β-AgVO₃ Nanorods as Peroxidase Mimetic for Colorimetric Determination of Glucose

Junyu Lu, Lianqiang Wei, Dongmei Yao, Xiuju Yin, Hongfang Lai* and Xiuxiang Huang*

College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, China

(Received: January 22, 2017; Accepted: April 5, 2017; DOI: 10.1002/jccs.201700031)

 β -AgVO₃ nanorods have been demonstrated to exhibit intrinsic peroxidase-like activity. The oxidation of glucose can be catalyzed by glucose oxidase (GOx) to generate H₂O₂ in the presence of O₂. The β -AgVO₃ nanorods can catalytically oxidize peroxidase substrates including *o*-phenylenediamine (OPD), 3,3',5,5'-tetramethylbenzidine (TMB), and diammonium 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) by H₂O₂ to produce typical color reactions: OPD from colorless to orange, TMB from colorless to blue, and ABTS from colorless to green. The catalyzed reaction by the β -AgVO₃ nanorods was found to follow the characteristic Michaelis–Menten kinetics. Compared with horseradish peroxidase and AgVO₃ nanobelts, β -AgVO₃ nanorods showed a higher affinity for TMB with a lower Michaelis–Menten constant (*K*_m) value (0.04118 mM) at the optimal condition. Taking advantage of their high catalytic activity, the assynthesized β -AgVO₃ nanorods were utilized to develop a colorimetric sensor for the determination of glucose. The linear range for glucose was 1.25–60 μ M with the lower detection limit of 0.5 μ M. The simple and sensitive GO*x*- β -AgVO₃ nanorods–TMB sensing system shows great promise for applications in the pharmaceutical, clinical, and biosensor detection of glucose.

Keywords: β-AgVO₃ nanorods; Peroxidase-like activity; Colorimetric assays; Glucose detection.

INTRODUCTION

Because of its low cost, simplicity, and fast detection, colorimetric sensing is considered a very important method in analytical chemistry. Significantly, it can be employed during field analysis using only naked eyes. Colorimetric sensing does not demand any expensive or complicated instrumentation because the changes of color can be directly visualized.¹ However, this analytical method also faces some challenges, including how to turn the detection events into obvious color changes.² Today, peroxidase working as colorimetric sensing agent has been extensively approved in many fields. It can catalytically oxidize substrates including ophenylenediamine (OPD), 3,3',5,5'-tetramethylbenzidine (TMB), and diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to generate color changes.³ Unfortunately, the natural enzyme suffers from some intrinsic disadvantages, for example, lack of stability, tedious preparation and purification processes, and inactivity under harsh conditions. In order to overcome these shortcomings, many efforts have been made to develop peroxidase mimetics.⁴

In recent years, a number of nanomaterials have emerged owing to the widespread development of nanoscience and technology. They have been widely applied in various fields because of their intrinsic advantages such as low cost, easy preparation and purification, good stability, and stable storage. Some of nanomaterials have shown potential for colorimetric sensing.⁵ Hupp et al.⁶ used an Au-nanoparticle-based colorimetric sensor for the determination of heavy metal ions. However, the change of color based on Au nanoparticles was dependent on their size, capping agents, and shape.⁷ These drawbacks limit their application. To overcome these shortcomings, many attempts have been made to develop peroxides mimetics. Since Yan' group⁸ showed that inorganic materials of Fe₃O₄ magnetic nanoparticles possess intrinsic peroxidase-like activity, a number of the inorganic materials were found to possess enzyme-like activity. Such materials include metallic oxide nanoparticles $(CeO_2, {}^9Co_3O_4, {}^{10}V_2O_5, {}^{11}CuO, {}^{12}and MnO_2, {}^{13})$, metallic and bimetallic nanostructures (Au,¹⁴ Ag,¹⁵ Pt,¹⁶ AFt-Fe-Pt,¹⁷and Au@PtAg¹⁸), carbon-based

^{*}Corresponding authors. Email: laihongfang263@163.com; hxx1372@sina.com

nanomaterials (graphene oxide,¹⁹ carbon nanotubes,²⁰ carbon dots²¹), and bimetallic oxide nanoparticles (ZnFe₂O₄,²² CoFe₂O₄,²³ FeWO₄,²⁴ and NiFe₂O₄²⁵), which have been applied in colorimetric sensing based on their peroxides-like activity. Among them, the bimetallic oxide alum was not included until Zhang *et al.*²⁶ reported that AgVO₃ nanobelts exhibited intrinsic peroxidase-like activity. However, AgVO₃ nanobelts had a large size, which affected its catalytic activity. Yan *et al.*⁸ found that the smaller the size of a nanozyme, the higher its catalytic activity due to the larger surface area for interaction with substrates. Therefore, developing smaller alum bimetallic oxides with peroxidase-like activity still remains a challenge.

