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ABSTRACT: Reversible catalytic reactions operate under 
thermodynamic control and thus establishing a selective 
catalytic system poses a considerable challenge. Herein, we 
report a reversible transfer hydrocyanation protocol that 
exhibits high selectivity for the thermodynamically less 
favorable branched isomer. Selectivity is achieved by 
exploiting the lower barrier for C–CN oxidative addition and 
reductive elimination at benzylic positions in the absence of 
co-catalytic Lewis acid. Through the design of a novel type 
of HCN donor, a practical, branched-selective, HCN-free 
transfer hydrocyanation was realized. The synthetically 
useful resolution of a mixture of branched and linear nitrile 
isomers was also demonstrated to underline the value of 
reversible and selective transfer reactions. In a broader 
context, this work demonstrates that high kinetic selectivity 
can be achieved in reversible transfer reactions, thus opening 
new horizons for their synthetic applications.

Reversible catalytic reactions such as alkene metathesis1 
and transfer hydrogenation2 have found a plethora of 
applications in diverse fields of chemistry.3,4,5 Given their 
value to the synthetic practitioner, our group and others have 
investigated expanding these transformations to include the 
metathesis of other bonds and the transfer of functionality 
other than H2.6,7,8 These reaction paradigms offer numerous 
advantages such as implementing safer protocols avoiding 
the use of highly toxic reagents or unlocking previously 
unknown transformations. Our group applied a shuttle 
catalysis strategy to achieve transfer hydrocyanation whilst 
avoiding the use of highly toxic and volatile HCN.8d Notably, 
this strategy also enabled the first example of 
dehydrocyanation of aliphatic nitriles. These results have 
subsequently spurred the development of other transfer 
hydrocyanation protocols that circumvent the use of HCN9 
as well as opening new approaches for other cyanation 
reactions using relatively non-toxic cyanide sources.10,11

One fundamental drawback of metathesis and shuttle 
catalysis reactions is that, due to their inherent reversibility, 
they operate under thermodynamic control. This often leads 
to mixtures of products being formed such as in the case for 
alkene metathesis wherein the ratio of E:Z products is 
determined by their relative stability (Scheme 1A).1 In a 
similar manner, the transfer hydrocyanation reported by our 
group also leads to mixtures of products, with the reaction of 
styrene affording an 81:19 mixture of linear and branched 
products, respectively.8d Again, this ratio reflects the relative 
thermodynamic stability of the two regioisomers.12

Scheme 1. Context of the work.
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These reactions are reversible because the products 
possess the same functionality as the starting materials and 
thus are roughly ergoneutral (Scheme 1B). Hence, in most 
cases, the barrier for both the forward and reverse reaction is 
similar. In reactions where the formation of more than one 
isomer is kinetically accessible, the selectivity is determined 
by their relative stability. To override this thermodynamic 
bias in selectivity, the barrier for one of the isomers must be 
kinetically inaccessible. In this scenario, the reaction will 
remain reversible but restricted to a smaller subset of 
isomers. This is the case in Z-selective alkene metathesis, 
wherein the intricate design of the catalysts lead to a 
significantly higher activation barrier for the formation and 
reaction of E-alkenes.13 As a result, Z-alkenes are exclusively 
formed and, conversely, if a mixture of Z- and E-alkenes are 
present, then only the Z-alkenes will react. To date, there are 
no analogous examples of a transfer reaction that has been 
demonstrated to be reversible and kinetically selective. 

Instead, most reversible transfer reactions proceed to form 
the more thermodynamically stable products. 

 Inspired by the precedent set by Z-selective alkene 
metathesis to obtain a selective and reversible metathesis 
manifold,13 we sought to develop a protocol that would 
enable a selective and reversible transfer hydrocyanation of 
styrenes by manipulating the difference in the barrier for the 
formation of the branched and linear nitrile isomers to 
selectively form the less stable branched isomer (Scheme 1C). 
This would be complementary to the linear selectivity 
obtained in previous transfer hydrocyanation reactions.8d,9a 
Several groups have demonstrated that co-catalytic Lewis 
acids help facilitate both C–CN oxidative addition and 
reductive elimination,14,15 resulting in a thermodynamic 
mixture of products in transfer hydrocyanation because both 
the linear and branched isomers are accessible. We surmised 
that in the absence of a Lewis acid co-catalyst a benzylic 
stabilization effect could lead to a markedly lower barrier for 
both the cleavage and formation of the branched nitrile 
product compared to the linear isomer, unlocking a 
branched selective transfer hydrocyanation of styrenes.

