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Kinetic investigation on aqueous decomposition
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Abstract—The kinetics decomposition of 2-chloroethylnitrososulfamides (CENS) was studied in aqueous buffered solutions with pH
ranging from 0 to 14. The study was monitored by RP-LC–MS and conventional UV spectrophotometry. The reaction proceeded
via a pseudo-first-order kinetic with significant correlation coefficient. The major decomposition products from CENS after incu-
bation in phosphate buffer were isolated and identified by NMR and mass spectrometry. The results indicate that the mechanism
pathway involves a denitrosation of the CENS and competitive hydrolysis with nucleophilic attack on the sulfur atom and forma-
tion of sulfamate compounds.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1. CENS used in this study.
2-Chloroethylnitrososulfamides (CENS) are promising
alkylating agents which have focused our interest over
the past decade due to their better biological profile
compared to their structural parent, the chloroethylni-
trosoureas (CENU).1–8 Indeed, in contrast to CENU,
this class of compounds does not have the ability to gen-
erate carbamoylating species which are known to be in-
volved in the toxicity of CENU.3

To progress to clinical evaluation, information are need-
ed on the stability and mechanism of decomposition of
CENS. So, to gain insight into the stability of this family
of compounds, we have carried out the first experimen-
tal investigation on the fragmentation of CENS in aque-
ous media by LC–MS and conventional UV
spectrophotometry.

For this study, three CENS of interest were selected
(Fig. 1) considering their better activity in vitro on
A549 and MCF7 cell lines, compared to CENU.9–11
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In a first approach, we monitored by TLC the decompo-
sition of the different CENS in buffer solution. The first
observation indicated that CENS lost their nitroso
group to give two compounds with different Rf.

The kinetics of decomposition for the three different
compounds were experimentally determined by UV
spectrophotometry, analyzing evolution of the spectra
according to the time of 10�4–10�5 M solutions in buffer
solutions with pH ranging from 0 to 14. Unless other-
wise stated, the reactions were monitored at 291 K, the
ionic strength being adjusted (0.2 M) with addition of
KCl.
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Figure 4. Evolution of 10�4 M solution of compound 1 at pH 7.4.
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For the decomposition of CENS, three distinct types of
reactivity can be distinguished. First in basic solution,
the decomposition of the compounds 1, 2 and 3 takes
place in only one step with hypsochromic shift and
appearance of an isobestic point (Fig. 2).

For all the compounds studied at acidic pH interval, the
decomposition of the CENS occurred via independent
step with a decreasing of absorbance in time. This obser-
vation can be attributed to the loss of chromophoric ni-
troso group.

The way of decomposition of the three compounds in
neutral pH interval was quite different. First, we ob-
served a slow decrease in absorbance with hypsochromic
shift and apparition of new absorption band which in-
crease according to the time. The reaction in neutral
pH is more complex. As we can see in Figure 4, the
decomposition occurred probably via two competitive
steps. The slow decrease in absorbance value can be
attributed to the denitrosation phenomena which corre-
spond to the reaction in acidic media (Fig. 3). The in-
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Figure 2. Evolution of 10�4 M solution of compound 1 at pH 8.6.
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Figure 3. Evolution of 10�4 M solution of compound 2 at pH 0.14.
crease in absorbance and hypsochromic shift
accompanied with apparition of isobestic point near
254 nm was similar to the decomposition in basic medi-
um (Fig. 2).

For the decompositions taking place in only one step,
the values of the observed rate coefficients (Kobsd) have
been determined graphically using the function
ln [(A � A1)/(A0 � A1)] = f (t) for the acidic medium
and ln A = f (t) for the basic medium. Linearization of
the experimental data showed that these decompositions
are excellent pseudo-first-order reactions. The coeffi-
cients of linear regression are superior to 0.98 for all
compounds. Absolute values of the slopes represent
the rate constant of the reaction of the pseudo-first-or-
der. For neutral pH, the decomposition reactions of
the compounds 1, 2 and 3 are competitive and the treat-
ment of kinetic data revealed pseudo-first-order. To in-
crease the precision of calculation of the rate
constants, a sufficient number of experimental points sit-
uated in the first time of half-reaction of each process
have been used. For the first stage 20 cycles of 90 s have
been recorded and 25 cycles of 900 s for the second. For
all pH values, the rate constant (Kobsd) and the times of
half-life have been determined.