In this work, a simple and easy hydrothermal method was used for the preparation of small β -AgVO₃ nanorods. The catalytic activity of these nanorods was investigated by the catalytic oxidation of TMB to produce a typical blue color reaction in the presence of H₂O₂. Glucose oxidase (GO*x*) could catalyze the oxidation of glucose to generate H₂O₂ (Scheme 1). Based on these findings, a simple and quick colorimetric method was developed to determine glucose in serum samples.

EXPERIMENTAL

Chemicals and materials

All chemicals in this work were obtained from commercial sources and used as received without further purification. Unless otherwise stated, all the chemicals were analytical grade. Acetic acid (HAc), calcium chloride (CaCl₂), potassium carbonate (K₂CO₃), H₂O₂ (30 wt %), and sodium acetate (NaAc) were obtained

Scheme 1. Schematic illustration of colorimetric determination of glucose using GOx-β-AgVO₃ nanorod-catalyzed reactions.

from Shantou Xilong Chemical Factory (Guangdong, China). TMB, ABTS, and OPD were purchased from TCI (Shanghai, China). Silver nitrate (AgNO₃), partial ammonium vanadate (NH₄VO₃), glucose, lactose, fructose, ascorbic acid (AA), and tert-butyl alcohol were purchased from Aladdin Chemistry Co. Ltd (Shanghai, China). GOx, horse radish peroxidase (HRP), and glutathione (GSH) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water was produced by a Millipore purification system (Bedford, MA, USA) and used to prepare all aqueous solutions. Human serum samples were obtained from the Five People's Hospital of Guilin (Guilin, China). All experiments were performed in compliance with the relevant laws and institutional guidelines of the ethics committee of the hospital, and informed consent was obtained from the patients who provided the human samples.

Apparatus

Absorption spectra were obtained on a Cary 60 model spectrophotometer (Agilent, Santa Clara, CA, USA). The powder X-ray diffraction (XRD) patterns of β -AgVO₃ were recorded on a D/max 2550 VB/PC diffractometer (Rigaku,Tokyo, Japan) with Cu K α radiation ($\lambda = 0.15418$ nm). Scanning electron microscopy (SEM) was carried out on an FEI Quanta 200 FEG SEM instrument (Philips, Amsterdam, Netherlands). Inductively coupled plasma mass spectrometry (ICP-MS) was carried out on a Flexar/NexION300X apparatus (PerkinElmer, Waltham, MA, USA).

Synthesis of β-AgVO₃ nanorods

The β -AgVO₃ nanorods were prepared according to the literature²⁷ with some modification. Typically, 0.170 g of AgNO₃ was added to 30 mL ultrapure water with magnetic stirring. Then, 0.085 g of NH₄VO₃ was added to this solution. The mixed solution was continuously stirred for 2 h. The solution was transferred to a Teflon-lined stainless steel autoclave and heated for 24 h at 180°C. After cooling to room temperature, the yellow product was isolated by centrifugation and was washed several times with ultrapure water and ethanol in order to remove the superfluous reactants. Finally, the β -AgVO₃ nanorods were dried in a vacuum oven for 6 h at 60°C.

Mimetic peroxidase activity assays

All the reactions were monitored in the time-scan mode at 652 nm using the Cary 60 spectrophotometer. Kinetic measurements were carried out by monitoring the absorbance change at 652 nm. A typical catalytic experiment was as follows: 4.5 µg/mL β-AgVO₃ nanorods or 0.3 ng/mL HRP, 0.1 mM TMB, and 8 mM H₂O₂ were taken as the substrates in a reaction volume of 2 mL. The kinetic constants were calculated by employing the Lineweaver–Burk plots of the double reciprocal of the Michaelis–Menten equation: $1/\nu = V_{\text{max}} \times [S]/(K_{\text{m}} + [S])$, where the ν is the initial velocity, V_{max} is the maximum reaction velocity, [S] is the concentration of the substrate, and K_{m} is the Michaelis constant⁸.