We verified this hypothesis experimentally through the 
reaction of 2-phenylpropionitrile 1a with 4-tert-butylstyrene 
2b and found that a mixture of the starting materials with 
styrene 2a and branched nitrile 1b was obtained while the 
linear isomers (3a and 3b) were not observed (Scheme 2a). 
This confirms that both the oxidative addition and reductive 
elimination can occur at the benzylic position in the absence 
of co-catalytic Lewis acid, whereas the formation of the linear 
product is considerably more challenging. Performing the 
reaction in reverse, gave an identical ratio of the two 
branched nitriles, a strong indicator that the reaction has 
reached equilibrium. The high barrier to oxidative addition 
of non-benzylic nitriles with the Lewis acid free system is 
also implicated by the lack of reactivity observed between 3-
phenylpropionitrile 3a and 4-tert-butylstyrene 2b (Scheme 
2b). Furthermore, hydrocyanation of norbornadiene was not 
observed upon reaction with 2-phenylpropionitrile 1a 
(Scheme 2c). This truly underlines the challenging C–CN 
reductive elimination at non-benzylic positions with this 
transfer hydrocyanation manifold, as norbornadiene is 
typically a potent acceptor for transfer reactions.6d,8c-e 
Collectively, these results show that, in the absence of co-
catalytic Lewis acid, the reaction is still reversible and 
kinetically controlled toward selective formation and 
cleavage of the branched isomer, leaving other positions 
unreacted.

Next, we considered how to develop a practical, HCN-free 
transfer hydrocyanation process exhibiting such selectivity. 
While 2-phenylpropionitrile 1a is a competent HCN donor 
under the reaction conditions, it is not ideal for use in transfer 
hydrocyanation as an excess would be required to ensure 
good conversion of the substrate. Aside from being highly 
wasteful, this would also present problems with regards to 
purification and, therefore, an alternative HCN donor was 
devised. Desirable features include being able to donate 
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HCN in the absence of a Lewis acid and it should also ideally 
form a stable alkene by-product that would be unsusceptible 
to hydrocyanation itself. We reasoned that malononitrile 
derivatives bearing an aliphatic group could fulfill these 
criteria while also being simply synthesized from 
inexpensive starting materials.16,17 It was anticipated that 
these species should be activated toward donating HCN to 
the Ni-catalyst18,19 and the conjugated alkenyl nitrile by-
product should be recalcitrant to undergoing 
hydrocyanation. Gratifyingly, we discovered that 
malononitriles bearing a secondary aliphatic substituent (4a–
4d) afforded high yields of product, although those bearing 
bulkier substituents (4e) failed in the reaction (Scheme 3). A 
simple isofunctional experiment confirmed that the 
dehydrocyanation of the reagent is irreversible under the 
reaction conditions. These results are also supported by 
comparison of the ground state free energies of reactants and 
products in the hydrocyanation of styrene 2a with 
malononitrile 4a, which suggests that the reaction is 
distinctly exergonic (ΔG = –12.9 kcal/mol at 298 K, see SI for 
details). 

