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ABSTRACT: The [4 + 1] annulation of benzamides and
aldehydes for phthalide synthesis was achieved via rhenium-
catalyzed C—H activation, which demonstrates an unprece-
dented reaction pattern distinct from those of other transition-
metal catalyses. The reaction also features readily available
starting materials, a wide scope for both electro-rich and
electro-deficient substrates, and the elimination of homo-
annulation byproducts.

In the past few decades, the strategic use of C—H bond
activation for new chemical bond formation and the
expedient buildup of molecular complexity from hydrocarbon
feedstock has attracted tremendous attention.' In comparison
with the widely studied C—H activation reactions with alkynes
and alkenes, the direct C—H addition to polar unsaturated C—
X (X = heteroatom) bonds, such as the C=O bond of
aldehydes, has met limited success until recently.” Although
benzamides are easily available and commonly used substrates
for ortho-C—H bond transformations, only a few C—H
activation reactions between benzamides and aldehydes have
been reported so far.”* Kim et al. described a Rh-catalyzed
oxidative ortho-C—H acylation of tertiary benzamides with
aldehydes (Scheme 1a).”* Shortly afterward, the same group
developed a tandem Rh-catalyzed ortho-C—H acylation/
intramolecular cyclization reaction of secondary benzamides
and aldehydes to access 3 hydroxylsomdohn 1-ones under
slightly modified conditions.”” Later on, Huang and Zhao et al.
provided an alternative approach to 3-hydroxyisoindolin-1-
ones from benzamides and aldehydes by using a Pd-based
catalytic system (Scheme 1b).** With the aid of a Lewis acid
and modified conditions, they further demonstrated the
efficient synthesis of biaryl imino-carboxylic acids through
the ring- ogemng process of 3-hydroxyisoindolin-1-one inter-
mediates.”

Recently, we have reported a Re/Mg-cocatalyzed [4 + 2]
annulation of benzamides and alkynes to furnish varied 3,4-
dihydroisoquinolinones.”* With our continuous interest in Re-
catalysis,”® we herein disclose a Re-catalyzed [4 + 1]
annulation of benzamides and aldehydes to afford phthalide
derivatives (Scheme 1c), which showcases a distinct reaction
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Scheme 1. Transition-Metal-Catalyzed C—H Bond
Activation Reactions of Benzamides with Aldehydes

NEtz or Cgli ipr
R1

RREt

) Rh-catalysis: ref. 3
5 mol % [Cp*RhCly],

20 mol % AgSbFg
NRR' 4 RecHo 20 eaulv AgCOs 2-3 equiv Ag,CO3
THF, 110-150 °C

) Pd-catalysis: ref. 4

=/Pr,R' = H)
o) o)
10 mol % Pd(OAc),
5.0 equiv TBHP X X OH
NHR + R2CHO ————— || NR or || )
dioxane, 100 °C Sy S R
or 40 mol % BF3OEt, R' L4 R? R’

DMSO/dioxane, 130 °C NR
c) Re-catalysis: this work

o cat. ReBr(CO)s o
o MeyZn, ZnBr, B
o NTONHR ¢ R Jo)
R _ R2"H DME, 130 °C Z
H then 2 M HCI, 80 °C R2

© distinct reaction pattern c©> simple substrates c> no homo-annulation

pattern of benzamides and aldehydes from those previously
achieved by using Rh and Pd catalysis.”* This Re-catalyzed
reaction is compatible with a wide range of electronically and
sterically varied benzamides and aldehydes, thus providing a
complementary protocol to previous methods.”

At the outset, we selected benzamide la and p-
methylbenzaldehyde 2b as model substrates to optimize the
reaction conditions.” After an extensive survey of various
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reaction parameters, phthalide 3ab was obtained in 79% 'H
NMR vyield and 71% isolated yield under the catalysis of
ReBr(CO); with the aid of Me,Zn and ZnBr, (Table 1, entry

Table 1. Screening of Reaction Parameters®

(o}

NR o ! N-Me !
i ReBr(CO)s (5 mol%) : '
H Me,Zn (1.7 equiv) } . i

1a (R=Me, R'=H) ZnBr; (1.5 equiv) 3ab ! 4ab
© 0 Towemman T e o
Q then 2 M HCI, 80°C, 3h |
/©)J\ H standard conditions @io /©:<‘<O ‘
Ph p-MeCaHy |
® |38 notobserved 3bb
yield of
entry variations of standard conditions 3ab (%)b
1 none 79 (71)¢
2 THEF instead of DME 60
3 1,4-dioxane instead of DME 32
4 MeCN, -BuOMe, PhOMe, (i-Pr),0, DMSO, c- 0
hexane, DCE instead of DME
S without ReBr(CO); 0
6 Re,(CO),, instead of ReBr(CO); 37
7 ReCl(CO); instead of ReBr(CO); 61
8 MnBr(CO); instead of ReBr(CO); 15
9 without Me,Zn and ZnBr, trace
10  without Me,Zn or without ZnBr, trace
11 Et)Zn, AlMe;, or PhMgBr instead of Me,Zn 0
12 FeBr, instead of ZnBr, 32
13 FeCl, instead of ZnBr, 24
14 MgBr, instead of ZnBr, 15
1S CuBr, instead of ZnBr, 39
16 R=OMeR =H 0
17 R=NMe, R = H 16
18 R=E4R =H 66
19 R=R'=Me 0