Colorimetric detection of glucose

Colorimetric detection of glucose was carried out as follows: (a) 50 μ L of GOx (1 mg/mL) and 50 μ L of glucose at various concentrations in phosphate buffered saline (PBS) (10 mM, pH 6.9) were incubated at 37°C for 30 min; (b) 25 µL of TMB (4 mM), 90 µL of β -AgVO₃ nanorods (0.05 mg/mL), and 585 μ L of 0.2 M NaAc-HAc buffer (pH 4.0) were successively added into the above 300 µL glucose reaction solution; (c) the mixed solution was incubated at room temperature for 25 min; and (d) the absorption spectrum of mixed solution determined was by the spectrophotometer.

Fig. 1. XRD pattern of the β -AgVO₃ nanorods before (black line) and after a catalytic reaction (blue line).

For glucose detection in real samples, the human serum samples were diluted 20-fold with ultrapure water. A certain amount of the diluted solution was added to 10 mM PBS (pH 6.9) and 50 μ L of GOx (1 mg/mL), and various concentrations of the glucose solutions were spiked. The mixed solution was dealt with in the same way as the glucose standard. The mixed solutions were analyzed with the proposed method, and the percent recovery values were obtained. In the selectivity experiments, 600 μ M AA, 600 μ M fructose, 600 μ M K₂CO₃, 600 μ M CaCl₂, 600 μ M lactose, and 600 μ M glutathione were used to replace 60 μ M glucose.

RESULTS AND DISCUSSION Characterization of β-AgVO₃ nanorods

The β -AgVO₃ nanorods were synthesized by a hydrothermal method. The morphology and structure of the as-synthesized β-AgVO₃ nanorods were identified by XRD, SEM, and ICP-MS. Figure 1 shows the XRD patterns of as-synthesized β-AgVO₃ nanorods before and after the catalytic reaction. The diffraction peak positions coincided with those of the standard cards (JCPDS 29-1154), which indicated that the prepared β -AgVO₃ nanorods had a well-crystallized structure. At the same time, it also demonstrated that the assynthesized β -AgVO₃ nanorods had good stability in this sensing system. The SEM images showed that the prepared β-AgVO₃ exhibit nanorod-like morphology. The nanorod diameter was 28-80 nm and the length was 0.4–1.2 μ m (Figure 2). The obtained β -AgVO₃ nanorods were smaller than the $AgVO_3$ nanobelts,²⁶ which indicated that the catalytic activity of β -AgVO₃ nanorods should be higher than that of the AgVO₃ nanobelts. The as-prepared sample was investigated using ICP-MS (Table 1). This analysis indicated that the compositions of Ag and V were close to the theoretically calculated values, suggesting that β -AgVO₃ nanorods were successfully synthesized.

Peroxidase-like activity of β-AgVO₃ nanorods

The β -AgVO₃ nanorods are a kind of inorganic material with expected enzyme-like activity. The peroxidase-like activity of β -AgVO₃ nanorods was studied by the catalytic oxidation a typical peroxidase substrate (TMB) via H₂O₂. As shown in Figure 3(a), β -AgVO₃ nanorods, TMB + β -AgVO₃ nanorods,

3

Lu et al.

Fig. 2. SEM images of the as-prepared β -AgVO₃ nanorods.

TMB–H₂O₂, or H₂O₂+ β -AgVO₃ nanorod system did not produce a typical blue color reaction. However, the TMB–H₂O₂– β -AgVO₃ nanorod system could produce a color reaction. Meanwhile, two remarkable absorbance peaks could be observed at 370 and 652 nm, which were caused by the oxidation product of TMB. In order to demonstrate the peroxidase-like catalytic ability of β -AgVO₃ nanorods further, two other typical peroxidase substrates (OPD, ABTS) were also studied (Figure 3(b)). These results showed that β -AgVO₃ nanorods exhibited an intrinsic peroxidase-like catalytic activity and could catalyze the oxidation of TMB in the presence of H₂O₂.

