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1. Introduction 

Pincer complexes have played a protagonist role in catalysis 
for the last two decades, this being greatly due to their high 

stability and reactivity and easy functionalization. Thus, these 

compounds have been widely used as efficient catalysts in 

reactions where difficult to activate bonds are involved, standing 

out their use in C-H activation processes and cross coupling 

reactions, among many other applications.
1-21

 In spite if this, their 
use as catalyst for C-S cross-coupling reactions has been little 

explored.
22-24

 

C-S cross-coupling is an important process for industry, 

because these reactions can provide access to simple procedures 

for the production of some biological and medicinal relevant 

substances such as herbicides and drugs.
25

 This catalytic reaction 
has been promoted by different transition metals like Co,

26
 Pd,

27-

29
 Cu

30-32
 and Ni

33-36
. In this line, our group has described some 

relevant examples of catalysts based on pincer complexes 

capable to promote C-S cross-coupling reactions. Figure 1 shows 

some of them based on NNN,
37,38

 SNS,
39

 SPS
40

 and POCOP
41

 

pincer complexes. However, in recent years a trend to use non-
symmetric pincer compounds

16
 as catalysts has become more 

popular since this species may provide enhanced reactivities 

compared to their symmetric counterparts, but their use has been 

often hampered by the long and low yield synthetic procedures to 

attain these species. Thus, following our continuous interest in 

the development of pincer complexes and their applications as 
efficient catalysts in different transformations, here we described 

the facile, high yield synthesis and characterization of a new non-

symmetric phosphinito-thiophosphinito POCSP-Ni(II) pincer 

compound and its use as efficient catalysts in C-S couplings of 

disulfides with iodobenzenes. 

 

 

 

 

 

 

 

 

 

Figure 1. Examples of pincer complexes used for C-S cross-

coupling. 

 

2. Results and discussion 

2.1 Synthesis and characterization of [NiCl{C6H3-2-(OPPh2)-6-

(SPPh2)}] (1)
42

 

The synthesis of the phosphinito-thiophosphinito POCSP-
Ni(II) pincer complex was performed in a single step starting 

from 3-mercaptophenol (Scheme 1).
43

 The reaction of 3-

mercaptophenol with chlorodiphenylphosphine in the presence of 

triethylamine affords the pincer ligand precursor (A) which upon 
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reaction with NiCl2 under reflux conditions produced complex 

(1) in good yields. Complex (1) was characterized by different 

analytical techniques such as 
1
H, 

13
C{

1
H} and 

31
P{

1
H} NMR, 

mass spectroscopy and elemental analyses. Besides this, the 

structure of compound (1) was unequivocally determined by 

single crystal X-Ray diffraction techniques. 

 

 

 

 

Scheme 1. Synthesis of [NiCl{C6H3-2-(OPPh2)-6-(SPPh2)}] (1) 

Thus, the 
1
H NMR spectrum of (1) is not very informative, as 

only shows signals due to the aromatic fragments in the typical 

region expected for aromatic hydrogen atoms. However, more 

informative results the 
13

C{
1
H} where the number of signals 

expected for the proposed structure are observed in the expected 

chemical shifts, being notable a characteristic signal due to the C-

Ni bond that appears as doublet of doublets at 142.7 ppm (
2
JCP = 

25.5, 16.7 Hz). Also, of interest the 
31

P{
1
H} NMR spectrum 

obtained, that displays two groups of signals as doublets. The 

first one being located at 137.9 ppm (
2
JPP = 367 Hz) 

corresponding to the phosphinito moiety, while the signal due to 

the thiophosphinito moiety is observed at higher field at 66.4 

ppm (
2
JPP = 367 Hz), signals which are also in agreement with 

the non-symmetric nature of the phosphinito-thiophosphinito 

PSCOP-Ni(II) pincer compound (1). Completing this 

characterization, the analysis by mass spectrometry produced a 
spectrum showing a peak due to the molecular ion at 586 m/z. 

All these results and those of the elemental analysis agree with 

the proposed structure. 

In addition, suitable crystals of (1) for their analysis by single 

crystal X-ray diffraction techniques were obtained by slow diffusion 

of diethyl ether into a concentrated solution of (1) in 
dichloromethane. Allowing the unequivocal determination of the 

structure of (1).
44

 Complex (1) crystallizes in the monoclinic crystal 

system and P21/n space group. The molecular structure exhibits a 

disorder in the central aromatic ring and bridge atoms (O, S). As can 

be seen in Figure 2, the nickel atom is coordinated in a square-planar 

fashion, with the POCSP pincer ligand coordinated in a typical 
meridional tridentate manner and one chlorine ligand completing the 

coordination sphere about the nickel. Noteworthy the fact that the 

strain of one of the 5 membered metallocycles formed is partially 

alleviated by the larger size of the sulphur atom. 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

Figure 2. Molecular structure of (1). Selected bond lengths (Å): Ni–

C1A 1.913(7), Ni–C1B 1.867(11), Ni–Cl 2.198(1), Ni–P1 2.160(1), 

Ni–P2 2.163(1), P1–O1A 1.649(8), P1–S1B 2.054(5), P2–S1A 

2.149(2), P2–O1B 1.534(9). Selected bond angles (º): C1A–Ni–Cl 

177.4(9), C1B–Ni–Cl 177.6(8), C1A–Ni–P1 83.6(5), C1B–Ni–P1 

88.6(8), P1–Ni–P2 170.8(1), P1–Ni–Cl 94.8(1), P2–Ni–Cl 94.1(1). 

