ORIGINAL PAPER

CeCl₃-promoted one-pot synthesis of multisubstituted bispyrano[2,3-*c*]pyrazole derivatives

Keyume Ablajan · Li-Ju Wang · Zulipiya Maimaiti · Yong-Ting Lu

Received: 6 May 2013/Accepted: 13 October 2013/Published online: 30 November 2013 © Springer-Verlag Wien 2013

Abstract A simple and efficient method was developed for the synthesis of multisubstituted bispyrano[2,3-*c*]pyrazole derivatives via one-pot reaction of β -keto esters, hydrazine (or phenylhydrazine), terephthalaldehyde, and malononitrile in the presence of CeCl₃·7H₂O (10 mol%) as a catalyst. This method provides the products in good yields after a simple workup procedure without further purification.

Keywords Multicomponent reaction · One-pot synthesis · CeCl₃-promoted · Bispyrano[2,3-c]pyrazole · Heterocycles

Introduction

Pyrano[2,3-*c*]pyrazoles are an important class of compounds that include pharmaceuticals and biodegradable agrochemicals. Many have been previously reported in the literature as biologically important compounds with potential anticancer [1], antibacterial [2, 3], antiherpetic [4], anti-inflammatory [5, 6], and molluscicidal activity [7]. They have also been identified as promising inhibitors of human Chk1 kinase in computer-based screening and kinase inhibition assays [8, 9]. Furthermore, terephthalaldehyde is

Electronic supplementary material The online version of this article (doi:10.1007/s00706-013-1104-6) contains supplementary material, which is available to authorized users.

e-mail: ablajan209@hotmail.com

an important raw material and intermediate that is widely used for the preparation of bioactive compounds including medicinally active compounds and agrochemicals. Because of their wide range of applications, pyrano[2,3-*c*]pyrazoles are produced in large quantities. Therefore, the development of new methods for their synthesis has received considerable attention.

The combinatorial synthesis of small molecule heterocyclic libraries has emerged as a valuable tool in the search for novel lead structures. As a result, the performance of one-pot methods in the synthesis of various chemicals has recently been summarized [10–12]. Multicomponent reactions (MCRs) have attracted considerable attention because of their valuable features such as atom economy, straightforward reaction design, energy savings, and reduced waste. Highly functionalized small organic molecules and new heterocyclic compounds can be synthesized using MCRs. Multicomponent one-pot synthesis is of particular interest because of its wide applicability [13–17].

In recent decades, many synthetic approaches for the preparation of pyrano[2,3-c]pyrazole compounds have been reported, wherein various improvements and modifications of the reaction have been made. These methods include the two-component reaction of benzylidenemalononitrile and pyrazole-5-one catalyzed by cinchona alkaloid derivatives [18], the electrocatalyzed threecomponent reaction of substituted piperidin-4-ones, malononitrile, and pyrazolin-5-ones [3], as well as a simple and eco-friendly noncatalytic synthesis of both pyranopyrazoles and *N*1-phenyl-substituted pyranopyrazoles [19–23]. In addition, the four-component one-pot method is widely used for the synthesis of pyrano[2,3-c]pyrazole derivatives. For example, piperidine-catalyzed consecutive one-pot synthesis of trifluoromethylated spiro[indole-3,4'pyrano[2,3-c]pyrazole] derivatives has been reported [24].

K. Ablajan $(\boxtimes) \cdot L.-J.$ Wang $\cdot Z.$ Maimaiti $\cdot Y.-T.$ Lu Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China

Four-component one-pot syntheses of multisubstituted bispyrano[2,3-c]pyrazoles

Table 1 Optimization of the reaction conditions and solvent screening for the synthesis of 5a and 6a