The absorbance changes of oxidized TMB at 652 nm depend on the concentration of β -AgVO₃ nanorods and reaction time (Figure 4). The absorbance gradually increased with increasing β -AgVO₃ nanorod concentration, which further confirmed that β -AgVO₃ nanorods exhibited peroxidase-like ability for the catalytic oxidation of TMB to produce a typical color reaction. In order to prove the catalytic mechanism of β -AgVO₃ nanorods, *tert*-butyl alcohol was applied as a typical OH radical capture reagent in the β -AgVO₃ nanorods+TMB+ H₂O₂ reaction system (Figure 5). *tert*-Butyl alcohol could rapidly react with OH and terminate radical chain reactions by generating inert

Table 1. Elemental analysis of $\beta\text{-}AgVO_3$ nanorods by ICP-MS compared with the theoretical calculation

Methods	Ag element quality percentage (%)	V element quality percentage (%)	
ICP-MS	53.93	22.88	
Theoretical calculation	52.17	24.64	

Fig. 3. (a) UV-vis spectra of (A) β -AgVO₃ nanorod solution, (B) TMB + β -AgVO₃ nanorods, (C) TMB-H₂O₂, (D) H₂O₂ + β -AgVO₃ nanorods, and (E) TMB-H₂O₂-β-AgVO₃ nanorod solution at pH 4.0 HAc-NaAc buffer at 25°C. ([TMB]: 0.1 mM, [H₂O₂]: 8 mM, $[\beta$ -AgVO₃]: 4.5 µg/mL). (b) The β-AgVO₃ naonorod-catalyzed oxidation of diverse substrates to produce various color reactions. (A) TMB, (B) OPD, (C) ABTS. Inset: (a) photographs of aqueous solution of β -AgVO₃ nanorods (A), TMB + β -AgVO₃ nanorods (B), TMB-H₂O₂ (C), H₂O₂ + β -AgVO₃ nanorods (D), and TMB-H₂O₂-β-AgVO₃ nanorods (E). (b) The corresponding photograph of these samples.

intermediate radicals.²⁸ The experimental results showed that the absorbance gradually decreased with increasing *tert*-butyl alcohol concentration from 0 to 350 mg/mL, which indicated that the peroxidase-like activity of β -AgVO₃ nanorods for catalytic oxidation of TMB in the presence of H₂O₂ originates from H₂O₂ decomposition to generate ·OH radicals.

Optimization of experimental conditions

Similar to nanomaterial-based peroxidase mimetics and the natural enzyme (HRP), the catalytic activity of β -AgVO₃ nanorods was also dependent on the pH of the reaction buffer, incubation temperature, and H₂O₂ concentration. Therefore, various pH values (from 2.5 to 6.5), reaction temperatures (from 20 to 70°C), and H_2O_2 concentrations (from 0.1 to 1000 mM) were investigated. At the same time, the reaction pH, temperature, and H₂O₂ concentrations of HRP were also studied under the same conditions to compare their catalytic activity. The relative activity of β -AgVO₃ nanorods was higher in a weakly acidic (pH 4.0-5.0) solution than in a strongly acidic or neutral solution. Therefore, pH 4.0 was selected as the consubsequent experiments. dition for With the

Fig. 4. Absorbance change at 652 nm versus time in the presence of 0 μg/mL (black), 10 μg/mL (red), 30 μg/mL (blue), and 50 μg/mL (green) β-AgVO₃ nanorods in the HAc–NaAc buffer (pH 4.0, 0.2 M) at room temperature.

temperature increasing from 20 to 70°C, the catalytic activity of β -AgVO₃ nanorods first increased and then decreased. Hence, room temperature (25°C) was taken as the optimum temperature. The optimal H₂O₂ concentration was found to be 8 mM. There values were very similar to those of HRP (Figure 6(a)–(c)). In addition, the effects of reaction time and concentration on the catalytic activity of β -AgVO₃ nanorods were also investigated. As shown in Figure 6(d), the relative activity of β -AgVO₃ nanorods gradually increased until

Fig. 5. Effect of different concentrations of *tert*-butyl alcohol on the oxidation of TMB.

reaction time up to 25 min, at which it reached a maximum. The catalytic activity of β -AgVO₃ nanorods gradually increased with increasing concentration of β -AgVO₃ nanorods. After the concentration reached 4.5 µg/mL, the relative activity changed very little (Figure 6(e)). Hence, 25 min of reaction time and 4.5 µg/mL of β -AgVO₃ nanorods were used for subsequent studies.

