}, p^{\prime}\right), 132.6\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, o\right), 132.1\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, o^{\prime}\right)$, $130.5\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, m\right), 130.1\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=13 \mathrm{~Hz}, m^{\prime}\right), 123.7(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{P})=74 \mathrm{~Hz}, i\right), 122.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=83 \mathrm{~Hz}, i^{\prime}\right) ; \mathrm{C}_{5} \mathrm{H}_{4}$ at $98.1(\mathrm{~s}), 95.1$ (s), 93.1 (s), $91.9(\mathrm{~s}), 51.8(\mathrm{~s}) ;-24.1 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J(\mathrm{C}, \mathrm{P})=28 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=30.6$ (brs, PPh_{2}), $21.0\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})\right.$ $=13 \mathrm{~Hz}, \mathrm{PPh}_{3}$), $-143.6 \mathrm{ppm}\left(\mathrm{sep},{ }^{1} J(\mathrm{P}, \mathrm{F})=711 \mathrm{~Hz}, \mathrm{PF}_{6}\right.$); IR (powder film): $\tilde{v}=1664 \mathrm{~cm}^{-1}$ (s, NO); MS: ${ }^{[42]} 870$ (100) $[7 \mathbf{c}+\mathrm{H}]^{+}, 684$ (80) $\left[7 \mathbf{c}-\mathrm{PPh}_{2} \mathrm{H}\right]^{+}, 557(30)\left[\mathbf{7 c}-\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{H}\right]^{+}$.
$\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{\mathbf{5}} \mathbf{H}_{4} \mathbf{B r}\right) \mathbf{R e}(\mathbf{N O})\left(\mathbf{P P h}_{\mathbf{3}}\right)\left(\mathbf{C H}_{\mathbf{2}} \mathbf{P P h}_{2}\right)\right](\mathbf{1 b})$: A Schlenk tube was charged with $7 \mathbf{b}^{+} \mathrm{BF}_{4}^{-} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1520 \mathrm{~g}, 0.1528 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$. A solution of $t \mathrm{BuOK}(1.0 \mathrm{~m}$ in THF; $0.183 \mathrm{~mL}, 0.183 \mathrm{mmol})$ was added with stirring. After 30 min , the solvent was removed by oil-pump vacuum. Benzene (5 mL) was added, and the sample was filtered through a plug of Celite $(2 \mathrm{~cm} \times 1 \mathrm{~cm})$ with benzene rinses. The filtrate was concentrated (to $\approx 2 \mathrm{~mL}$) and layered with pentane (15 mL). After 24 h , the supernatant was decanted from orange prisms, which were dried ($10^{-3} \mathrm{mbar}, 1 \mathrm{~h}$) to give $\mathbf{1 b}(0.119 \mathrm{~g}, 0.145 \mathrm{mmol}, 95 \%)$, decomp $165^{\circ} \mathrm{C}$ (capillary). Elemental analysis calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{BrNOP}_{2} \mathrm{Re}$ (821.7): C 52.62, H 3.80, N 1.70; found: C 52.52, H 3.91, N 1.65; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=$ 7.95-7.00 (m, 5C645) $\mathrm{C}_{5} \mathrm{H}_{4}$ at $5.06(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H})$, $3.76(\mathrm{~m}, 1 \mathrm{H}) ; 3.04\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{P})=12 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{P})=10 \mathrm{~Hz}, \mathrm{CHH}^{\prime}\right)$, $\left.1.96 \mathrm{ppm}\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{P})=12 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{P})=2 \mathrm{~Hz}, \mathrm{CH} H^{\prime}\right) ;{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=\mathrm{PPh}_{3}$ at $135.6\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=52 \mathrm{~Hz}, i\right), 134.0\left(\mathrm{~d},{ }^{2} J-\right.$ $(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o), 128.8(\mathrm{~s}, p), 128.6\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m\right) ; \mathrm{PPhPh}^{\prime}$ at $147.7\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=24 \mathrm{~Hz}, i\right), 146.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=20 \mathrm{~Hz}, i^{\prime}\right), 133.7\left(\mathrm{~d},{ }^{2} J-\right.$ $(\mathrm{C}, \mathrm{P})=18 \mathrm{~Hz}, o), 133.2\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=17 \mathrm{~Hz}, o^{\prime}\right), 130.2\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=\right.$ $4 \mathrm{~Hz}, m), 128.8\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}, m^{\prime}\right), 127.7(\mathrm{~s}, p), 127.4\left(\mathrm{~s}, p^{\prime}\right) ; \mathrm{C}_{5} \mathrm{H}_{4}$ at $92.7(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}), 91.1(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}), 88.2(\mathrm{~s}), 88.0(\mathrm{~s}), 86.9$ (s); $-11.4 \mathrm{ppm}\left(\mathrm{dd},{ }^{1} J(\mathrm{C}, \mathrm{P})=38 \mathrm{~Hz},{ }^{3} J(\mathrm{C}, \mathrm{P})=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=8.6\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=6 \mathrm{~Hz}, \mathrm{PPh}_{2}\right)$, $26.1 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=6 \mathrm{~Hz}, \mathrm{PPh}_{3}\right.$); IR (powder film): $\tilde{v}=1640 \mathrm{~cm}^{-1}(\mathrm{~s}$, $\mathrm{NO}) ; \mathrm{MS}::^{[42]} 821$ (35) $[\mathbf{1 b}]^{+}, 637$ (100) $\quad\left[\mathbf{1 b}-\mathrm{PPh}_{2}\right]^{+}, 557$ (60) [1b- $\left.\mathrm{PPh}_{2}-\mathrm{Br}\right]^{+}$.
$\left[\left(\eta^{5}-\mathbf{C}_{5} \mathbf{H}_{4}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathbf{P d}(\mu-\mathrm{X})\right]_{2}(10 \mathrm{a}, \mathrm{X}=\mathbf{C l} ; 10 \mathrm{~b}, \mathrm{Br} ;$ 10c, I)
Method A: A Schlenk flask was charged with 1b ($0.2785 \mathrm{~g}, 0.3389 \mathrm{mmol}$) and toluene $(15 \mathrm{~mL})$, and $\operatorname{Pd}\left[\mathrm{P}(t \mathrm{Bu})_{3}\right]_{2}(0.1732 \mathrm{~g}, 0.3389 \mathrm{mmol})$ was added with stirring. The clear yellow solution was stirred at $80^{\circ} \mathrm{C}$. After 5 h , the deep orange solution was concentrated by oil-pump vacuum (to $\approx 5 \mathrm{~mL}$) and kept at room temperature. After 12 h , the precipitate was collected by filtration, washed with toluene $(2 \times 2 \mathrm{~mL})$ and ether $(2 \times 10 \mathrm{~mL})$, and dried by oil-pump vacuum ($10^{-3} \mathrm{mbar}, 2 \mathrm{~h}$) to give $10 \mathbf{b} \cdot \mathrm{C}_{7} \mathrm{H}_{8}(0.2905 \mathrm{~g}, 0.1491 \mathrm{mmol}, 88 \%)$ as a yellow-orange powder. NMR spectra showed mixtures of syn/anti and mesolrac diastereomers,
decomp $294^{\circ} \mathrm{C}$ (capillary). Elemental analysis calcd (\%) for $\mathrm{C}_{72} \mathrm{H}_{62} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Re}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ (1948.4): C 48.70, H 3.62, N 1.44; found: C 48.62, H 3.47, N 1.37 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.25-8.08(\mathrm{~m}$, 4 H of $\left.11 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.50-7.07\left(\mathrm{~m}, 51 \mathrm{H}\right.$ of $\left.11 \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 2 \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.45(\mathrm{brs}, 2 \mathrm{H})$, 5.19/5.14 ($2 \times$ brs, $69: 31,{ }^{[48]} 2 \mathrm{H}$), 4.84/4.76 ($2 \times$ brs, $69: 31,{ }^{[48]} 2 \mathrm{H}$), 2.98/2.89/ $2.82(3 \times$ brs, 2 H$) ; 2.89-2.80\left(\mathrm{~m}, 2 \mathrm{CHH}^{\prime}\right), 2.37\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right), 2.19-2.03 \mathrm{ppm}$ $\left(\mathrm{m}, 2 \mathrm{CH} H^{\prime}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=71.5 / 70.7 / 70.6 / 70.4$ $\left(4 \times \mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=23 \mathrm{~Hz}, \mathrm{PPh}_{2}, 31: 69: 31: 69\right), 23.6 / 23.5 / 23.4 / 23.3 \mathrm{ppm}(4 \times \mathrm{d}$, ${ }^{3} J(\mathrm{P}, \mathrm{P})=23 \mathrm{~Hz}, \mathrm{PPh}_{3}, 31: 69: 69: 31$); IR (powder film): $\tilde{v}=1625 \mathrm{~cm}^{-1}(\mathrm{~s}$, NO) ; MS: ${ }^{[42]} 1856$ (32) $[\mathbf{1 0 b}]^{+}$, 928 (22) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{Br})\right]^{+}, 848$ (70) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}$, $742(100)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$
Method B: A Schlenk flask was charged with $(S, S)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ (see below; $0.090 \mathrm{~g}, 0.044 \mathrm{mmol})$ and $\mathrm{LiX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br} ; 0.44 \mathrm{mmol})$, and THF $(15 \mathrm{~mL})$ was added with stirring. After 2 h , the red suspension was filtered through a plug of Celite ($2.5 \mathrm{~cm} \times 4 \mathrm{~cm}$) with THF rinses. The filtrate was taken to dryness by oil-pump vacuum. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The red suspension was filtered through a plug of $\mathrm{SiO}_{2}(2.5 \mathrm{~cm} \times$ 4 cm) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The yellow-orange fractions were concentrated by oil-pump vacuum (to $\approx 5 \mathrm{~mL}$) and pentane ($\approx 40 \mathrm{~mL}$) was added. After 24 h , the supernatant was decanted carefully from the precipitate, which was dried by oil-pump vacuum ($5 \times 10^{-3} \mathrm{mbar}, 1$ day) to give $(S, S)-\mathbf{1 0}$ as a bright yellow powder $((S, S) \mathbf{- 1 0 a}, 0.060 \mathrm{~g}, 0.032 \mathrm{mmol}, 73 \% ;(S, S) \mathbf{- 1 0 b}$, $0.056 \mathrm{~g}, 0.032 \mathrm{mmol}, 73 \%)$. NMR spectra showed mixtures of syn/anti isomers.