 

The Ni-P distances are very similar among them, 2.160(1) Å 

for Ni-P1 and 2.163(1) Å for Ni-P2. Because the molecular 

structure is disordered, some lengths and angles are slightly 

different. In all other senses the bond distances and angles are 

similar to those reported for analogous compounds (however no 
full comparison could be made due to the fact that values for 

some bond distances and bond angles of this complex were not 

given due to the strongly disordered POCSP ligand in the 

refereed compound).
46

 

 

2.2 Catalytic evaluation of [NiCl{C6H3-2-(OPPh2)-6-
(SPPh2)}] (1) in C-S cross-couplings.

47
 

The catalytic activity of complex (1) was evaluated in the C-S 

cross-coupling reaction (Table 1). First, we carried out the 

catalytic reaction using iodobenzene and diphenyl disulphide as 

substrates, using 0.3 mol % of catalyst at 110 ºC for 4h. Under 

these conditions a 26 % of conversion (Entry 1, Table 1) was 
obtained. In order to improve this result, we decided to modify 

the reactions conditions and increase the temperature and the 

reaction time, attaining a 99 % of conversion at 140 ºC for 16.5 h 

(Entry 2, Table 1), while at 130 ºC for 22h a 60 % of conversion 

was produced. 

 

Table 1. C-S cross-couplings catalysed by [NiCl{C6H3-2-(OPPh2)-6-

(SPPh2)}] (1)a 
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aReaction conditions: 2 mmol of the corresponding iodobenzene, 1 mmol 

of the dialkyl or diaryl disulphide, 2 mmol of Zn, 3 mL of DMF, 0.3 mol % 

of catalyst (1), 130 ºC for 22h. b110 ºC for 4h. c140 ºC for 16.5h. 
dConversions obtained by GC-MS are based on residual iodobenzene and 

are the average of two runs. eIsolated Yield. 

 

The latter conditions were chosen to better observe the 

potential effects of sterics and electronics on the yield of the 

reactions. In terms of electronic effects, we did not make an 

exhaustive comparison, however we compared three points 

having as para substituents -H (0.0), -NH2 (-0.66) and -COCH3 

(0.05) in terms of the Hammett parameter,
48

 although the amino 
substrate was expected to show lower yields in comparison to -H 

and -COCH3 we were glad to observe that even with this 

substrate that typically hinders the reaction we got good yields 

with the present catalytic system. Then, since the iodobenzene 

para substituted with -COCH3 (4-Iodoacetophenone) produced 

the best conversions we further evaluated the steric effect of 
different substituents at the disulphide substrates on the C-S 

coupling reactions using this substrate. In this study, we chose 

functional groups with different size, namely phenyl, methyl, n-

butyl, sec-butyl and tert-butyl (Table 1). We observed that using 

the substrate with less steric hindrance, dimethyl disulphide 

(Entry 6, Table 1), the conversion was up to 91 %, while the 
conversion with a more sterically demanding substrate, such as 

di-tert-butyl disulphide, dramatically decreased to 10 %. Thus, it 

is clear that the more steric hindrance of the disulphide 

substituents, the less conversion is obtained. This trend has been 

previously observed by our research group leading to the 

conclusion that this is due to the size of the cavity in the pincer 
catalyst.

37-41
 And given the fact that no appreciable change in the 

size of the cavity is produced by changing from the POCOP to 

the POCSP system, a similar trend was expected. 

 

3. Conclusions 

We have synthesized a new non-symmetric Ni(II) 
phosphinito-thiophosphinito PSCOP pincer compound. Complex 

(1) was fully characterized, including the elucidation of its 

molecular structure by single crystal X-ray diffraction 

techniques. Complex (1) showed a good catalytic activity in C-S 

couplings of iodobenzene with different disulfides. The catalytic 

reaction was sensitive to the steric nature of the substrates 
(disulfides), showing higher conversions with those having the 

less sterically than with the more sterically hindered substituents. 
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Highlights 

 

 A new Ni(II) phosphinito-thiophosphinito 

PSCOP pincer was synthesized. 

 The PSCOP-Ni(II) pincer complex 

efficiently catalyses C-S couplings of 

disulfides and iodobenzene. 

 The activity of the catalyst is strongly 

related with the steric demand of the 

substituent at the disulphide. 