Kinetic analysis of $\beta\text{-}AgVO_3$ nanorods as peroxidase mimics

The catalytic activity of β -AgVO₃ nanorods was investigated under the enzyme kinetics theory and methods using TMB and H₂O₂ as substrates under the optimal conditions (Figure 7(a) and (b)). HRP was also studied under the same conditions (Figure 7(c) and (d)). Typical Michaelis-Menten kinetic curves of the reactions were obtained by the changes of the respective substrate concentration in the catalytic system. The basic parameters could be calculated by using Lineweaver-Burk equation $1/v = (K_m/V_{max}) \times (1/[S]) +$ $1/V_{\text{max}}$ (v is the initial velocity, K_{m} is the Michaelis constant, V_{max} is the maximum reaction velocity, and [S] is the concentration of the substrate). The Michaelis-Menten constant (K_m) and the maximum initial velocity (V_{max}) of β -AgVO₃ nanorod peroxidase mimics and HRP are listed in Table 2. $K_{\rm m}$ is a measure of the enzyme affinity for a substrate. A smaller value of $K_{\rm m}$ indicates a stronger affinity between the enzyme and the substrate, and a more efficient catalysis. It could be seen that the $K_{\rm m}$ value of β -AgVO₃ nanorods with TMB as the substrate was lower than that of HRP and AgVO₃ nanobelts, which suggested that the β -AgVO₃ nanorods had higher affinity to TMB than HRP and AgVO₃ nanobelts.

Determination of glucose

Under the optimum conditions, a simple colorimetric determination method of glucose was developed combined with GOx. H₂O₂ could be produced by GOx catalytic oxidation of glucose solution; then ·OH generated by H₂O₂ decomposed. Finally, β -AgVO₃ nanorods could effect catalytic oxidation of TMB and produce a typical color reaction in the presence of H₂O₂. Based on this phenomenon, the changes of the absorbance at 652 nm with various concentrations of glucose were investigated. As shown in Figure 8(a), the color of the

Fig. 6. Effect of pH (a), temperature (b), H_2O_2 concentration (c), reaction time (d), and β -AgVO₃ concentrations (e) on the catalytic reaction.

solution changed deeper and deeper; at the same time, the absorbance at 652 nm increased gradually when the concentration of glucose ranged from 1.25 to 80 μ M. A good linear relationship was found between the absorbance and the concentration of glucose from 1.25 to 60 μ M ($R^2 = 0.995$) (Figure 8(b)), and the limit of detection of glucose was estimated to be 0.5 μ M. When compared with other nanomaterial-based colorimetric sensors, the detection limit of the proposed colorimetric method is also comparable (Table 3). In addition, the proposed detection limit was evaluated by the formula S/N = ((average_{sample} – average_{blank})/SD_{blank}). And the sample concentration consistent with 3 < S/N < 5 was defined as the limit of detection.³³

Selectivity of the method

The selectivity for the detection of glucose was studied. The experiments, under the same conditions, were conducted to study the effects of the other foreign

Fig. 7. Steady-state kinetic analyses using Michaelis– Menten model and Lineweaver–Burk model (insets) for β -AgVO₃ nanorods and by (a,c) varying the concentration of TMB with fixed H₂O₂ concentration and (b,d) varying the concentration of H₂O₂ with fixed TMB concentration.

substances. As shown in Figure 9, these coexisting substances did not influence the detection of glucose and revealed the high selectivity of the β -AgVO₃ nanorods– TMB–H₂O₂ system for glucose detection. Thus, this system can be applied to glucose determination in real samples.