(S,S)-10a: Elemental analysis calcd (\%) for $\mathrm{C}_{72} \mathrm{H}_{62} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Re}_{2}$ (1767.3): C 48.93, H 3.54, N 1.59 ; found: C 48.62, H $3.62, \mathrm{~N} 1.58$; $[\alpha]_{26}^{589}=$ $-138^{\circ} \pm 8^{\circ}\left(c=1.05 \mathrm{mgmL}^{-1}\right.$, THF) ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.31-7.01 (m, 10 $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 2 \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.45(\mathrm{brs}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=2 \mathrm{~Hz}$, 2 H), 4.86 (brs, 2 H), 2.97/2.83 ($2 \times \mathrm{brs}$, minor/major isomer, 2 H); 2.83$2.71\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH} \mathrm{H}^{\prime}\right), 2.20-2.01 \mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{CH} H^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, partial data): $\delta=\mathrm{PPh}_{3}$ at $136.0\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=52 \mathrm{~Hz}\right.$, $i),{ }^{[49]} 134.4\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o\right),{ }^{[49]} 130.0(\mathrm{~s}, p),{ }^{[49]} 128.4\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=\right.$ $9 \mathrm{~Hz}, m$) ; ${ }^{[49,50]} \mathrm{C}_{5} \mathrm{H}_{4}$ (major isomer) ${ }^{[50]}$ at $121.5(\mathrm{~m}), 92.4(\mathrm{~m}), 90.2(\mathrm{~s}), 89.4$ (brs), $86.0(\mathrm{~m}) ; \mathrm{CH}_{2}$ at $-11.3(\mathrm{~m}$, major isomer), -12.8 ppm (m , minor isomer); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=68.1\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=23 \mathrm{~Hz}\right.$, PPh_{2}, major isomer, $\left.65 \%\right), 67.4\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=22 \mathrm{~Hz}, \mathrm{P}^{\prime} \mathrm{Ph}_{2}\right.$, minor isomer, 35%), $23.6\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=22 \mathrm{~Hz}, \mathrm{P}^{\prime} \mathrm{Ph}_{3}\right.$, minor isomer, 35%), $23.2 \mathrm{ppm}(\mathrm{d}$, ${ }^{3} J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz}, \mathrm{PPh}_{3}$, major isomer, 65%). IR (powder film): $\tilde{v}=$ $1629 \mathrm{~cm}^{-1} \quad(\mathrm{~s}, \quad \mathrm{NO}) ; \mathrm{MS}^{[42]} 1766$ (15) $[\mathbf{1 0 a}-\mathrm{H}]^{+}, 883$ (40) $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{Cl})\right]^{+}, 848$ (60) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}, 742(100)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$.
(S,S)-10b: DSC: exotherm $T_{\mathrm{i}} 232.2^{\circ} \mathrm{C}, T_{\mathrm{e}} 249.3^{\circ} \mathrm{C}, T_{\mathrm{p}} 261.2^{\circ} \mathrm{C}, T_{\mathrm{c}}$ $271.3^{\circ} \mathrm{C}, T_{\mathrm{f}} 295.9^{\circ} \mathrm{C}$; TGA: onset of mass loss, $T_{\mathrm{i}} 254.3^{\circ} \mathrm{C}$. Elemental analysis (\%) calcd for $\mathrm{C}_{72} \mathrm{H}_{62} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Re}_{2}$ (1856.25): C 46.59, H 3.37, N 1.51 ; found: C $46.54, \mathrm{H} 3.44, \mathrm{~N} 1.51 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.27-7.08\left(\mathrm{~m}, 10 \mathrm{C}_{6} \mathrm{H}_{5}\right), 2 \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.46($ brs, 2 H$), 5.18$ (brs, 2 H$), 4.84(\mathrm{brs}$, $2 \mathrm{H}), 2.98 / 2.84(2 \times$ brs, minor/major isomer, 2 H$) ; 2.88-2.79(\mathrm{~m}, 2 \mathrm{H}$, $\left.\left.2 \mathrm{CHH}^{\prime}\right), 2.19-2.03 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{CHH}) ;{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=\mathrm{PPh}_{3}$ at $136.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=51 \mathrm{~Hz}, i\right),{ }^{[49]} 134.4\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $10 \mathrm{~Hz}, o),{ }^{[49]} 130.0(\mathrm{~s}, p),{ }^{[49]} 128.3\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m\right) ;{ }^{[49]} \mathrm{PPhPh}^{\prime}$ (major isomer) at $141.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=29 \mathrm{~Hz}, i\right), 134.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $11 \mathrm{~Hz}, o), 134.6\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o^{\prime}\right), 131.3(\mathrm{~s}, p), 131.2\left(\mathrm{~s}, p^{\prime}\right), 127.5$ $\left(\mathrm{d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m\right) ; \mathrm{PPhPh}^{\prime}$ (minor isomer) at $132.1\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $11 \mathrm{~Hz}, o), 130.5(\mathrm{~s}, \mathrm{p}), 129.1\left(\mathrm{~s}, p^{\prime}\right){ }^{[44,50]} \mathrm{C}_{5} \mathrm{H}_{4}$ (major isomer) ${ }^{[49,50]}$ at 123.9 $(\mathrm{m}), 92.5(\mathrm{~m}), 90.2(\mathrm{~s}), 89.5(\mathrm{~s}), 85.9(\mathrm{~s}) ;-10.8 \mathrm{ppm}\left(\mathrm{brd},{ }^{1} \mathrm{~J}(\mathrm{C}, \mathrm{P})=\right.$ $\left.16 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ;{ }^{[49]}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=70.9\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=\right.$ $23 \mathrm{~Hz}, \mathrm{PPh}_{2}$, major isomer, partial overlap), $70.7\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=20 \mathrm{~Hz}\right.$, $\mathrm{P}^{\prime} \mathrm{Ph}_{2}$, minor isomer, partial overlap), $23.9\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=22 \mathrm{~Hz}, \mathrm{P}^{\prime} \mathrm{Ph}_{3}\right.$, minor isomer, $\approx 25 \%), 23.6 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz}, \mathrm{PPh}_{3}\right.$, major isomer, $\approx 75 \%$); IR (powder film): $\tilde{v}=1629 \mathrm{~cm}^{-1}$ (s, NO); MS: ${ }^{[42]} 1856$ (15) $[\mathbf{1 0 b}]^{+}, 1035$ (5) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{Br}) \mathrm{Pd}\right]^{+}$, 928 (18) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{Br})\right]^{+}$, 848 (22) $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}, 742(100)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$.