The relation between the logarithms of the observed that
pseudo-first order rate constants and the pH are repre-
sented in the following Figure 5.

The U-shaped profile is a characteristic of the reaction
catalyzed in acidic or basic medium as already noted
for analogues compounds.12–20

For each compound, three distinct regions of reactivity
can be distinguished. For the three compounds, the
maximum stability was observed for the pH interval
ranging from 5 to 8. As shown in Figure 5, the presence
of H3O

+ or OH� catalyzes the hydrolysis of these
compounds.

For the studied compounds and for a given pH, R1 and
R2 have a moderate influence on the values of the
decomposition constants.
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Figure 5. Plot of log Kobsd versus pH.

Figure 6. Evolution according to time of HPLC chromatograms of compou
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The kinetic of decomposition of compounds 1, 2 and 3
was monitored at pH 7.4; T = 37 �C by RP-LC–MS.34

The evolution of the chromatograms is depicted in Fig-
ure 6. We observed a disappearance of CENS with
formation of two main products (Table 1).

The first single signal corresponds to the starting prod-
uct. After decomposition, there are two components
eluting earlier at 2 and 3 min. The main decomposition
products were tentatively identified by LC–MS; data
are shown in Table 2.

Initially, compounds 1, 2 and 3 have been identified by
HPLC–MS. They have shown, respectively, a retention
time at 9.26, 12.44 and 5.5 min detected with UV-PDA
detector at k = 253.46, 251.44 and 244.64 nm. Their
mass spectrum revealed an ion molecular peak at
278.12 [M+Na]+ for compound 1, 390.01 [M+Na]+ for
compound 2 and 352.44 [M+H]+ for compound 3.

After decomposition, the total ion chromatograms
(TIC) contain at least two components with nearly iden-
tical retention times for all compounds used in this
nd 3.
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Figure 7. Plot of peak area versus time of decomposition of

compound 2.

Table 3. Decomposition kinetic parameters of CENS at pH 7.4;

T = 37 �C

Compound Kobsd min�1 r2 t1/2
a min

1 0.0060 0.997 115.0

2 0.0016 0.983 424.5

3 0.0339 0.989 20.40

BCENU 0.0133 — 52.0033

CCNU 0.0144 — 48.0014

a The variability of triplicate samples was no more than 4%.

Table 2. Mass spectral and HPLC chromatographic characterization of the products resulting from aqueous decomposition of CENS after 72 h in

phosphate buffer at 37 �C

Compound UV detection ESI mass detection m/z (positive mode)

Tr (min) UV data (nm) Tr (min) Masse

1 3.33 253.26 3.32 279.15

2.58 236.47 2.59 227.15

2 9.33 251.46 9.26 390.01

3.14 265.46; 226.46 3.02 279.06; 301.02 101.79

2.17 268.26 2.09 339.12

3 3.25 265.44 3.15 279.15; 301.09

1,74 256.46 2.07 345.29

Table 1. Rate constants and half-life of decomposition of CENS at different pH

pH 0.1 2.1 4.1 6.2 7.4 8.6 9.25 10.0 11.5 13.0

1 K(obsd) · 104, s�1 6.114 0.876 0.137 0.057 0.065 0.125 0.183 0.350 0.858 2.185

t(1/2), min 19 132 868 2003 1777 917 632 329 134 53

2 K(obsd) · 104, s�1 14.00 1.960 0.420 0.150 0.137 0.142 0.163 0.200 0.355 0.865

t(1/2), min 8 59 273 750 841 817 705 576 325 133

3 K(obsd) · 103, s�1 1.857 0.521 0.218 0.145 0.260 0.419 0.537 1.002 2.433 5.480

t(1/2), min 62 221 530 786 444 275 215 115 48 21
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study. LC-ESI-MS data in Table 2 show that both com-
pounds eluting near 2 min have been detected, respec-
tively, by an on-line UV-PDA detector at k = 236.4,
268.26 and 256.44 nm for the decomposition of com-
pounds 1, 2 and 3. Their mass spectrum showed, respec-
tively, a molecular ion peak at m/z 227 [M+H]+,
m/z = 339.12 (M+H)+ and m/z = 345.29 [M+Na]+. They
were identified as denitrosated CENS, for example, the
chloroethylsulfamide.