In order to verify the feasibility of the proposed colorimetric method, experiments using five human serum samples were conducted. The diluted serum sample solutions were detected under the same conditions as the standard for glucose determination. As can be seen, the results of the proposed colorimetric method

Table 2. Comparison the Michaelis–Menten constant (K_m) and the maximum reaction rate (V_{max}) of β -AgVO₃ nanorods with HRP and AgVO₃ nanobelts

Catalyst	Substance	K _m [mM]	$[10^{-4} \mathrm{s}^{-1}]$
β-AgVO ₃	TMB	0.04118	37.97
nanorods	H_2O_2	5.291	53.09
HRP	TMB	0.2422	104.01
	H_2O_2	1.018	25.65
AgVO ₃	TMB	8.03	_
nanobelts ²⁶	H_2O_2	14	

Colorimetric Sensing; Glucose Detection

The concentration of glucose (µM)

Fig. 8. (a) Effect of glucose on the absorption spectra in the GOx- β -AgVO₃ nanorods-TMB system. (b) Curve of glucose detection from 1.25 to 80 μ M, where $\Delta A = A_{(glucose,652nm)} - A_{(blank,652nm)}$. Inset: (a) Color changes of the GOx- β -AgVO₃ nanorod-TMB system with different concentrations of glucose (from left to right: 0 to 80 μ M), (b) Line calibration plot of the glucose determination.

were similar to those using the hospital's assay kit (Table 4). In addition, to demonstrate the reliability and precision of this colorimetric method further, the spiked recoveries of glucose in two serum samples were studied, and the results are listed in Table 5. The recovery values of these two serum samples range from 99.40 to 105.45%. These results show that the colorimetric method based on the peroxidase-like catalytic ability of β -AgVO₃ nanorods can applied to detect glucose in real samples.

JOURNAL	OF 1	THE	CHIN	ESE
CHEMI	CAL	SO	CIET	(

Catalyst	Linear range (µM)	Detection limit (µM)	References
Ag nanoparticles	5-200	0.1	15
Ceria nanoparticles	6.6–130	3	29
Co ₃ O ₄ /rGO nanocomposites	1–100	1	30
$H_2TCPP - Fe_3O_4$	5–25	2.21	31
Pt-DNA complexes	0.1 - 1000	0.1	32
β-AgVO ₃ nanorods	1.25-80	0.5	This work

Table 3. Comparison of various nanomaterial-based colorimetric sensing for glucose determination

CONCLUSION

In summary, β -AgVO₃ nanorods were shown to possess intrinsic peroxidase-like activity. The β -AgVO₃ nanorods could catalyze the oxidation of several substrates and generate a typical color reaction in the presence of H₂O₂. With O₂, GOx could catalyze the oxidation of glucose and then produce H₂O₂. The β -AgVO₃ nanorods had a higher affinity to TMB and a lower affinity to H₂O₂ compared to HRP. A simple, cheap, and selective colorimetric method was developed for glucose detection based on the above principles. In addition, this method was also tested in the detection of glucose in human serum samples. Furthermore, this

Fig. 9. Selectivity of the test using GOx and β -AgVO₃ nanorods for the determination of glucose. Insert: the corresponding color change of different samples. The concentrations of glucose and the other coexisting substances are 60 and 600 μ M, respectively.

Serum sample	Colorimetric method $(mM, n = 3)$	Glucose assay kit (mM)
1	13.16 ± 0.045	13.27
2	10.46 ± 0.040	11.15
3	8.74 ± 0.089	9.34
4	12.62 ± 0.078	13.30
5	8.36 ± 0.15	9.50

 Table 4. Results of glucose detection in the real serum samples

 Table 5. Results for the determination of the glucose in two
 kinds of human serum sample

Original amount (µM)	Added (µM)	Found (µM)	Recovery (%)	RSD (%, n = 3)
13.16	5	18.35	103.80	1.41
	20	34.25	105.45	1.35
	40	54.80	104.10	0.46
10.46	5	15.43	99.40	0.39
	20	30.85	101.95	1.42
	40	52.06	104.00	2.03

method showed a good linear relationship, detection limit, and recovery value. Therefore, the proposed colorimetric method might open up new possibilities for the detection of glucose in complex systems.

ACKNOWLEDGMENTS

This work was supported by the Guangxi Natural Science Foundation of China (Nos. 2014GXNSFBA118045, 2014GXNSFBA118062 and 2015GXNSFAA139030), the scientific research project of Hechi University (No. XJ2015ZD004), and the scientific research project of the education department of Guangxi Zhuang Autonomous Region (Nos. YB2014331 and ZD2014113).

REFERENCES

- H. Tan, C. Ma, L. Gao, Q. Li, Y. Song, F. Xu, T. Wang, L. Wang, *Chem. Eur. J.* 2014, 20, 1.
- 2. Y. Song, W. Wei, X. Qu, Adv. Mater. 2011, 23, 4215.
- A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Angew. Chem. Int. Ed. 2007, 46, 1318.