Method C : A Schlenk flask was charged with $(S)-7 \mathbf{c}^{+} \mathrm{PF}_{6}{ }^{-}(0.103 \mathrm{~g}$, $0.1015 \mathrm{mmol}),{ }^{[20 \mathrm{~b}]}$ and toluene (7 mL). Then $t \mathrm{BuOK}$ (1.0 m in THF; $0.152 \mathrm{~mL}, 0.152 \mathrm{mmol}$) was added by syringe with stirring. The mixture
was stirred vigorously to give a yellow suspension. After 2 h , solid $\mathrm{Pd}[\mathrm{P}-$ $\left.(t \mathrm{Bu})_{3}\right]_{2}(0.0519 \mathrm{~g}, 0.1015 \mathrm{mmol})$ was added. After a further 20 h , pentane $(25 \mathrm{~mL})$ was added to the brown mixture. The yellow precipitate was collected by filtration and washed with pentane $(10 \mathrm{~mL})$. A small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The mixture was filtered through a plug of silica $(2 \mathrm{~cm} \times 4 \mathrm{~cm})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes ($1: 1 \mathrm{v} / \mathrm{v}, \approx 20 \mathrm{~mL}$) and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The latter fractions were yellow, and were concentrated by oil-pump vacuum to $\approx 2 \mathrm{~mL}$. Then pentane ($\approx 10 \mathrm{~mL}$) was added. After 24 h , the supernatant was carefully decanted from the precipitate, which was dried by oil-pump vacuum ($4 \times 10^{-3} \mathrm{mbar}$, 1 day) to give (S, S) - $\mathbf{1 0} \mathbf{c}(0.022 \mathrm{~g}$, $0.011 \mathrm{mmol}, 22 \%)^{[20 \mathrm{~b}]}$ as a yellow-orange powder. NMR spectra showed mixtures of syn/anti isomers. Elemental analysis calcd (\%) for $\mathrm{C}_{72} \mathrm{H}_{62} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Re}_{2}$ (1950.2): C 44.34, H 3.20, N 1.44; found: C 43.23, H 3.16, N 1.33; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22-7.01(\mathrm{~m}$, $10 \mathrm{C}_{6} \mathrm{H}_{5}$), ${ }^{[49]} 2 \mathrm{C}_{5} \mathrm{H}_{4}$ (major/minor isomer) at $5.44 / 5.46$ (brs/brs, 2H), 5.17/ $5.20(\mathrm{~d} / \mathrm{brs}, J(\mathrm{H}, \mathrm{H})=2 /-\mathrm{Hz}, 2 \mathrm{H}), 4.82 / 4.82(\mathrm{brs} / \mathrm{brs}, 2 \mathrm{H}), 2.96 / 2.86$ (brs/brs, 2H); 2.93-2.86 (m, 2H, 2 CHH'), 2.18-2.08 ppm (m, 2 H , 2 CHH) ; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=\mathrm{PPh}_{3}$ at $136.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})\right.$ $=51 \mathrm{~Hz}, i),{ }^{[49]} 133.4\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o\right),{ }^{[49]} 130.0(\mathrm{~s}, p),{ }^{[49]} 128.3\left(\mathrm{~d},{ }^{3} J-\right.$ $(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m) ;{ }^{[49]} \mathrm{PPhPh}^{\prime}$ (major isomer) at $143.6\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=\right.$ $25 \mathrm{~Hz}, i), 134.7\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}, o\right), 131.9\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=57 \mathrm{~Hz}, i^{\prime}\right)$, $131.2\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o^{\prime}\right), 130.4(\mathrm{~s}, p), 129.0\left(\mathrm{~s}, p^{\prime}\right), 127.7\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})\right.$ $=10 \mathrm{~Hz}, m){ }^{[45,50]} \mathrm{C}_{5} \mathrm{H}_{4}$ (major isomer) ${ }^{[4,50]}$ at $126.7(\mathrm{~m}), 92.8(\mathrm{~m}), 90.6$ (s), $90.0(\mathrm{~s}), 86.1(\mathrm{~s}) ;-9.7 \mathrm{ppm}\left(\mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{[49]}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=74.9\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz}, \mathrm{PPh}_{2}\right.$, minor isomer, $\left.\approx 21 \%\right), 70.7$ $\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz}, \mathrm{P}^{\prime} \mathrm{Ph}_{2}\right.$, major isomer, $\approx 79 \%$), 23.8 (downfield signal of minor isomer), $23.5 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=25 \mathrm{~Hz}, \mathrm{PPh}_{3}\right.$, major isomer, partial overlap); IR (powder film): $\tilde{v}=1633 \mathrm{~cm}^{-1}$ (s, NO); MS: ${ }^{[42]} 1949$ (10) $[\mathbf{1 0 c}-\mathrm{H}]^{+}, 975(10)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{I})\right]^{+}, 848$ (15) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}, 742(100)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \operatorname{Re}(\mathrm{NO})-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$.
 11b): ${ }^{[23]}$ A Schlenk tube was charged with $10 b \cdot \mathrm{C}_{7} \mathrm{H}_{8} \quad(0.1130 \mathrm{~g}$, $0.0580 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\mathrm{PPh}_{3}(0.0912 \mathrm{~g}, 0.3480 \mathrm{mmol})$. The suspension was stirred and gradually became a bright yellow solution. After 1 h , the solution was filtered through a plug of Celite $(2 \mathrm{~cm} \times 1 \mathrm{~cm})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ rinses, concentrated by oil-pump vacuum to $\approx 3 \mathrm{~mL}$, and layered with hexanes $(\approx 10 \mathrm{~mL})$. After 2 days, the supernatant was decanted. The yellow prisms were washed with small portions of pentane and dried ($10^{-3} \mathrm{mbar}, 1 \mathrm{~h}$) to give dull yellow chips of $S P-4-4 \mathbf{1 1 b}(0.0635 \mathrm{~g}$, $0.0534 \mathrm{mmol}, 92 \%$), m.p. $166-168^{\circ} \mathrm{C}$ (capillary). Elemental analysis calcd (\%) for $\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{BrNOP}_{3} \operatorname{PdRe}$ (1190.4): C 54.48, H 3.89, N 1.18; found: C 54.70, H 4.13, N 1.19; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.23$ (m, $\left.8 \mathrm{C}_{6} \mathrm{H}_{5}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.06(\mathrm{brs}, 1 \mathrm{H}), 4.86(\mathrm{brs}, 1 \mathrm{H}), 4.50(\mathrm{brs}, 1 \mathrm{H}), 2.32(\mathrm{brs}$, $1 \mathrm{H}) ; 2.96\left(\mathrm{ddd},{ }^{2} J(\mathrm{H}, \mathrm{P})=14 \mathrm{~Hz},{ }^{2} J(\mathrm{H}, \mathrm{H})=7 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{P})=2 \mathrm{~Hz}\right.$, $\left.\mathrm{C} H \mathrm{H}^{\prime}\right), 2.33\left(\mathrm{ddd},{ }^{2} J(\mathrm{H}, \mathrm{P})=31 \mathrm{~Hz},{ }^{2} J(\mathrm{H}, \mathrm{H})=7 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{P})=2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH} H^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=\mathrm{RePPh}_{3}$ and PdPPh_{3} at $136.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=51 \mathrm{~Hz}, i\right), 134.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}, o\right), 133.4\left(\mathrm{~d},{ }^{2} J-\right.$ $\left.(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o^{\prime}\right), 131.7\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=37 \mathrm{~Hz}, i^{\prime}\right), 129.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $2 \mathrm{~Hz}, p), 129.8\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}, p^{\prime}\right), 128.3\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m\right)$, $128.0\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m^{\prime}\right)$; $\mathrm{PPhPh}^{\prime} \mathrm{at}^{[51]} 134.9\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=41 \mathrm{~Hz}, i\right)$, $132.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=49 \mathrm{~Hz}, i^{\prime}\right), 132.1\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, o\right), 131.6\left(\mathrm{~d},{ }^{2} J-\right.$ $\left.(\mathrm{C}, \mathrm{P})=14 \mathrm{~Hz}, o^{\prime}\right), 130.3(\mathrm{~s}, p), 129.0\left(\mathrm{~s}, p^{\prime}\right), 128.5\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}\right.$, $m), 127.4\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m^{\prime}\right) ; \mathrm{C}_{5} \mathrm{H}_{4}$ at $143.1\left(\mathrm{dd},{ }^{2} J(\mathrm{C}, \mathrm{P})=23 \mathrm{~Hz}\right.$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=8 \mathrm{~Hz}, \mathrm{Pd} C\right), 92.6(\mathrm{~m}), 91.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=6 \mathrm{~Hz}), 89.2(\mathrm{~s}), 85.6$ (s); $\left.-8.7 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J(\mathrm{C}, \mathrm{P})=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=72.1\left(\mathrm{dd},{ }^{2} J(\mathrm{P}, \mathrm{P})=457 \mathrm{~Hz},{ }^{3} J(\mathrm{P}, \mathrm{P})=26 \mathrm{~Hz}, \mathrm{PPh}_{2}\right), 23.8(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{P}, \mathrm{P})=26 \mathrm{~Hz}, \mathrm{RePPh}_{3}\right), 19.6 \mathrm{ppm}\left(\mathrm{d},{ }^{2} J(\mathrm{P}, \mathrm{P})=457 \mathrm{~Hz}, \mathrm{PdPPh}_{3}\right)$; IR (powder film): $\tilde{v}=1625 \mathrm{~cm}^{-1}$ (s, NO); MS: ${ }^{[42]} 1191$ (60) [11b] ${ }^{+}$, 1110 (30) $[\mathbf{1 1 b}-\mathrm{Br}]^{+}, 929$ (25) $\left[\mathbf{1 1 b}-\mathrm{PPh}_{3}\right]^{+}, 848$ (100) $\left[\mathbf{1 1 b}-\mathrm{Br}-\mathrm{PPh}_{3}\right]^{+}, 742$ (46) $\left[\mathbf{1 1 b}-\mathrm{Br}-\mathrm{PPh}_{3}-\mathrm{Pd}\right]^{+}$.