Entry	Reaction conditions ^a	Solvent	Yield ^b /%	
_			5a	6a
1	No catalyst, reflux, 1 h	EtOH	5	8
2	Ce(NO ₃) ₂ (10 mol%), reflux	EtOH	60	62
3	InCl ₃ (10 mol%), reflux	EtOH	55	60
4	ZnCl ₂ (10 mol%), reflux	EtOH	45	48
5	CeCl ₃ ·7H ₂ O (10 mol%), reflux	EtOH	76	75
6	CeCl ₃ ·7H ₂ O (20 mol%), reflux	EtOH	78	77
7	CeCl ₃ ·7H ₂ O (10 mol%), 80 °C	No solvent	18	15
8	CeCl ₃ ·7H ₂ O (10 mol%), reflux	H ₂ O	35	32
9	CeCl ₃ ·7H ₂ O (10 mol%), reflux	EtOH/H ₂ O (1:1)	55	50
10	CeCl ₃ ·7H ₂ O (10 mol%), rt, 12 h	EtOH	20	15
11	CeCl ₃ ·7H ₂ O (10 mol%), reflux	DMF	65	60
12	CeCl ₃ ·7H ₂ O (10 mol%), reflux	MeCN	60	63
13	CeCl ₃ ·7H ₂ O (10 mol%), reflux	MeOH	65	60
14	CeCl ₃ ·7H ₂ O (10 mol%), reflux	CH_2Cl_2	55	50

Product **5a** was obtained from the reaction of methyl acetoacetate (2.0 mmol), hydrazine hydrate (2.0 mmol), terephthalaldehyde (1.0 mmol), and malononitrile (2.0 mmol) in 15 cm^3 of solvent; product **6a** was obtained using the same conditions with phenylhydrazine (2.0 mmol) in place of hydrazine hydrate

^a Except entries 1 and 10, reaction time of all experiments is 20 min ^b Isolated vields

However, the systematic synthesis of multisubstituted bispyrano[2,3-*c*]pyrazoles via a one-pot reaction route has not been reported.

CeCl₃·7H₂O is a cheap, non-toxic, and "friendly" reagent [25–29], which has been utilized as an efficient Lewis acid catalyst for the three-component coupling of aldehydes, aromatic amines, and diethylphosphite to produce α -aminophosphonates [30]. A series of 1,4-dihydropyridines were efficiently synthesized by the reaction of aldehydes with ammonium acetate and ethyl

acetoacetate using CeCl₃·7H₂O as a catalyst [31]. Here, we describe a facile and scalable four-component one-pot synthesis of multisubstituted bispyrano[2,3-*c*]pyrazoles in the presence of CeCl₃·7H₂O (10 mol%) as a catalyst in ethanol (Scheme 1). The products are obtained in good yield and chemical purity without further purification.

Results and discussion

In order to determine the optimum reaction conditions for the synthesis of 5a via the one-pot route, we initially investigated the reaction of methyl acetoacetate (1a), hydrazine hydrate (2a), terephthalaldehyde (3), and malononitrile (4) under different reaction conditions (Scheme 1). Also, we conducted the reaction of 1a, phenylhydrazine (2b), 3, and 4 for the synthesis of 6a. The detailed results are listed in Table 1.

As shown in Table 1, when the reaction was conducted without any catalyst, products **5a** and **6a** were obtained in 5 and 8 % yield using EtOH as a solvent, respectively, and prolonged refluxing did not increase the product yield (Table 1, entry 1). Other catalysts such as $Ce(NO_3)_2$, $InCl_3$, and $ZnCl_2$ also catalyzed the reaction to give the products in low yields (Table 1, entries 2–5). However, good yields of products **5a** (76 %) and **6a** (75 %) were obtained when $CeCl_3 \cdot 7H_2O$ was used as the catalyst in refluxing EtOH (Table 1, entry 5). In addition, it is notable that the product yield did not change significantly with increased amounts of $CeCl_3 \cdot 7H_2O$ (Table 1, entry 6). In another attempt, when the reaction was carried out at room temperature, only a small amount of the product was obtained (Table 1, entry 10).