- 5. J. Li, J. Du, J. Zhang, J. Chin. Chem. Soc. 2014, 61, 1395.
- 6. Y. Kim, R. C. Johnson, J. T. Hupp, *Nano Lett.* 2001, 1, 165.
- W. Liu, H. Yang, Y. Ding, S. Ge, J. Yu, M. Yan, X. Song, *Analyst* 2014, 139, 251.
- L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett, X. Y. Yan, *Nat. Nanotechnol.* 2007, 2, 577.
- A. Asati, S. Santra, C. Kaittanis, S. Nath, J. M. Perez, Chem. Int. Ed. 2009, 48, 2308.
- 10. J. Yin, H. Cao, Y. Lu, J. Mater. Chem. 2012, 22, 527.
- R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H.-C. Schröder, W. E. G. Müller, W. Tremel, *Adv. Funct. Mater.* 2011, 21, 501.
- W. Chen, J. Chen, A.-L. Liu, L.-M. Wang, G.-W. Li, X.-H. Lin, *ChemCatChem* 2011, 3, 1151.
- Y. Wan, P. Qi, D. Zhang, J. Wu, Y. Wang, *Biosens. Bioelectron.* 2012, 33, 69.
- Y. J. Long, Y. F. Li, Y. Liu, J. J. Zheng, J. Tang, C. Z. Huang, *Chem. Commun.* 2011, 47, 11939.
- 15. H. Jiang, Z. Chen, H. Cao, Y. Huang, *Analyst* 2012, 137, 5560.
- L. Chen, N. Wang, X. Wang, S. Ai, *Microchim. Acta* 2013, 180, 1517.
- W. Zhang, X. Liu, D. Walsh, S. Yao, Y. Kou, D. Ma, Small 2012, 8, 2948.
- X. Hu, A. Saran, S. Hou, T. Wen, Y. Ji, W. Liu, H. Zhang, W. He, J.-J. Yin, X. Wu, *RSC Adv.* 2013, 3, 6095.
- Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, *Adv. Mater.* 2010, 22, 2206.
- Y. Song, X. Wang, C. Zhao, K. Qu, J. Ren, X. Qu, *Chem. Eur. J.* 2010, 16, 3617.
- W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, Y. Huang, *Chem. Commun.* 2011, 47, 6695.
- L. Su, J. Feng, X. Zhou, C. Ren, H. Li, X. Chen, Anal. Chem. 2012, 84, 5753.
- K. Zhang, W. Zuo, Z. Wang, J. Liu, T. Li, B. Wang, Z. Yang, RSC Adv. 2015, 5, 10632.
- 24. T. Tian, L. Ai, X. Liu, L. Li, J. Li, J. Jiang, Ind. Eng. Chem. Res. 2015, 54, 1171.
- L. Su, W. Qin, H. Zhang, Z. U. Rahman, C. Ren, S. Ma, X. Chen, *Biosens. Bioelectron.* 2015, 63, 384.
- Z. Xiang, Y. Wang, P. Ju, D. Zhang, *Microchim. Acta* 2016, 183, 457.
- 27. A. Y. S. Malkhasian, J. Alloys Compd. 2015, 649, 394.
- G. V. Buxton, C. L. Greenstock, W. P. Heiman, A. B. Ross, J. Phys. Chem. Ref. Data 1988, 17, 513.
- 29. X. Jiao, H. Song, H. Zhao, W. Bai, L. Zhang, Y. Lv, *Anal. Methods* **2012**, *4*, 3261.

Colorimetric Sensing; Glucose Detection

- J. Xie, H. Cao, H. Jiang, Y. Chen, W. Shi, H. Zheng, Y. Huang, Anal. Chim. Acta 2013, 796, 92.
- Q. Liu, H. Li, Q. Zhao, R. Zhu, Y. Yang, Q. Jia, B. Bian, L. Zhuo, *Mater. Sci. Eng. C* 2014, 41, 142.
- 32. X. Chen, X. Zhou, J. Hu, Anal. Methods 2012, 4, 2183.
- 33. L. Guo, Y. Xu, A. R. Ferhan, G. Chen, D.-H. Kim, J. Am. Chem. Soc. 2013, 135, 12338.