$(S, S)-\left[\left(\eta^{5}-\mathbf{C}_{5} \mathbf{H}_{4}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathbf{P P h} \mathbf{2}_{2}\right) \mathrm{Pd}(\mu-\mathrm{OAc})_{2} \mathbf{P d}(\mu-\right.$

 OAc $\left.)_{2} \mathbf{P d}\left(\mu-\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)(\mathrm{ON}) \operatorname{Re}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]((S, S)-13)$Method A: A Schlenk flask was charged with $(S)-\mathbf{1 2}^{+} \mathrm{BF}_{4}^{-}(0.350 \mathrm{~g}$, $0.421 \mathrm{mmol}),{ }^{[6 \mathrm{a}]} \mathrm{Pd}(\mathrm{OAc})_{2} \quad(0.1419 \mathrm{~g}, \quad 0.632 \mathrm{mmol}), \mathrm{KOAc}(0.050 \mathrm{~g}$, $0.505 \mathrm{mmol})$, and toluene (25 mL). The mixture was stirred for 14 h . The black suspension was filtered through a plug of Celite ($2.5 \mathrm{~cm} \times 5 \mathrm{~cm}$) with toluene rinses. The orange filtrate $(65 \mathrm{~mL})$ was layered gently with
pentane $(280 \mathrm{~mL})$. After 72 h , the supernatant was decanted and the orange-red crystals were dried under a N_{2} stream to give $(S, S) \mathbf{- 1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ ($0.331 \mathrm{~g}, 0.149 \mathrm{mmol}, 71 \%$), decomp $155^{\circ} \mathrm{C}$ (capillary, gradual darkening without melting). DSC: endotherm, $T_{\mathrm{i}} 137.5^{\circ} \mathrm{C}, T_{\mathrm{e}} 154.0^{\circ} \mathrm{C}, T_{\mathrm{p}} 181.1^{\circ} \mathrm{C}$, $T_{\mathrm{c}} 196.7^{\circ} \mathrm{C}, T_{\mathrm{f}} 196.7^{\circ} \mathrm{C}$; endotherm, $T_{\mathrm{i}} 196.9^{\circ} \mathrm{C}, T_{\mathrm{e}} 199.0^{\circ} \mathrm{C}, T_{\mathrm{p}} 202.8^{\circ} \mathrm{C}$, $T_{\mathrm{c}} 205.8^{\circ} \mathrm{C}, T_{\mathrm{f}} 205.9^{\circ} \mathrm{C}$; TGA: onset of first mass loss regime, $T_{\mathrm{i}} 123.5^{\circ} \mathrm{C}$, $T_{\mathrm{f}} 175.6^{\circ} \mathrm{C}\left(6.5 \%\right.$ mass loss; theory for $\left.2 \mathrm{C}_{7} \mathrm{H}_{8} 8.2 \%\right)$, onset of second mass loss regime, $T_{\mathrm{i}} 176.0^{\circ} \mathrm{C}, T_{\mathrm{f}} 266.6^{\circ} \mathrm{C}$. Elemental analysis calcd (\%) for $\mathrm{C}_{80} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{Pd}_{3} \mathrm{Re}_{2} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ (2223.16): C 50.78, H 4.08, N 1.26; found: C 50.75, H 4.13, N 1.28; $[\alpha]_{26}^{589}=-314^{\circ} \pm 4^{\circ}\left(c=0.91 \mathrm{mg} \mathrm{mL}^{-1}\right.$, THF) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=8.73-8.68\left(\mathrm{~m}, 4 \mathrm{H}\right.$ of $\left.12 \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.64-7.59 (m, 4 H of $\left.12 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.45-6.87\left(\mathrm{~m}, 52 \mathrm{H}\right.$ of $\left.12 \mathrm{C}_{6} \mathrm{H}_{5}\right), 2 \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.54(\mathrm{brs}, 2 \mathrm{H}), 5.13(\mathrm{brs}, 2 \mathrm{H}), 4.82(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{brs}, 2 \mathrm{H}) ; 3.50(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \mathrm{CHH}^{\prime}\right), 2.10\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right), 2.07(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CHH}), 1.58(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{Ac}), 1.49 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{Ac}^{\prime}\right) ;{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=182.4$ $(\mathrm{s}, \mathrm{C}=\mathrm{O}), 182.2\left(\mathrm{~s}, \mathrm{C}^{\prime}=\mathrm{O}\right), \mathrm{PPh}_{3}$ at $136.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=51 \mathrm{~Hz}, i\right), 134.1(\mathrm{~d}$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o\right), 130.0(\mathrm{~s}, p) ;{ }^{[45]} \mathrm{PPhPh}^{\prime}$ at $143.2\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=25 \mathrm{~Hz}\right.$, $i), 135.1\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o\right), 133.5\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=62 \mathrm{~Hz}, i^{\prime}\right), 131.8(\mathrm{~d}$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, o^{\prime}\right), 130.6(\mathrm{~s}, p), 128.7\left(\mathrm{~s}, p^{\prime}\right) ;{ }^{[45]} \mathrm{C}_{5} \mathrm{H}_{4}$ at $120.0(\mathrm{~s}), 95.8$ (m), $90.6(\mathrm{~s}), 87.4(\mathrm{~s}), 86.6(\mathrm{~s}) ; 23.9\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=5 \mathrm{~Hz}^{2}, \mathrm{CCH}_{3}\right),{ }^{[52]} 23.4(\mathrm{~s}$, $\left.\mathrm{CC}^{\prime} \mathrm{H}_{3}\right),-13.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=20 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ at $137.8(\mathrm{~s}, i), 129.3$ ($\left.\mathrm{s}, o), 128.5(\mathrm{~s}, m), 125.7(\mathrm{~s}, p), 21.6 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=61.3\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=25 \mathrm{~Hz}, \mathrm{PPh}_{2}\right), 25.3 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J-\right.$ $(\mathrm{P}, \mathrm{P})=25 \mathrm{~Hz}, \mathrm{PPh}_{3}$); IR (powder film): $\tilde{v}=1633$ (s, NO), 1559 (vs, CO), $1401 \mathrm{~cm}^{-1}$ (s, CO); MS: ${ }^{[42]} 2040$ (6) [13] ${ }^{+}$, 1979 (2) [13-OAc] ${ }^{+}$, 1014 (9) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}_{2}(\mathrm{OAc})\right]^{+}, 907(100)\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{OAc})\right]^{+}, 848$ (6) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}, 742(12)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$.
Method B: A Schlenk flask was charged with $(S)-\mathbf{1 2}^{+} \mathrm{PF}_{6}{ }^{-}(0.800 \mathrm{~g}$, $0.900 \mathrm{mmol}){ }^{[53]} \mathrm{Pd}(\mathrm{OAc})_{2}(0.303 \mathrm{~g}, 1.35 \mathrm{mmol})$, and toluene $(50 \mathrm{~mL})$. Then t BuOK (1.0 m in THF; $1.35 \mathrm{~mL}, 1.35 \mathrm{mmol}$) was added by syringe with stirring. The yellow mixture turned dark brown. After 14 h , the solvent was removed by oil-pump vacuum and the brown-black residue was suspended in a small amount of ethyl acetate. This was filtered through a plug of $\mathrm{SiO}_{2}(2.5 \mathrm{~cm} \times 18 \mathrm{~cm})$ using ethyl acetate/pentane (1:1 v/v). The orange fractions were concentrated to $\approx 15 \mathrm{~mL}$. Then pentane (60 mL) was added. The yellow powder was collected by filtration, washed with pentane $(2 \times 20 \mathrm{~mL})$, and dried by oil-pump vacuum $\left(5 \times 10^{-3} \mathrm{mbar}\right.$, 2 days) to give $(S, S)-\mathbf{1 3}(0.826 \mathrm{~g}, 0.405 \mathrm{mmol}, 90 \%)$ as a yellow powder, decomp $199^{\circ} \mathrm{C}$ (capillary, gradual darkening without melting); TGA: onset of mass loss, $T_{\mathrm{i}} 176.0^{\circ} \mathrm{C}$. Elemental analysis (\%) calcd for $\mathrm{C}_{80} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{Pd}_{3} \mathrm{Re}_{2}$ (2039.04): C 47.12, H 3.66, N 1.37; found: C 47.12, H 3.69, N 1.47. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(S, S)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$, except for the absence of solvate peaks; IR (powder film): $\tilde{v}=1637(\mathrm{~s}, \mathrm{NO}), 1563(\mathrm{vs}, \mathrm{CO}), 1401 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{CO}) ; \mathrm{MS}:^{[42]} 2040$ (6) $[\mathbf{1 3}]^{+}, 1980$ (4) $[\mathbf{1 3 - O A c}]^{+}, 1014$ (12) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}_{2}(\mathrm{OAc})\right]^{+}, 908(100)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}-\right.$ $(\mathrm{OAc})]^{+}$.
$S P-4-2(S, S)-\left[\left(\eta^{5}-\mathbf{C}_{5} \mathbf{H}_{4}\right) R e(N O)\left(\mathbf{P P h}_{3}\right)\left(\mu-\mathrm{CH}_{2} \mathbf{P P h}_{2}\right) \mathbf{P d}\left(\mu-\mathrm{PPh}_{2} \mathbf{C H}_{2}\right)(\mathbf{N O})-\right.$ $\left(\mathbf{P h}_{3} \mathbf{P}\right) \operatorname{Re}\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{5}\right)\left(\eta^{1}\right.$-OAc)] (SP-4-2 $\left.\left.(\mathbf{S}, \boldsymbol{S})-14\right)\right)^{[23]}$ An NMR tube was charged with $(S)-\mathbf{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}(0.025 \mathrm{~g}, 0.030 \mathrm{mmol})^{[7 \mathrm{a}]}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.0034 \mathrm{~g}$, 0.015 mmol), and sealed with a septum. Then $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ was added by syringe. After $22 \mathrm{~h},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra showed $S P-4-2(S, S)-\mathbf{1 4}$ to be the main product (81%, as assayed by integration of the ${ }^{31} \mathrm{P}$ NMR spectrum). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=8.70-8.65(\mathrm{~m}, 2 \mathrm{H}$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.98-7.93\left(\mathrm{~m}, 2 \mathrm{H}\right.$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.61-7.36\left(\mathrm{~m}, 20 \mathrm{H}\right.$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.36-6.92 (m, 26 H of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.13(\mathrm{brs}, 1 \mathrm{H}), 4.67(\mathrm{brs}, 1 \mathrm{H})$, $4.64(\mathrm{brs}, 1 \mathrm{H}), 2.84(\mathrm{brs}, 1 \mathrm{H}) ; 5.09\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHH}^{\prime}\right), 2.77-2.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}\right), 2.54-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\prime \prime}\right), 2.10 \mathrm{ppm}(\mathrm{s}$, $3 \mathrm{H}, \mathrm{OAc}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=62.8\left(\mathrm{dd},{ }^{2} J(\mathrm{P}, \mathrm{P})=\right.$ $\left.431 \mathrm{~Hz},{ }^{3} J(\mathrm{P}, \mathrm{P})=25 \mathrm{~Hz}, \mathrm{PPh}_{2}\right), 35.8\left(\mathrm{dd},{ }^{2} J(\mathrm{P}, \mathrm{P})=432 \mathrm{~Hz},{ }^{3} J(\mathrm{P}, \mathrm{P})=\right.$ $\left.18 \mathrm{~Hz}, \mathrm{PPh}_{2}{ }^{\prime}\right), 25.5\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz}, \mathrm{PPh}_{3}\right), 25.5 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=\right.$ $\left.19 \mathrm{~Hz}, \mathrm{PPh}_{3}{ }^{\prime}\right)$.