Next, the effect of the reaction solvent was evaluated. As shown in Table 1, low yields of products **5a** (55–65 %) and **6a** (50–60 %) were obtained when the mixture was refluxed in the presence of CeCl₃·7H₂O (10 mol%) as a

 Table 2 Synthesis of multisubstituted bispyrano[2,3-c]pyrazole

 derivatives 5a-5f and 6a-6f

Entry	Product	\mathbb{R}^1	Reactant	Time/min; yield ^a /%	
_				$R^2 = CH_3$	$R^2 = C_2 H_5$
1	5a	CH ₃	2a	20/76	20/70
2	5b	C_2H_5	2a	30/79	30/75
3	5c	$n-C_3H_7$	2a	35/90	35/84
4	5d	iso-C ₃ H ₇	2a	40/81	40/75
5	5e	Ph	2a	45/75	45/70
6	5f	CF ₃	2a	40/85	40/78
7	6a	CH ₃	2b	45/75	45/70
8	6b	C_2H_5	2b	50/76	50/70
9	6c	n-C ₃ H ₇	2b	60/72	60/65
10	6d	iso-C ₃ H ₇	2b	50/75	50/70
11	6e	Ph	2b	45/78	45/72
12	6f	CF ₃	2b	50/76	50/70

^a Isolated yields

catalyst in different solvents such as DMF, MeCN, MeOH, and CH_2Cl_2 (Table 1, entries 8–11). These results revealed that using EtOH as the solvent afforded the best yields.

The optimized reaction conditions were tested for the synthesis of other multisubstituted bispyrano[2,3-c]pyrazole derivatives via the four-component one-pot synthesis route using CeCl₃·7H₂O (10 mol%) as a catalyst in refluxing EtOH. In all cases, products **5a–5f** and **6a–6f** were obtained in good yields (Table 2). The structures of the products were confirmed on the basis of ¹H NMR, IR, and ESI-MS spectral analyses. The corresponding spectral data were in agreement with the proposed structures of all target compounds. Moreover, all reactions were complete within 60 min and all products could be purified by filtration of the formed precipitate and washed thoroughly with EtOH without recrystallization. Furthermore, the reaction was also investigated using other ethyl β-keto esters. As shown in Table 2, slightly lower yields of the products were afforded when ethyl acetoacetates (1b) were used instead of methyl acetoacetates (1a). Nonetheless, twelve products, 5a-5f and 6a-6f, were obtained under the optimized conditions mentioned above.

The Ce³⁺ ions from the CeCl₃·7H₂O catalyst may have facilitated both the condensation reaction and the nucleophilic attack. A plausible reaction mechanism for the synthesis of compound **5** is shown in Scheme 2. At first, the condensation of the β -keto esters **1** with hydrazine hydrate (**2a**) forms intermediate pyrazole-5-one **A**, and the Knoevenagel condensation between terephthalic aldehyde (**3**) and malononitrile (**4**) affords intermediate **B**. Then, Michael reaction between intermediates **A** and **B** yields **C**. Subsequent intramolecular nucleophilic attack of OH onto C=N and tautomerization generated the expected target product.

Experimental

Melting points were measured in open end capillary tubes on a Büchi B-2540 digital melting point apparatus. Infrared (IR) spectra were recorded on a Bruker EQUINOX 55 spectrophotometer as KBr pellets. ¹H and ¹³C NMR spectra were obtained on a Varian INOVA-400 instrument using DMSO- d_6 as a solvent. Chemical shifts are given in ppm relative to TMS as an internal standard. ESI–MS spectra were determined on an HP 1100 LC–MS (ESI). HRMS (ESI) data were obtained on Micromass Q-Tof Global mass spectrometer. Silica gel (GF-254) was used for TLC. All chemical reagents were of analytical grade and used without further purification.