“Reaction conditions: 1a (0.3 mmol), 2b (0.2 mmol), cat. (5 mol %),
Me,Zn (0.34 mmol), ZnBr, (0.3 mmol), DME (1.5 mL), 130 °C, 24
h, then quenched with 2 M HCI (2 mL), 80 °C, 3 h. YDetermined by
"H NMR. “Isolated yield on 0.5 mmol scale.

1). 1,2-Dimethoxyethane (DME) proved to be the best
solvent, with others resulting only in a decreased yield of
3ab, if any at all (entries 2—4). No reaction occurred in the
absence of ReBr(CO);, and other rhenium and manganese
carbonyl catalysts gave inferior results (entries 5—8). The
presence of Me,Zn and ZnBr, was shown to be essential for
achieving the catalytic turnovers (entries 9 and 10). Surrogates
of Me,Zn such as Et,Zn, AlMe;, and PhMgBr demonstrated no
reactivity at all (entry 11). Variations of other Lewis acid
additives instead of ZnBr, gave much lower yields of 3ab under
otherwise identical conditions (entries 12—15). Of particular
note, no formation of lactam 4ab or homoannulation phthalide
3aa or 3bb was detected during the screening process, which
underlined the high chemoselectivity of this reaction. In
addition, N-methoxybenzamide displayed no reactivity at all in
the reaction, and N’,N’-dimethylbenzohydrazide gave 3ab in
very low yield (entries 16 and 17). N-Ethylbenzamide was
shown to be less reactive than 1la, whereas no reaction
occurred with N,N-dimethylbenzamide (entries 18 and 19).
With the optimized conditions in hand, the scope of
aldehydes was first explored (Scheme 2). It turned out that a

Scheme 2. Scope of Aldehydes™”
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“Reaction conditions: 1a (0.75 mmol), 2 (0.5 mmol), ReBr(CO); (5
mol %), Me,Zn (0.85 mmol), ZnBr, (0.75 mmol), DME (3.75 mL),
130 °C, 24 h, then quenched with 2 M HCI (S mL), 80 °C, 3 h.
YIsolated yields of product 3 are shown. “p-Toluenesulfonic acid (2
M, § mL) instead of HC, 80 °C, 4 h.

series of electronically varied aromatic aldehydes were
amenable to this reaction, giving the corresponding phthalides
3aa—g in good yield. When electron-rich p-methoxylbenzalde-
hyde 2h was employed as the substrate, phthalide 3ah was
obtained as the major product with the contaminant formation
of lactam 4ah. Interestingly, lactam 4ai became the sole
product from the reaction of p-(IN,N-dimethyl)benzaldehyde
2i and benzamide la. The benzylic cation intermediates
stabilized by electron-donating groups might account for the
formation of lactam products (vide infra). Meta- and ortho-
substituted aromatic aldehydes were also compatible with the
reaction conditions, leading to phthalides 3aj—m in moderate
to good yield. Also, 1- and 2-naphthaldehydes and indolyl
aldehyde gave the expected products 3an—p with ease.
Unfortunately, the use of aliphatic aldehydes such as
cyclohexanecarbaldehyde 2q resulted in the formation of
phthalide 3aq in relatively low yield.

Next, the scope of benzamides was examined (Scheme 3).
Benzamides bearing both electron-donating and electron-
withdrawing substituents were compatible in the reaction,
and a wide range of functional groups including OMe, OCF;,
CF;, CO,Me, F, Cl, Br, and I remained intact after the reaction
(3bk—kk), which allowed for further synthetic transformations
of the reaction products. Ortho-substituted benzamide showed
a slightly lower reactivity, giving phthalide 31k in a synthetically
useful yield. When two C—H bonds were available in the
starting material, the sterically less congested one was
preferably functionalized (3mk and 3mk’). Naphthamides
were also suitable substrates for this reaction, with 2-
naphthamide affording two regioisomeric products (3nk,
30k, and 30k’).
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Scheme 3. Scope of Benzamides™"”
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“Reaction conditions: 1 (0.7S mmol), 2k (0.5 mmol), ReBr(CO); (5
mol %), Me,Zn (0.85 mmol), ZnBr, (0.75 mmol), DME (3.75 mL),
130 °C, 24 h, then quenched with 2 M HCI (5 mL), 80 °C, 3 h.

bIsolated yields of product 3 are shown. “150 °C. “Determined by 'H
NMR.