trans- $(S, S)-\left[\left\{\left(\eta^{5}-\overline{\mathbf{C}}_{5} \mathbf{H}_{4}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\boldsymbol{\mu}-\mathbf{C H}_{2} \mathbf{P P h} \mathbf{H}_{2}\right)\right\}_{2} \mathbf{P d}\right] \quad($ trans $-(S, S)-15)$: A Schlenk flask was charged with $(S)-\mathbf{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}(0.1476 \mathrm{~g}, 0.180 \mathrm{mmol})$, Pd $(\mathrm{OAc})_{2}(0.0198 \mathrm{~g}, 0.088 \mathrm{mmol})$, and toluene $(7 \mathrm{~mL})$. The orange solution was stirred for 3.5 days at room temperature and then 1 day at $80^{\circ} \mathrm{C}$. The toluene was removed from the brown-black mixture by oil-pump
vacuum. Then a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The suspension was filtered through a plug of $\mathrm{SiO}_{2}(2.5 \mathrm{~cm} \times 7 \mathrm{~cm})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the yellow fraction by oil-pump vacuum. The residue was dissolved in benzene (5 mL) and layered gently with pentane $(20 \mathrm{~mL})$. After 2 days, the supernatant was decanted and the orange crystals dried by oil-pump vacuum ($5 \times 10^{-3} \mathrm{mbar}, 1 \mathrm{~h}$) to give trans- (S, S) - $\mathbf{1 5}$ ($0.050 \mathrm{~g}, 0.032 \mathrm{mmol}, 39 \%$), decomp $181-183^{\circ} \mathrm{C}$ (capillary, gradual darkening without melting). Elemental analysis calcd (\%) for $\mathrm{C}_{72} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{PdRe}_{2}$ (1590.0): C 54.38, H 3.93, N 1.76; found: C $54.39, \mathrm{H}$ 3.93 , N $1.63 ;[\alpha]_{24}^{589}=+53^{\circ} \pm 4^{\circ}\left(c=1.16 \mathrm{mg} \mathrm{mL}^{-1}\right.$, THF $) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=8.41-8.37\left(\mathrm{~m}, 4 \mathrm{H}\right.$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.49-7.43(\mathrm{~m}, 16 \mathrm{H}$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.28-7.21\left(\mathrm{~m}, 6 \mathrm{H}\right.$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.98-6.92\left(\mathrm{~m}, 18 \mathrm{H}\right.$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $6.80-6.74\left(\mathrm{~m}, 6 \mathrm{H}\right.$ of $\left.10 \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 2 \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.31(\mathrm{brs}, 2 \mathrm{H}), 5.05(\mathrm{brs}, 2 \mathrm{H})$, $5.00(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{brs}, 2 \mathrm{H}) ; 3.19-3.14\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CHH}^{\prime}\right), 2.85-2.82 \mathrm{ppm}$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{CH} H^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=\mathrm{PPh}_{3}$ at $137.6(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{P})=49 \mathrm{~Hz}, i\right), 133.8\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o\right), 129.6(\mathrm{~s}, p) ;{ }^{[45]} \mathrm{PPhPh}^{\prime}$ at $136.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=23 \mathrm{~Hz}, i\right), 136.7\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=30 \mathrm{~Hz}, i^{\prime}\right), 134.9$ (virtual $\left.\mathrm{t},{ }^{2} J(\mathrm{C}, \mathrm{P})=6 \mathrm{~Hz}, o\right), 131.4$ (virtual $\left.\mathrm{t},{ }^{2} J(\mathrm{C}, \mathrm{P})=5 \mathrm{~Hz}, o^{\prime}\right), 129.6(\mathrm{~s}$, p); ${ }^{[45]} \mathrm{C}_{5} \mathrm{H}_{4}$ at $143.9\left(\mathrm{dd},{ }^{2} J(\mathrm{C}, \mathrm{P})=20 \mathrm{~Hz},{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, \mathrm{PdC}\right) 95.0$ (m), 93.2 (s), 91.4 (s), 86.8 (s) $\left.;{ }^{[50]}-8.7 \mathrm{ppm}\left(b r s, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=65.5$ (virtual $\mathrm{t},{ }^{3} J(\mathrm{P}, \mathrm{P})=14 \mathrm{~Hz}, \mathrm{PPh}_{2}$), 26.5 ppm (virtual $\mathrm{t},{ }^{3} J(\mathrm{P}, \mathrm{P})=14 \mathrm{~Hz}, \mathrm{PPh}_{3}$); IR (powder film): $\tilde{v}=1633 \mathrm{~cm}^{-1}(\mathrm{~s}$, NO); MS: ${ }^{[42]} 1591$ (60) $[15]^{+}, 848$ (35) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}, 742(100)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$.
$(\boldsymbol{S})-\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{4}\right) \mathbf{R e}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\boldsymbol{\mu}-\mathbf{C H}_{2} \mathbf{P P h}_{2}\right) \mathbf{P d}\left(\mathbf{a c a c}-\mathbf{F}_{6}\right)\right] \quad(\mathbf{(S)}-\mathbf{1 6}) \cdot{ }^{[20 b]} \quad \mathrm{A}$ round-bottomed flask was charged with $(S, S)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8} \quad(0.1058 \mathrm{~g}$, $0.0476 \mathrm{mmol})^{[20 \mathrm{~b}]}$ and acetone $(3 \mathrm{~mL})$ under ambient conditions. Then solid $\mathrm{Na}\left(\right.$ acac- $\left.\mathrm{F}_{6}\right)(0.0657 \mathrm{~g}, 0.0286 \mathrm{mmol})$ was added with stirring. After 0.5 h , the solvent was removed. The bright brown residue was suspended in pentane $(1-2 \mathrm{~mL})$. The mixture was filtered through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with pentane $(\approx 15 \mathrm{~mL})$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane $(2: 1$ $\mathrm{v} / \mathrm{v})$. The orange fractions were collected, and the solvent was removed by oil-pump vacuum (5×10^{-3} mbar, 1 day) to give $(S)-16(0.075 \mathrm{~g}$, $0.034 \mathrm{mmol}, 72 \%$) as a yellow-orange powder, m.p. $124-125^{\circ} \mathrm{C}$ (capillary); DSC: endotherm, $T_{\mathrm{i}} 95.8^{\circ} \mathrm{C}, T_{\mathrm{e}} 102.4^{\circ} \mathrm{C}, T_{\mathrm{p}} 115.8^{\circ} \mathrm{C}, T_{\mathrm{c}} 123.6^{\circ} \mathrm{C}, T_{\mathrm{f}}$ $150.0^{\circ} \mathrm{C}$; exotherm, $T_{\mathrm{e}} 214.4^{\circ} \mathrm{C}$; TGA: onset of mass loss, $T_{\mathrm{i}} 219.2^{\circ} \mathrm{C}$. Elemental analysis calcd (\%) for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{NOP}_{2} \operatorname{PdRe}$ (1055.27): C 46.66, H 3.05 , N 1.32; found: C 46.62, H 3.22, N 1.32 ; $[\alpha]_{25}^{589}=-44^{\circ} \pm 3^{\circ}(c=$ $1.21 \mathrm{mg} \mathrm{mL}^{-1}$, THF); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=8.19-8.14(\mathrm{~m}, 2 \mathrm{H}$ of $\left.5 \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.47-7.42\left(\mathrm{~m}, 8 \mathrm{H}\right.$ of $\left.5 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.26-7.22\left(\mathrm{~m}, 2 \mathrm{H}\right.$ of $\left.5 \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.11-7.07\left(\mathrm{~m}, 1 \mathrm{H}\right.$ of $\left.5 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.00-6.91\left(\mathrm{~m}, 12 \mathrm{H}\right.$ of $\left.5 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.02(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{COCF}_{3}\right)_{2}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.37($ brs, 1 H$), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 3.18$ (brs, 1H); 3.05-2.99 (m, 1H, CHH'), 2.55-2.45 ppm (m, 1H, CHH'); $\left.{ }^{13} \mathrm{C}{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=175.4$ (vbrm, COCF_{3}), PPh_{3} at $136.7\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=51 \mathrm{~Hz}, i\right), 133.7\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, o\right), 130.1\left(\mathrm{~d},{ }^{4} J-\right.$ $(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}, p), 128.6\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, m\right) ; \mathrm{PPhPh}^{\prime}$ at $138.6\left(\mathrm{~d},{ }^{1} J-\right.$ $(\mathrm{C}, \mathrm{P})=30 \mathrm{~Hz}, i), 134.0\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}, o\right), 132.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=\right.$ $\left.59 \mathrm{~Hz}, i^{\prime}\right), 131.6\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, o^{\prime}\right), 130.