Synthesis of the multisubstituted bispyrano[2,3-c] pyrazole derivatives **5a–5f** and **6a–6f**

To a mixture of β -keto ester (1, 2.0 mmol) and hydrazine hydrate (85 %) or phenylhydrazine (2, 2.0 mmol) in 15 cm³ ethanol were added terephthalaldehyde (3, 1.0 mmol) and malononitrile (4, 2.0 mmol), followed by CeCl₃·7H₂O (10 mol%). The reaction mixture was then refluxed for 20–60 min. After the reaction reached completion, the mixture was cooled and large amounts of a precipitate formed. The precipitate was filtered off and washed thoroughly with EtOH to give the desired product.

4,4'-(1,4-Phenylene)bis(6-amino-3-methyl-2,4-dihydro-

pyrano[2,3-*c*]*pyrazole*-5-*carbonitrile*) (**5a**, C₂₂H₁₈N₈O₂) Light yellow crystals; yield 324 mg (76 %); m.p.: 300 °C; IR (KBr): $\bar{v} = 3,231$, 3,120, 2,187, 1,641, 1,593, 1,489 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.74$ (s, 6H, 2 CH₃), 4.57 (s, 2H, 2 CH), 6.84 (s, 4H, 2 NH₂), 7.11 (s, 4H, C₆H₄), 12.08 (s, 2H, 2 NH) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 9.58$ (2C), 35.81 (2C), 57.04 (2C), 97.59 (2C), 120.64 (2C), 127.51 (4C), 135.47 (2C), 142.62 (2C), 154.60 (2C), 160.71 (2C) ppm; MS (ESI): *m*/*z* = 427 ([M+H]⁺), 449 ([M+Na]⁺); HR-MS (ESI): calcd for C₂₂H₁₈N₈O₂ ([M+H]⁺) 427.1553, found 427.1556.

4,4'-(1,4-Phenylene)bis(6-amino-3-ethyl-2,4-dihydro-

pyrano[2,3-*c*]*pyrazole-5-carbonitrile*) (**5b**, C₂₄H₂₂N₈O₂) White crystals; yield 359 mg (79 %); m.p.: >300 °C; IR (KBr): $\bar{\nu} = 3,479, 3,243, 3,115, 2,970, 2,195, 1,638, 1,603, 1,488 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 0.74$ (t, 6H, 2 CH₃), 2.09–2.15 (m, 4H, 2 CH₂), 4.57 (s, 2H, 2 CH), 6.82 (s, 4H, 2 NH₂), 7.10 (s, 4H, C₆H₄), 12.10 (s, 2H, 2 NH) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 12.34$

A plausible one-pot reaction mechanism for the synthesis of compound 5

(2C), 17.64 (2C), 35.90 (2C), 57.34 (2C), 96.90 (2C), 120.57 (2C), 127.51 (4C), 140.44 (2C), 143.16 (2C), 154.55 (2C), 160.50 ppm; MS (ESI): m/z = 455([M+H]⁺), 477 ([M+Na]⁺); HR-MS (ESI): calcd for $C_{24}H_{22}N_8O_2$ ([M+H]⁺) 455.1866, found 455.1873.

4,4'-(1,4-Phenylene)bis(6-amino-3-propyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) (**5c**, C₂₆H₂₆N₈O₂)

White crystals; yield 434 mg (90 %); m.p.: 238–240 °C; IR (KBr): $\bar{\nu} = 3,486$, 3,233, 3,111, 2,967, 2,198, 1,633, 1,594 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.59$ (t, 6H, 2 CH₃), 1.07–1.21 (m, 4H, 2 CH₂), 1.99–2.17 (m, 4H, 2 CH₂), 4.55 (s, 2H, 2 CH), 6.82 (s, 4H, 2 NH₂), 7.09 (s, 4H, C₆H₄), 12.09 (s, 2H, 2 NH) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 13.28$ (2C), 20.83 (2C), 26.11 (2C), 36.00 (2C), 57.39 (2C), 97.23 (2C), 120.52 (2C), 127.48 (4C), 139.64 (2C), 143.12 (2C), 154.32 (2C), 160.49 (2C) ppm; MS (ESI): *m/z* = 483 ([M+H]⁺), 505 [M+Na]⁺; HR-MS (ESI): calcd for C₂₆H₂₆N₈O₂ ([M+H]⁺) 483.2179, found 483.2166.