To probe the possible reaction intermediates, the reaction of
benzamide 1a and p-methoxylbenzaldehyde 2h was selected as
a model reaction (Scheme 4a). Gratifyingly, alcohol Sah was
obtained in 51% isolated yield, with the formation of phthalide
3ah and lactam 4ah in low yield when the reaction was directly
quenched with water. In contrast, the treatment of the reaction
with tosyl acid at 80 °C for 4 h resulted in the clearly increased
yield of 3ah and 4ah with no detection of Sah. Furthermore,
no formation of phthalide 3ah was observed when pure lactam

Scheme 4. Mechanistic Experiments
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4ah was subjected to the standard reaction conditions. These
results supported the intermediacy of alcohol Sah for the
phthalide formation under the acidic conditions."” In addition,
the competition experiments with benzamides bearing
electronically varied substituents were conducted (Scheme
4b). The formation of product 3fk derived from electron-
deficient benzamide 1f was slightly more favored than that of
electron-rich benzamide 1d. Not surprisingly, almost no
difference was detected in the competition reaction between
1i and 1f. In contrast, the reaction had an obvious preference
for the formation of product 3af originating from electron-
deficient aldehyde 2f in comparison with phthalide 3ab derived
from aldehyde 2b (Scheme 4b), which might be ascribed to
the higher affinity of 2f to nucleophilic attack.

To examine the reversibility of the C—H activation step,
pentadeuterated benzamide la-dg was first tested under the
standard reaction conditions, and only a slight deuterium loss
was found at the ortho positions of la-dy (Scheme Sa). When

Scheme S. Deuterium Labeling Experiments
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Y
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D D D
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Time 40 min 60 min 90 min 120 min 150 min
THNMRyield 33k 10.9% 1.7% 16.9% 23.1% 24%
3ak-dy 4.2% 4.8% 5.8% 8.1% 8.9%

aldehyde 2k was subjected to the reaction of la-ds under the
same conditions, tetradeuterated phthalide 3ak-d, was
obtained in 83% isolated yield. Importantly, no D/H
scrambling was detected at the remaining ortho position of
3ak-d,, which indicated that the C—H activation step was
irreversible in the reaction. Furthermore, kinetic isotope effect
(KIE) competition experiments were conducted with varied
reaction times, and the KIE value was determined to be 2.7
(Scheme Sb).

On the basis of the above results, a tentative reaction
mechanism is depicted in Scheme 6. Deprotonative coordina-
tion of benzamide la with the rhenium catalyst gives
intermediate A, which undergoes C—H bond cleavage with
the aid of Me,Zn, affording a five-membered rhenacycle B. The
insertion of benzaldehyde 2 into the C—Re bond of B leads to
the formation of a seven-membered rhenacycle D through the
aldehyde-coordinated intermediate C. Ligand exchange of D
with la forms zinc species E and regenerates A, thus closing
the catalytic cycle. Quenching of E with acid gives alcohol §,
which undergoes intramolecular N- or O-attacked cgclization,
affording lactam 4 or iminoether F, respectively.'” The O-
attacked cyclization is preferred in the reactions of electron-
deficient and electron-neutral aldehydes, possibly through a
Sn2 pathway. When electron-rich aldehydes are used, the N-
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Scheme 6. Plausible Reaction Mechanism
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attacked cyclization might occur via a Syl mechanism due to
the enhanced stability of the benzylic cation intermediate
derived from alcohol 5. Of note, the direct cyclization of
species D or E before quenching to afford 4 or F, respectively,
cannot be ruled out as a minor reaction pathway for certain
substrates. In the end, the acid-promoted hydrolysis of F gives
rise to the formation of the final product 3.

In summary, a rhenium-catalyzed [4 + 1] annulation of
benzamides and aldehydes is developed, which provides an
expedient approach to phthalide derivatives. This protocol is
complementary to known methods for phthalide synthesis
from benzimidates, benzoic acids, and benzaldehydes in terms
of the simplicity of starting materials, the reaction scope of
electronically varied substrates, and the elimination of
homoannulation byproducts.”® Also, this rhenium-catalyzed
procedure shows a distinct reaction pattern of benzamides with
aldehydes from those of previously reported Rh and Pd
systems.”* Further investigations of rhenium-catalyzed hetero-
cycle synthesis via C—H activation is underway in our
laboratory.

.
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