The situation of the second product B is somewhat more
complex; ESI-MS detection data showed the same val-
ues for the three compounds with m/z = 279 [M+H]+

and m/z = 301 [M+Na]+. The problem was to identify
the common species which is eluted near 3 min. It
should be noted that this product of decomposition
was stable. After isolation, it was identified on the basis
of the NMR and mass spectrum.

The kinetic parameters of the decomposition of the
CENS under aqueous condition were determined by fol-
lowing the disappearance of HPLC–UV peak of the
starting compound and plotting the peak area of each
CENS versus time (Fig. 7). The experimental data were
fitted using an exponential model (data not shown). The
half-life values were calculated by a mathematical model
illustrating pseudo-first-order kinetics: C = C0 exp
(�Kt), where C0 represents the initial concentration of
the CENS, C, the concentration at time t, and t time
of incubation (hours). The observed rate constants and
half-lives, calculated by ln2/K, in aqueous solution are
given in Table 3.

The rate constants and half-life determined and com-
pared to some CENU14–33 showed that CENS are more
stable; however, compound 3 is somewhat not stable
and its half-life exhibited a comparable value with the
CENU.
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HPLC analysis of the residue obtained after complete
decomposition of CENS showed the formation of two
degradation products (Fig. 7). These products have been
tentatively identified using the following data:
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Scheme 1. Proposed mechanism of decomposition.

Figure 8. HPLC chromatograms: 1—Evolution of decomposition reaction

T = 37 �C. 2—Synthetic compound C (N-chloroethylsulfamide).
Product (C) was identified comparing the chromato-
graphic feature (Fig. 8) of the synthesized product.
The NMR and mass spectrometry showed that this
compound is the chloroethylsulfamide. Product (B)
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of compound 3 after 72 h of incubation in phosphate buffer pH 7.4;
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was identified as sulfamate by ESI-MS and NMR
spectrometry.34

We can propose the following decomposition mecha-
nism (Scheme 1) in aqueous phosphate buffer. The phe-
nomena implied that the decomposition proceeded via
two competitive steps.

The formation of compounds C and B is the result of the
denitrosation and competitive hydrolysis of the CENS.
The compound D could not be detected because of its
high instability in the experimental conditions. Lown
and co-workers12–33 have suggested these species as
intermediate in the decomposition of chloroethyl nitro-
soureas under physiological conditions. It has been pos-
tulated to be the ultimate electrophile responsible for the
biological activity of CENU.

The denitrosation mechanism of CENS takes place
through the initial protonation of N-chloro ethyl-
nitrososulfamide and subsequent nucleophilic attack on
the protonated oxygen (Scheme 2). The alkaline hydroly-
sis step occurs via a nucleophilic attack ofOH� on the sul-
fur atom to form sulfamate species B and
chloroethyldiazohydroxideD. The same process has been
noted for the same type of nitroso compounds such as
MNTS (N-methyl-N-nitroso-p-toluene sulfonamide)
and MNNG (N-methyl-N-nitro-N-nitrosoguanidine).32

On the other hand, the spectrophotometric study indi-
cates that in acidic media the decomposition occurs
via independent step and corresponds to the denitrosa-
tion reaction. In basic pH, compounds undergo hydroly-
sis but not denitrosation.

In conclusion, this study constitutes the first decomposi-
tion study of three CENS in aqueous buffer solutions. It
revealed that these compounds decompose via a general
acido-basic catalysis as previously noted for nitrosoure-
as. The LC–MS study at physiological pH and temper-
ature showed a formation of at least two products
which have been identified.
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