4,4'-(1,4-Phenylene)bis(6-amino-3-isopropyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile)

 $(\textbf{5d},\,C_{26}H_{26}N_8O_2)$

Light yellow crystals; yield 391 mg (81 %); m.p.: >300 °C; IR (KBr): $\overline{\nu} = 3,488$, 3,248, 3,107, 2,970, 2,877, 2,195, 1,638, 1,603 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.75$ (d, 6H, 2 CH₃), 1.04 (d, 6H, 2 CH₃), 2.49–2.52 (m, 2H, 2 CH), 4.57 (s, 2H, 2 CH), 6.79 (s, 4H, 2 NH₂), 7.08 (s, 4H, C₆H₄), 12.10 (s, 2H, 2 NH) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 20.39$ (2C), 21.13 (2C), 24.91 (2C), 36.09 (2C), 57.73 (2C), 96.10 (2C), 120.52 (2C), 127.50 (4C), 143.50 (2C), 144.84 (2C), 154.62 (2C), 160.25 (2C) ppm; MS (ESI): m/z = 483 ([M+H]⁺), 505 ([M+Na]⁺); HR-MS (ESI): calcd for $C_{26}H_{26}N_8O_2$ ([M+H]⁺) 483.2,179, found 483.2169.

4,4'-(1,4-Phenylene)bis(6-amino-3-phenyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) (**5e**, C₃₂H₂₂N₈O₂)

Yellowish brown crystals; yield 414 mg (75 %); m.p.: >300 °C; IR (KBr): $\bar{\nu} = 3,251, 3,130, 2,184, 1,641, 1,618, 1,499 \text{ cm}^{-1}$; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 4.82$ (s, 2H, 2 CH), 6.87 (s, 4H, 2 NH₂), 6.98–7.00 (m, 4H, C₆H₄), 7.13–7.25 (m, 10H, 2 C₆H₅) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 18.40$ (2C), 36.49 (2C), 58.55 (2C), 97.30 (2C), 120.26 (2C), 126.19 (4C), 127.29 (4C), 128.45 (6C), 137.96 (2C), 143.19 (2C), 155.90 (2C), 159.95 (2C) ppm; MS (ESI): *m*/*z* = 551 ([M+H]⁺), 573 ([M+Na]⁺); HR-MS (ESI): calcd for C₃₂H₂₂N₈O₂ ([M+H]⁺) 551.1866, found 551.1871.

4,4'-(1,4-Phenylene)bis(6-amino-3-trifluoromethyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile)

$(5f, C_{22}H_{12}F_6N_8O_2)$

White crystals; yield 453 mg (85 %); m.p.: >300 °C; IR (KBr): $\overline{\nu} = 3,245, 3,122, 2,207, 1,639, 1,582, 1,494 \text{ cm}^{-1}$; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.64$ (t, 6H, 2 CH₃), 1.12–1.23 (m, 4H, 2 CH₂), 1.99–2.13 (m, 4H, 2 CH₂), 4.55 (s, 2H, 2 CH), 6.82 (s, 4H, 2 NH₂), 7.09 (s, 4H, C₆H₄), 12.09 (s, 2H, 2 NH) ppm; ¹³C NMR (100 MHz, DMSO *d*₆): $\delta = 51.05$ (2C), 73.04 (2C), 97.59 (2C), 116.52 (2C), 120.53 (q, ¹*J*_{CF} = 261 Hz, 2 CF₃), 127.51 (4C), 137.47 (2C), 142.62 (2C), 154.20 (2C), 167.71 (2C) ppm; MS (ESI): *m*/*z* = 535 ([M+H]⁺), 557 ([M+Na]⁺); HR-MS (ESI): calcd for C₂₂H₁₂F₆N₈O₂ ([M+H]⁺) 535.0987, found 535.0981.