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}, p\right)$, $123.0\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}, p^{\prime}\right), 128.8\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}, m\right) ;{ }^{[45]} 115.3(\mathrm{q}$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{F})=3 \mathrm{~Hz}, \mathrm{CF}_{3}\right),{ }^{[54]} 90.1\left(\mathrm{brs}, \mathrm{CH}\left(\mathrm{COCF}_{3}\right)_{2}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $120.5(\mathrm{~m}), 94.0$ (m), 90.3 (s), 89.8 (s), 87.1 (s); $-15.4 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J(\mathrm{C}, \mathrm{P})=20 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=62.7\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=21 \mathrm{~Hz}, \mathrm{PPh}_{2}\right)$, $23.6 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=21 \mathrm{~Hz}, \mathrm{PPh}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=$ $-70.8\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-71.4 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{~F}, \mathrm{CF}_{3}{ }^{\prime}\right)$; IR (powder film): $\tilde{v}=$ $1633 \mathrm{~cm}^{-1}$ (s, NO); MS: ${ }^{[42]} 1055$ (100) [16] ${ }^{+}$, 848 (10) [$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})-$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}, 742(45)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$
$(\boldsymbol{S})-\left[\left(\boldsymbol{\eta}^{5}-\mathbf{C}_{5} \mathbf{H}_{4}\right) \mathbf{R e}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\boldsymbol{\mu}-\mathbf{C H}_{2} \mathbf{P P h}_{2}\right) \mathbf{P d}\left(\mathbf{N C}_{5} \mathbf{H}_{5}\right)(\mathbf{B r})\right](\mathbf{(S) - 1 7 b}): A$ round-bottomed flask was charged with $(S, S) \mathbf{- 1 0 b}(0.038 \mathrm{~g}, 0.020 \mathrm{mmol})$ and benzene (5 mL) under ambient conditions. Then pyridine (0.2 mL) was added with stirring, giving a yellow solution. After 0.5 h , pentane $(25 \mathrm{~mL})$ was added. The supernatant was decanted from the yellow powder, which was dissolved in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$. One drop of pyridine was added, and the solution was layered gently with pentane (10 mL). After 2 days, the supernatant was decanted from the yellow needles, which were washed with pentane and dried under a N_{2} stream to give (S)$\mathbf{1 7 b} \cdot \mathrm{CHCl}_{3}(0.0329 \mathrm{~g}, 0.029 \mathrm{mmol}, 72 \%)$. NMR spectra showed two geometric isomers (SP-4-2, SP-4-4) ${ }^{[23]}$ and an equilibrium with $(S, S)-10 \mathrm{~b}$ and pyridine (0.3 m in $\left.\mathrm{CDCl}_{3}:(78 \pm 5):(22 \pm 5)(S) \mathbf{- 1 7 b} /(S, S)-\mathbf{1 0 b}\right)$. DSC: exotherm, $T_{\mathrm{i}} 66.4^{\circ} \mathrm{C}, T_{\mathrm{e}} 66.9^{\circ} \mathrm{C}, T_{\mathrm{p}} 67.5^{\circ} \mathrm{C}, T_{\mathrm{c}} 68.7^{\circ} \mathrm{C}, T_{\mathrm{f}} 70.6^{\circ} \mathrm{C}$; endotherm,
$T_{\mathrm{i}} 74.0^{\circ} \mathrm{C}, T_{\mathrm{e}} 78.5^{\circ} \mathrm{C}, T_{\mathrm{p}} 106.5^{\circ} \mathrm{C}, T_{\mathrm{c}} 126.7^{\circ} \mathrm{C}, T_{\mathrm{f}} 130.2^{\circ} \mathrm{C}$; endotherm, T_{i} $131.9^{\circ} \mathrm{C}, T_{\mathrm{e}} 133.6^{\circ} \mathrm{C}, T_{\mathrm{p}} 140.8^{\circ} \mathrm{C}, T_{\mathrm{c}} 147.7^{\circ} \mathrm{C}, T_{\mathrm{f}} 150.2^{\circ} \mathrm{C}$; TGA: onset of first mass loss regime, $T_{\mathrm{i}} 38.4^{\circ} \mathrm{C}, T_{\mathrm{f}} 103.8^{\circ} \mathrm{C}$ (3.4% mass loss; theory for $1 \mathrm{CHCl}_{3} 10.6 \%$); onset of second mass loss regime, $T_{\mathrm{i}} 175.1^{\circ} \mathrm{C}, T_{\mathrm{f}}$ $230.0^{\circ} \mathrm{C}\left(5.9 \%\right.$ mass loss; theory for $\left.1 \mathrm{CHCl}_{3} 10.6 \%\right)$; onset of third mass loss regime, $T_{\mathrm{i}} \quad 251.2^{\circ} \mathrm{C}$. Elemental analysis calcd (\%) for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{BrPdRe} \cdot \mathrm{CHCl}_{3}$ (1126.6): C 44.77, H 3.31, N 2.48; found: C 44.41, H 3.46, N 2.38; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},(S)-17 \mathrm{~b}$ signals only): $\delta=8.8-6.8\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{NC}_{5} \mathrm{H}_{5}\right), \mathrm{C}_{5} \mathrm{H}_{4}$ at $5.48(\mathrm{brs}, 1 \mathrm{H}),{ }^{[55]} 5.33 / 5.24(2$ \times brs, $67: 33,1 \mathrm{H}), 5.08 / 4.87(2 \times$ brs, $67: 33,1 \mathrm{H}), 3.12 / 2.71(2 \times$ brs, $67: 33,1 \mathrm{H}) ; 3.02-2.86\left(\mathrm{~m}, 1 \mathrm{H}, \quad \mathrm{CHH} \mathrm{H}^{\prime}\right){ }^{[55]} 2.27-2.09 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}$, $\left.\mathrm{CH} H^{\prime}\right) ;{ }^{[55]}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3},(S)-\mathbf{1 7 b}$ signals only): $\delta=$ $67.9\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz}, \mathrm{PPh}_{2}\right.$, major isomer, $\left.\approx 67 \%\right), 67.1\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=\right.$ $22 \mathrm{~Hz}, \mathrm{PPh}_{2}$, minor isomer, $\left.\approx 33 \%\right), 24.1\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{P})=25 \mathrm{~Hz}, \mathrm{PPh}_{3}\right.$, major isomer, $\approx 67 \%), 23.3 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{P})=22 \mathrm{~Hz}, \mathrm{PPh}_{3}\right.$, minor isomer, coincident with a signal of $(S, S)-\mathbf{1 0 b})$; IR (powder film): $\tilde{v}=$ $1741 \mathrm{~cm}^{-1} \quad(\mathrm{~s}, \quad \mathrm{NO}) ; \quad \mathrm{MS}:^{[42]} \quad 928$ (5) $\quad\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}(\mathrm{Br})\right]^{+}, 848(10)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pd}\right]^{+}$, $742(10)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}$.
Suzuki-Miyaura reactions (Table 3): The following procedure was representative. A Schlenk tube was charged sequentially with $\mathrm{PhB}(\mathrm{OH})_{2}$ $(1.830 \mathrm{~g}, 15.00 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(4.25 \mathrm{~g}, 20.00 \mathrm{mmol})$, toluene $(20 \mathrm{~mL}), 4-$ bromoacetophenone $(1.99 \mathrm{~g}, \quad 10.00 \mathrm{mmol})$, tridecane $(1.22 \mathrm{~mL}$, $5.00 \mathrm{mmol})$, and a solution of $\mathbf{1 0 b}$ in toluene $(0.000050 \mathrm{~m} ; 1.0 \mathrm{~mL}, 5.0 \times$ $10^{-5} \mathrm{mmol}$) with vigorous stirring. Then it was fitted with a condenser and placed in an $80^{\circ} \mathrm{C}$ oil bath. Aliquots $(\approx 0.2 \mathrm{~mL})$ were assayed periodically by GC. The identity of the product was confirmed by comparison of the GC retention time on two different columns with that of an authentic sample.
Mizoroki-Heck reactions (see Supporting Information): The following procedure was representative. A Schlenk tube was charged sequentially with 4-bromoacetophenone $(0.1991 \mathrm{~g}, 1.00 \mathrm{mmol}), \mathrm{NaOAc}(0.1148 \mathrm{~g}$, $1.40 \mathrm{mmol}),(n \mathrm{Bu})_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}(0.0645 \mathrm{~g}, 0.200 \mathrm{mmol})$, di(2-n-butoxyethyl) ether $(0.1111 \mathrm{~g}, 0.509 \mathrm{mmol})$, DMF $(6 \mathrm{~mL})$, methyl acrylate $(0.20 \mathrm{~mL}$, $2.22 \mathrm{mmol})$, and a solution of $(S, S)-\mathbf{1 0 b}$ in DMF $(0.000119 \mathrm{~m} ; 0.050 \mathrm{~mL}$, $5.93 \times 10^{-6} \mathrm{mmol}$), fitted with a septum, and placed in a $140^{\circ} \mathrm{C}$ oil bath. The orange-brown suspension was stirred vigorously and monitored by GC. The identity of the product was confirmed by comparison of the GC retention time on two different columns with that of an authentic sample.
Transmission electron microscopy: An aliquot (0.1 mL) was taken from the Mizoroki-Heck reaction of methyl acrylate and 4-iodotoluene using (S)-16 (entry 4, Scheme 8 in Supporting Information) and poured into diethyl ether (1 mL). A drop was transferred to the surface of a carbon covered copper TEM grid, which was dried under vacuum at $70^{\circ} \mathrm{C}$. Images were recorded on a Philips CM 300 UT microscope.