4,4'-(1,4-Phenylene)bis(6-amino-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) (**6a**, C₃₄H₂₆N₈O₂)

White crystals; yield 433 mg (75 %); m.p.: 238–240 °C; IR (KBr): $\bar{\nu} = 3,474$, 3,325, 3,260, 3,193, 2,194, 1,660, 1,595, 1,518 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.29$ (s, 6H, 2 CH₃), 4.70 (s, 2H, 2 CH), 7.21 (s, 4H, 2 NH₂), 7.24–8.02 (m, 14H, C₆H₄ + 2 C₆H₅) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 12.40$ (2C), 51.54 (2C), 108.75 (2C), 112.28 (2C), 119.87 (2C), 126.06 (2C), 127.93 (4C), 128.64 (4C), 129.22 (4C), 137.41 (4C), 142.19 (2C), 143.67 (2C), 159.30 (2C) ppm; MS (ESI): *m*/ *z* = 579 [M+H]⁺; 601 ([M+Na]⁺); HR-MS (ESI): calcd for C₃₄H₂₆N₈O₂ [M+H]⁺ 579.2179, found 578.2171.

4,4'-(1,4-Phenylene)bis(6-amino-3-ethyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) (**6b**, C₃₆H₃₀N₈O₂)

White crystals; yield 460 mg (76 %); m.p.: 294–295 °C; IR (KBr): $\bar{\nu} = 3,466, 3,323, 3,192, 2,963, 2,196, 1,662, 1,594, 1,516 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d*₆): $<math>\delta = 0.79$ (t, 6H, 2 CH₃), 2.06–2.31 (m, 4H, 2 CH₂), 4.75 (s, 2H, 2 CH), 7.23 (s, 4H, 2 NH₂), 7.27–8.06 (m, 14H, C₆H₄ + 2 C₆H₅) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 12.40$ (2C), 18.69 (2C), 57.54 (2C), 107.85 (2C), 112.22 (2C), 119.76 (2C), 126.26 (2C), 127.83 (4C), 128.94 (4C), 129.32 (4C), 137.51 (4C), 143.09 (2C), 143.37 (2C), 159.69 (2C) ppm; MS (ESI): *m/z* = 607 ([M+H]⁺), 629 ([M+Na]⁺); HR-MS (ESI): calcd for C₃₆H₃₀N₈O₂ ([M+H]⁺) 607.2492, found 607.2486.

4,4'-(1,4-Phenylene)bis(6-amino-3-propyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) (**6c**, C₃₈H₃₄N₈O₂)

Yellowish brown crystals; yield 456 mg (72 %); m.p.: 273–274 °C; IR (KBr): $\bar{\nu} = 3,466, 3,324, 3,194, 2,952,$ 2,193, 1,657, 1,592, 1,515 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.74$ (t, 6H, 2 CH₃), 1.20–1.34 (m, 4H, 2 CH₂), 2.0–2.32 (m, 4H, 2 CH₂), 4.68 (s, 2H, 2 CH), 7.17 (s, 4H, 2 NH₂), 7.21–7.96 (m, 14H, C₆H₄ + 2 C₆H₅) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 13.58$ (2C), 20.56 (2C), 28.79 (2C), 36.54 (2C), 58.43 (2C), 98.15 (2C), 119.92 (2C), 126.03 (4C), 127.87 (4C), 129.20 (4C), 137.49 (4C), 142.55 (2C), 143.71 (2C), 148.96 (2C), 159.10 (2C) ppm; MS (ESI): *m/z* = 635 ([M+H]⁺), 657 ([M+Na]⁺); HR-MS (ESI): calcd for C₃₈H₃₄N₈O₂ ([M+H]⁺) 635.2,805, found 634.2817.

4,4'-(1,4-Phenylene)bis(6-amino-3-isopropyl-1-phenyl-1,4dihydropyrano[2,3-c]pyrazole-5-carbonitrile) (6d, C₃₈H₃₄N₈O₂)

White crystals; yield 475 mg (75 %); m.p.: >300 °C; IR (KBr): $\overline{\nu} = 3,462, 3,325, 3,192, 2,964, 2,197, 1,663, 1,594, 1,514 \text{ cm}^{-1}$; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.82$ (d, 6H, 2 CH₃), 0.99 (d, 6H, 2 CH₃), 1.97–2.41 (m, 2H, 2 CH), 4.70 (s, 2H, 2 CH), 7.07 (s, 4H, 2 NH₂), 7.07–7.96 (m, 14H, C₆H₄ + 2 C₆H₅) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 20.25 (2C), 21.39 (2C), 26.72 (2C), 36.34 (2C), 59.22 (2C), 97.31 (2C), 119.50 (2C), 120.10 (4C), 127.85 (4C), 129.12 (4C), 137.63 (4C), 142.86 (2C), 143.94 (2C), 153.81 (2C), 158.93 (2C) ppm; MS (ESI): *ml z* = 635 ([M+H]⁺), 657 ([M+Na]⁺); HR-MS (ESI): calcd for C₃₈H₃₄N₈O₂ ([M+H]⁺) 635.2805, found 634.2815.

4,4'-(1,4-Phenylene)bis(6-amino-1,3-diphenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) (**6e**, C₄₄H₃₀N₈O₂) Yellowish brown crystals; yield 547 mg (78 %); m.p.: 260–261 °C; IR (KBr): $\bar{\nu} = 3,459, 3,320, 3,201, 3,059,$ 2,192, 1,653, 1,591, 1,511 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): $\delta = 4.62$ (s, 2H, 2 CH), 6.79 (s, 4H, 2 NH₂), 7.05–7.97 (m, 20H, 4 C₆H₅), 7.08 (s, 4H, C₆H₄), 12.10 (s, 2H, 2 NH) ppm; ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 40.75$ (2C), 58.22 (2C), 94.31 (2C), 116.50 (2C), 121.83 (4C), 127.45 (2C), 127.89 (4C), 128.15 (2C), 128.55 (4C), 129.12 (4C), 131.18 (2C), 132.63 (4C), 140.16 (4C), 149.94 (2C), 154.81 (2C), 160.93 (2C) ppm; MS (ESI): m/z = 703 ([M+H]⁺), 725 ([M+Na]⁺); HR-MS (ESI): calcd for C₄₄H₃₀N₈O₂ ([M+H]⁺) 703.2492, found 702.2482.

4,4'-(1,4-Phenylene)bis(6-amino-3-trifluoromethyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile)(**6f**, $C_{34}H_{20}F_6N_8O_2$)

Yellow crystals; yield 521 mg (76 %); m.p.: 259–261 °C; IR (KBr): $\overline{v} = 3,498$, 3,248, 3,130, 2,986, 2,898, 2,190, 1,625, 1,602 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 6.74$ –7.21(m, 10H, 2 C₆H₅), 7.65 (s, 4H, C₆H₅), 7.86 (s, 2H, NH₂), 10.40 (s, 2H, 2 NH) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 44.41$ (2C), 58.54 (2C), 98.75 (2C), 116.28 (2C), 121.87 (4C), 122.67 (q, ¹*J*_{CF} = 265 Hz, 2 CF₃), 126.06 (4C), 127.93 (4C), 129.04 (2C), 132.51 (4C), 140.15 (4C), 159.30 (2C) ppm; MS (ESI): *m*/*z* = 687 ([M+H]⁺), 709 ([M+Na]⁺); HR-MS (ESI): calcd for C₃₄H₂₀F₆N₈O₂ ([M+H]⁺) 687.1613, found 686.1605.

Acknowledgments We gratefully acknowledge the Natural Science Foundation of China (No. 21162028) and the Natural Science Foundation of Xinjiang Science Technology Agency (No. 2009 211A02).