Crystallography

Complex 11b was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and layered with ether. After three days, yellow prisms of $\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were analyzed as outlined in Table 1. ${ }^{[56]}$ Cell parameters were obtained from 15 reflections using a 10° scan and refined with 25 reflections. Lorentz, polarization, and absorption corrections were applied. ${ }^{[57]}$ The space group was determined from systematic absences and subsequent least-squares refinement. The structure was solved by direct methods. The parameters were refined with all the data by full-matrix least-squares on F^{2} using SHELXL-97. ${ }^{[58]}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were fixed in idealized positions using a riding model. Scattering factors were taken from the literature. ${ }^{[59]}$
Complex $(S)-6 \mathrm{c}^{[20 c]}$ was dissolved in benzene and layered with hexanes. After three days, the red cubes were analyzed as described for $\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (cell parameters from 10 frames using a 10° scan; refined with 2960 reflections). The structure was solved and refined as described for $\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The absolute configuration was confirmed by Flack's parameter (Table 1; theory for correct and inverted structures, 0 and 1). ${ }^{[60]}$

Crystals of $(S, S)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ (see above) and $(R, R)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ were analyzed as described for $\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (cell parameters from 10 frames using a 10° scan; refined with 10766-10823 reflections). The structures were solved and refined as described for $\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Some CHCl_{3} was added to a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $(S, S)-\mathbf{1 0 b}$. The mixture was layered gently with pentane. After one day, yellow needles of $(S, S)-\mathbf{1 0 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{CHCl}_{3}$ were analyzed as described for $11 \mathbf{b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (cell parameters from 10 frames using a 10° scan; refined with 5101 reflections). The structure was solved and refined as described for $\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules showed site disorder (50:50) about an inversion center.
Crystals of $(S) \mathbf{- 1 7} \mathbf{b} \cdot \mathrm{CHCl}_{3}$ (see above) were analyzed as described for $11 \mathbf{b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (cell parameters from 10 frames using a 10° scan; refined with 5334 reflections). The structure was solved and refined as described for $\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
CCDC-290483 ($\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$), CCDC-290482 ((S)-6c), CCDC-290479 $\left((S, S)\right.$-13 $\left.2 \mathrm{C}_{7} \mathrm{H}_{8}\right), \mathrm{CCDC}-270134\left((R, R)-\mathbf{1 3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}\right), \mathrm{CCDC}^{290481}((S, S)$ $\left.\mathbf{1 0 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{CHCl}_{3}\right)$, and $\mathrm{CCDC}-290480\left((S) \mathbf{- 1 7 b} \cdot \mathrm{CHCl}_{3}\right)$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. For ease of comparison (for example, in Table 2), the atom numbers in some of the structures described in the present work have been changed from those in the CCDC archives.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, 300/4-2) and Johnson Matthey PMC (palladium loans) for support, and Dr. O. Delacroix for valuable experimental assistance.
[1] a) A. C. Cope, R. W. Siekman, J. Am. Chem. Soc. 1965, 87, 3272; b) A. C. Cope, E. C. Friedrich, J. Am. Chem. Soc. 1968, 90, 909.
[2] Reviews: a) R. B. Bedford, Chem. Commun. 2003, 1787; b) I. P. Beletskaya, A. V. Cheprakov, J. Organomet. Chem. 2004, 689, 4055; c) J. Dupont, C. S. Consorti, J. Spencer, Chem. Rev. 2005, 105, 2527. [3] V. Farina, Adv. Synth. Catal. 2004, 346, 1553.
[4] a) T. K. Hollis, L. E. Overman, Tetrahedron Lett. 1997, 38, 883; b) F. Cohen, L. E. Overman, Tetrahedron: Asymmetry 1998, 9, 3213; c) Y. Donde, L. E. Overman, J. Am. Chem. Soc. 1999, 121, 2933; d) J. Kang, K. H. Yew, T. H. Kim, D. H. Choi, Tetrahedron Lett. 2002, 43, 9509; e) C. E. Anderson, Y. Donde, C. J. Douglas, L. E. Overman, J. Org. Chem. 2005, 70, 648; f) A. Moyano, M. Rosol, R. M. Moreno, C. López, M. A. Maestro, Angew. Chem. 2005, 117, 1899; Angew. Chem. Int. Ed. 2005, 44, 1865.
[5] a) L. E. Overman, C. E. Owen, M. M. Pavan, C. J. Richards, Org. Lett. 2003, 5, 1809; b) J. Kang, T. H. Kim, K. H. Yew, W. K. Lee, Tetrahedron: Asymmetry 2003, 14, 415; c) C. E. Anderson, L. E. Overman, J. Am. Chem. Soc. 2003, 125, 12412; d) S. F. Kirsch, L. E. Overman, M. P. Watson, J. Org. Chem. 2004, 69, 8101; e) S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2005, 127, 2866; f) R. S. Prasad, C. E. Anderson, C. J. Richards, L. E. Overman, Organometallics 2005, 24, 77; g) S. F. Kirsch, L. E. Overman, J. Org. Chem. 2005, 70, 2859.
[6] a) P. Barbaro, C. Bianchini, G. Giambastiani, S. L. Parisel, Coord. Chem. Rev. 2004, 248, 2131, and earlier reviews of ferrocenyl-containing catalysts cited therein; b) survey of non-metallocene architectural units: O. Delacroix, J. A. Gladysz, Chem. Commun. 2003, 665.
[7] a) K. Kromm, B. D. Zwick, O. Meyer, F. Hampel, J. A. Gladysz, Chem. Eur. J. 2001, 7, 2015; b) K. Kromm, F. Hampel, J. A. Gladysz, Organometallics 2002, 21, 4264; c) K. Kromm, P. L. Osburn, J. A. Gladysz, Organometallics 2002, 21, 4275.
[8] a) L. J. Alvey, O. Delacroix, C. Wallner, O. Meyer, F. Hampel, S. Szafert, T. Lis, J. A. Gladysz, Organometallics 2001, 20, 3087; b) K. Kromm, F. Hampel, J. A. Gladysz, Helv. Chim. Acta 2002, 85, 1778; c) K. Kromm, S. Eichenseher, M. Prommesberger, F. Hampel, J. A. Gladysz, Eur. J. Inorg. Chem. 2005, 15, 2983.
[9] a) S. Eichenseher, O. Delacroix, K. Kromm, F. Hampel, J. A. Gladysz, Organometallics 2005, 24, 245; b) J. Giner Planas, F. Hampel, J. A. Gladysz, Chem. Eur. J. 2005, 11, 1402.
[10] F. K. Friedlein, F. Hampel, J. A. Gladysz, Organometallics 2005, 24, 4103.
[11] a) V. I. Sokolov, L. L. Troitskaya, O. A. Reutov, J. Organomet. Chem. 1977, 133, C28; b) C. López, R. Bosque, X. Solans, M. FontBardia, Tetrahedron: Asymmetry 1996, 7, 2527; c) I. A. Mamedyarova, M. N. Nefedova, V. I. Sokolov, J. Organomet. Chem. 1996, 524, 181; d) V. V. Dunina, O. N. Gorunova, M. V. Livantsov, Y. K. Grishin, L. G. Kuz'mina, N. A. Kataeva, A. V. Churakov, Inorg. Chem. Commun. 2000, 3, 354; V. V. Dunina, O. N. Gorunova, M. V. Livantsov, Y. K. Grishin, L. G. Kuz'mina, N. A. Kataeva, A. V. Churakov, Tetrahedron: Asymmetry 2000, 11, 3967; e) F. X. Roca, M. Motevalli, C. J. Richards, J. Am. Chem. Soc. 2005, 127, 2388; f) L. L. Troitskaya, Z. A. Starikova, T. V. Demeshchik, S. T. Ovseenko, E. V. Vorontsov, V. I. Sokolov, J. Organomet. Chem. 2005, 690, 3976.
[12] a) A. M. Stevens, C. J. Richards, Organometallics 1999, 18, 1346; b) G. Jones, C. J. Richards, Organometallics 2001, 20, 1251.
[13] A. Berger, J.-P. Djukic, M. Pfeffer, J. Lacour, L. Vial, A. de Cian, N. Kyritsakas-Gruber, Organometallics 2003, 22, 5243, and earlier work cited therein.
[14] a) A. D. Ryabov, Chem. Rev. 1990, 90, 403; b) W. A. Herrmann, C. Brossmer, C.-P. Reisinger, T. H. Riermeier, K. Öfele, M. Beller, Chem. Eur. J. 1997, 3, 1357; c) D. L. Davies, S. M. A. Donald, S. A. Macgregor, J. Am. Chem. Soc. 2005, 127, 13754.
[15] Compound numbers that are indexed \mathbf{a}, \mathbf{b}, and \mathbf{c} indicate chloride, bromide, and iodide derivatives, respectively.
[16] a) W. A. Herrmann, Chem. Ber. 1978, 111, 2458; b) L. V. Dinh, F. Hampel, J. A. Gladysz, J. Organomet. Chem. 2005, 690, 493.
[17] a) J. J. Kowalczyk, A. M. Arif, J. A. Gladysz, Chem. Ber. 1991, 124, 729; b) P. C. Heah, A. T. Patton, J. A. Gladysz, J. Am. Chem. Soc. 1986, 108, 1185 (see Scheme 2).
[18] M. A. Dewey, Y. Zhou, Y. Liu, J. A. Gladysz, Organometallics 1993, 12, 3924.
[19] K. Kromm, Doctoral Dissertation, Universität Erlangen-Nürnberg, 2003.
[20] a) When both enantiomers were prepared, the synthesis of only one is given in the Experimental Section. b) Only $(S, S)-\mathbf{1 0} \mathbf{a},(R, R) \mathbf{- 1 0} \mathbf{c}$, and (R) - $\mathbf{1 6}$ were prepared. The configurations of the last two are the opposite of those normally depicted in papers in this series. To facilitate comparisons, their configurations (and those of the necessary educts) have been inverted throughout this paper. c) The crystal structure of $(R)-6 \mathbf{c}$ was determined, and not $(S)-6 \mathbf{c}$ as represented throughout this paper.
[21] a) C. W. K. Gstöttmayr, V. P. W. Böhm, E. Herdtweck, M. Grosche, W. A. Herrmann, Angew. Chem. 2002, 114, 1421; Angew. Chem. Int. Ed. 2002, 41, 1363; b) C. Dai, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 2719.