References

- Ough M, Lewis A, Bey EA, Gao J, Ritchie JM, Bornmann W, Boothman DA, Oberley LW, Cullen JJ (2005) Canc Biol Ther 4:95
- 2. Kuo SC, Huang LJ, Nakamura H (1984) J Med Chem 27:539
- Mandha SR, Siliveri S, Alla M, Bommena VR, Bommineni MR, Balasubramanian S (2012) Bioorg Med Chem Lett 22:5272

- Johns BA, Gudmundsson KS, Turner EM, Allen SH, Jung DK, Sexton CJ, Boyd FLJ, Peel MR (2003) Tetrahedron 59:9001
- 5. Abdelrazek FM, Metz P, Metwally NH, El-Mahrouky SF (2006) Arch Pharm 339:456
- Abdelrazek FM, Metz P, Kataeva O, Jaeger A, El-Mahrouky SF (2007) Arch Pharm 340:543
- Foloppe N, Fisher LM, Howes R, Potter A, Robertson Alan GS, Surgenor AE (2006) Bioorg Med Chem 14:4792
- Bevi I, Kumar BSD, Bhuyan PJ (2003) Tetrahedron Lett 44:8307
 Salama TA, Elmorsy SS, Khalil AM, Ismail MA (2007) Tetra-
- hedron Lett 48:6199
- 10. Dömling A (2006) Chem Rev 106:17
- 11. Dömling A, Ugi I (2000) Angew Chem Int Ed 39:3168
- 12. Kappe CO (2000) Acc Chem Res 33:879
- Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley-VCH, Weinheim
- 14. Nagarajan AS, Reddy BS (2009) Synlett 12:2002
- 15. Yi H, Song L, Wang W, Liu J, Zhu S, Deng H, Shao M (2010) Chem Commun 46:6941
- 16. Kanagaraj K, Pitchumani K (2010) Tetrahedron Lett 51:3312
- 17. Liu J, Li J, Zhang L, Song L, Zhang M, Cao W, Shao M (2012) Tetrahedron Lett 53:2469
- Shestopalov AM, Emeliyanova YM, Shestopalov AA, Rodinovskaya LA, Niazimbetova ZI, Evans DH (2003) Tetrahedron 59:7491

- 19. Vasuki G, Kumaravel K (2008) Tetrahedron Lett 49:5636
- 20. Ablajan K, Maimaiti Z (2012) Synth Commun 42:1959
- 21. Mecadon H, Rohman MR, Rajbangshi M, Myrboh B (2011) Tetrahedron Lett 52:2523
- 22. Mecadon H, Rohman MR, Kharbangar I, Laloo BM, Kharkongor I, Rajbangshi M, Myrboh B (2011) Tetrahedron Lett 52:3228
- Siddekha A, Nizam A, Pasha MA (2011) Spectrochim Acta A Mol Biomol Spectrosc 81:431
- 24. Liu X, Xu X, Wang X, Yang W, Qian Q, Zhang M, Song L, Deng H, Shao M (2013) Tetrahedron Lett 33:4451
- Imamoto T (1994) Lanthanides in organic synthesis. Academic, New York
- Bartoli G, Bellucci MC, Alessandrini S, Malavolta M, Marcantoni E, Sambri L, Dalpozzo R (1999) J Org Chem 64:1986
- 27. Ballini R, Marcantoni E, Perella S (1999) J Org Chem 64:2954
- Bartoli G, Bellucci MC, Petrini M, Marcantoni E, Sambri L, Torregiani E (2000) Org Lett 2:1791
- 29. Sabitha G, Babu RS, Rajkumar M, Srividia R, Yadav JS (2001) Org Lett 3:1149
- Jafari AA, Nazarpour M, Abdollahi-Alibeik M (2010) Heteroatom Chem 21:397
- Sabitha G, Arundhathi K, Sudhakar K, Sastry BS, Yadav JS (2009) Synth Commun 39:433