[22] The only exception is (S, S) - $\mathbf{1 3}$ below ($\delta=4.78-5.54$). Here, the crystal structure shows a distance of $4.145 \AA$ between the centroid of the PPh_{3} phenyl ring syn to the cyclopentadienyl ligand and the closest cyclopentadienyl carbon (α to the $\mathrm{Pd}-\mathrm{C}$ bond). In contrast, the three other crystallographically characterized palladacycles show distances of 3.735-3.878 A.
[23] The terms $S P-4-2, S P-4-3$, and $S P-4-4$ are used to distinguish the three stereoisomers of square planar complexes of formula MLL'L"L"' $(S P-4=$ square planar; $-2,-3$, and -4 indicate that the groups with the second, third, or fourth highest Cahn-Ingold-Prelog priorities are trans to the group with the highest priority): Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005 (Eds.: N. G. Connely, T. Damhus, R. M. Hartshorn, A. T. Hutton), Royal Society of Chemistry, London, 2005, pp. 179-181.
[24] a) L. Yu. Ukhin, N. A. Dolgopolova, L. G. Kuz'mina, Yu. T. Struchkov, J. Organomet. Chem. 1981, 210, 263; b) R. Giri, J. Liang, J.-G. Lei, J.-J. Li, D.-H. Wang, X. Chen, I. C. Naggar, C. Guo, B. M. Foxman, J.-Q. Yu, Angew. Chem. 2005, 117, 7586; Angew. Chem. Int. Ed. 2005, 44, 7420.
[25] a) Y. Fuchita, K. Hiraki, Y. Matsumoto, J. Organomet. Chem. 1985, 280, C51; b) M. Pfeffer, E. Wehman, G. van Koten, J. Organomet. Chem. 1985, 282, 127; c) G. Balavoine, J. C. Clinet, J. Organomet. Chem. 1990, 390, C84; d) M. T. Alonso, O. Juanes, J. de Mendoza, J. C. Rodríguez-Ubis, J. Organomet. Chem. 1992, 430, 349.
[26] T. Murahashi, H. Kurosawa, Coord. Chem. Rev. 2002, 231, 207.
[27] Note that with respect to the $\mathrm{Pd}-\mathrm{Pd}-\mathrm{Pd}$ axis, the PPh_{2} unit on one terminus is anti to the cyclopentadienyl unit on the other.
[28] F. B. Ogilvie, J. M. Jenkins, J. G. Verkade, J. Am. Chem. Soc. 1970, 92, 1970.
[29] W. H. Hersh, J. Chem. Educ. 1997, 74, 1485.
[30] J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 9550.
[31] a) M. T. Reetz, E. Westermann, Angew. Chem. 2000, 112, 170; Angew. Chem. Int. Ed. 2000, 39, 165; b) C. Rocaboy, J. A. Gladysz, New J. Chem. 2003, 27, 39, and references therein; c) C. C. Cassol, A. P. Umpierre, G. Machado, S. I. Wolke, J. Dupont, J. Am. Chem. Soc. 2005, 127, 3298, and references therein; d) D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. 2005, 117, 8062; Angew. Chem. Int. Ed. 2005, 44, 7852.
[32] For additional palladacycles that have been shown by other types of experimental data to give nonmolecular catalysts, see: a) J. G. de Vries, Dalton Trans 2006, 421; b) M. R. Eberhard, Org. Lett. 2004, 6, 2125 ; c) K. Yu, W. Sommer, J. M. Richardson, M. Weck, C. W. Jones, Adv. Synth. Catal. 2005, 347, 161; d) D. E. Bergbreiter, P. L. Osburn, J. D. Frels, Adv. Synth. Catal. 2005, 347, 172; e) M. Rosol, A. Moyano, J. Organomet. Chem. 2005, 690, 2291.
[33] R. Imbos, A. J. Minnaard, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 184.
[34] F. K. Friedlein, Doctoral Dissertation, Universität Erlangen-Nürnberg, 2006.
[35] a) R. B. Bedford, S. L. Hazelwood, P. N. Horton, M. B. Hursthouse, Dalton Trans. 2003, 4164; b) F. d'Orlyé, A. Jutand, Tetrahedron 2005, 61, 9670.
[36] A. D. Ryabov, G. M. Kazankov, S. A. Kurzeev, P. V. Samuleev, V. A. Polyakov, Inorg. Chim. Acta 1998, 280, 57.
[37] Representative recent papers: a) S. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee, T. Hyeon, J. Am. Chem. Soc. 2004, 126, 5026; b) C. Bock, C. Paquet, M. Couillard, G. A. Botton, B. R. MacDougall, J. Am. Chem. Soc. 2004, 126, 8028; c) M. Chen, J. P. Liu, S. Sun, J. Am. Chem. Soc. 2004, 126, 8394; d) J. Park, M. G. Kim, Y. Jun, J. S. Lee, W. Lee, J. Cheon, J. Am. Chem. Soc. 2004, 126, 9072; e) K. H. Park, Y. K. Chung, Adv. Synth. Catal. 2005, 347, 854.
[38] M. A. Dewey, J. A. Gladysz, Organometallics 1993, 12, 2390.
[39] H. K. Cammenga, M. Epple, Angew. Chem. 1995, 107, 1284; Angew. Chem. Int. Ed. Engl. 1995, 34, 1171.
[40] A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281.
[41] The quality of commercial $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{X}^{-}$can vary, and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene is recommended: A. T.

Patton, C. E. Strouse, C. B. Knobler, J. A. Gladysz, J. Am. Chem. Soc. 1983, 105, 5804.
[42] FAB, 3-NBA, $m / z(\%)$; the peaks correspond to the most intense signal of the isotope envelope.
[43] F. Agbossou, E. J. O’Connor, C. M. Garner, N. Quirós Méndez, J. M. Fernández, A. T. Patton, J. A. Ramsden, J. A. Gladysz, Inorg. Synth. 1992, 29, 211.
[44] The reaction mixture was checked by TLC at this stage. If the educt $(S)-\mathbf{8}$ remained, column chromatography $\left(\mathrm{SiO}_{2}\right.$, toluene/hexanes (1:1 $\mathrm{v} / \mathrm{v})$) was performed.
[45] Some or all of the PPh_{3} or PPhPh^{\prime} meta-carbon signals were obscured by $\mathrm{C}_{6} \mathrm{D}_{6}$.
[46] Measured gravimetrically inside a glove box (difference in mass between loaded and discharged syringe).
[47] The four downfield lines of this ddd were obscured by the PPh_{3} and PPh_{2} signals.
[48] The minor signals were absent in the ${ }^{1} \mathrm{H}$ NMR spectra of $(S, S)-\mathbf{1 0 b}$ and were assigned to the meso diastereomer.
[49] These (broadened) resonances were tentatively assigned to both syn and anti isomers (overlapping signals). However, in some cases nonoverlapping signals of the minor isomer may have been be too broad or too weak to observe.
[50] Some or all of the PPhPh or $\mathrm{C}_{5} \mathrm{H}_{4}{ }^{13} \mathrm{C}$ NMR signals were too weak to observe.
[51] It was not possible to assign signals to the $\mathrm{Re} \mathrm{PPh}_{3}$ vs PdPPh_{3} phenyl groups; the designations $i / o / m / p$ and $i^{\prime} / o^{\prime} / m^{\prime} / p^{\prime}$ are arbitrary.
[52] This surprisingly large coupling constant has been verified in another solvent $\left(\mathrm{CDCl}_{3}\right)$ and by a 500 MHz spectrum. It may result from a "W" conformational relationship between the $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ phosphorus atom and the methyl group of the cis acetate ligand.
[53] S. Eichenseher, Doctoral Dissertation, Universität Erlangen-Nürnberg, 2005. The synthesis is analogous to that of the racemate.[9a]
[54] Only one $\mathrm{CF}_{3}{ }^{13} \mathrm{C}$ NMR signal was detected.
[55] This signal overlaps with one of $(S, S) \mathbf{- 1 0 b}$. Therefore, the intensity reflects the theoretical rather than a measured value.
[56] When the crystals were dried by either vacuum or a nitrogen stream, the solvent of crystallization was removed.
[57] a) "Express" Enraf-Nonius diffractometer control software, Release 5.1, Enraf-Nonius, Delft, The Netherlands, 1994 ($\mathbf{1 1 b} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$), or "Collect" data collection software, B. V. Nonius, 1998 (other structures); b) "Scalepack" data processing software: Z. Otwinowski, W. Minor, Methods in Enzymology 1997, 276 (Macromolecular Crystallography, Part A), 307.
[58] G. M. Sheldrick, SHELX-97, Program for refinement of crystal structures, University of Göttingen, 1997.
[59] D. T. Cromer, J. T. Waber, in International Tables for X-ray Crystallography (Eds.: J. A. Ibers, W. C. Hamilton), Kynoch, Birmingham, UK, 1974.
[60] H. D. Flack, Acta Crystallogr. Sect. A 1983, 39, 876.
Received: December 9, 2005
Published online: April 21, 2006

[^0]: [a] F. K. Friedlein, Dr. K. Kromm, Dr. F. Hampel, Prof. Dr. J. A. Gladysz Institut für Organische Chemie
 Friedrich-Alexander-Universität Erlangen-Nürnberg Henkestrasse 42, 91054 Erlangen (Germany) Fax: (+49) 9131-852-6865
 E-mail: gladysz@organik.uni-erlangen.de
 Supporting information for this article, including data on starting chemicals, additional palladacycles characterized in situ, and Mizoro-ki-Heck reactions, is available on the WWW under http://www. chemeurj.org/ or from the author.