Scheme 2. Experiments to compare relative ease of C–
CN oxidative addition and reductive elimination at 
benzylic and non-benzylic positions. 
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Scheme 3. Development of novel HCN donors for 
regioselective transfer hydrocyanation. 
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Following further optimization of the reaction conditions, 
the applicability of this HCN-free, branched-selective 
transfer hydrocyanation was examined (Scheme 4). A variety 
of functional groups were well tolerated in the reaction 
including both electron donating and electron withdrawing 
moieties. The reaction also affords high yields and 
selectivities when performed with lower catalyst loadings 
(1o). Besides the high branched selectivity of this new 
reaction, which is complementary to previous protocols, we 
were also interested to see if it exhibits greater functional 
group tolerance, given that the current reaction conditions 
do not require co-catalytic Lewis acid. Indeed, substrates 
possessing acidic protons (1q–1v) or a Boc-protected amine 
(1u) were well tolerated. Finally, common heterocyclic cores 
(1w–1y) were found to successfully undergo transfer 
hydrocyanation with high selectivity. In cases with reduced 
yields, this was primarily due to low conversion.

Interestingly, while studying vinylheteroarenes as 
substrates in the reaction, a complete switch in 
regioselectivity was observed with 2-vinylpyridine 6 
(Scheme 5). In this case, exquisite selectivity for the linear 
isomer 7 was observed. This is most likely due to a directing 
group effect, by the N atom of the pyridine, lowering the 
otherwise inaccessible energy barrier for C–CN reductive 
elimination at non-benzylic positions.20 To further probe this 
coordinating effect, reaction of 6-methyl-2-vinylpyridine 8 
was attempted and this was found to afford a mixture of both 
the linear (9) and branched (10) isomers, with the latter 
preferred. This lack of selectivity likely arises from the 
methyl group interfering with the ligation of the pyridine 
ring to the metal catalyst, allowing for the normal benzylic 
stabilization-controlled selectivity to compete with the 
directing group effect. In addition, linear isomer 7 could act 
as a HCN donor for hydrocyanation of simple styrenes (see 
SI for details), suggesting that the pyridine directing group 
also facilitates C–CN oxidative addition at the non-benzylic 

position. Excitingly, even simple, unprotected alcohols (e.g. 
11) afforded the linear product 12, suggesting that alcohols 
can also act as directing groups.

Scheme 4. Substrate scope for the regioselective, HCN-
free transfer hydrocyanation.a,b
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aYields are given for isolated and purified material. 
Reactions were conducted on a 0.5 mmol scale. 
bRegioselectivity was determined by 1H NMR analysis of the 
crude reaction mixture. cYield in parentheses for reaction 
performed on 2.0 mmol scale with 2.5 mol% Ni(cod)2 and 
Xantphos. dAldehyde 1j was also isolated in 33% yield.
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Having found that directing groups could be used to 
control the selectivity of the reaction, we recognized that this 
provided an opportunity to explore less well-documented 
directing group effects.21 In particular, we were attracted to 
vinylsilanes as we reasoned that the silyl groups ability to 
stabilize both α-anions and β-cations could provide another 
mechanism to lower the energy barrier for reductive 
elimination through inductive effects (Scheme 5). 
Accordingly, phenyldimethylvinylsilane 13 afforded the 
linear nitrile product 14 in high yields and selectivity, 
possibly hinting at the build-up of a positive charge at the β-
position to the silicon during the C‒CN reductive 
elimination.
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Scheme 5. Control of regioselectivity by directing 
groups.a,b
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aYields are given for isolated and purified material. 
Reactions were conducted on a 0.5 mmol scale. 
bRegioselectivity was determined by 1H NMR analysis of the 
crude reaction mixture.

Finally, to further illustrate the value of this reversible and 
selective reaction, we used this new protocol to resolve the 
mixture of linear and branched isomers (l:b = 81:19) obtained 
upon transfer hydrocyanation of styrene 2a using our 
previous, thermodynamically controlled protocol (Scheme 
6).8d By using an excess of commercially available 4-
methoxystyrene, selective dehydrocyanation of the branched 
isomer was achieved while the linear isomer 3a could be 
recovered quantitatively with exquisite linear purity. In this 
manner, the linear nitrile can be obtained in high regiopurity 
through successive transfer hydrocyanations. This process is 
analogous to the resolution of a mixture of E- and Z-alkenes 
by Z-selective ethenolysis to afford enrichment of the E-
alkene content .22

Preliminary deuterium labeling studies resulted in a 
statistical distribution of deuterium at both the branched and 
linear positions (Scheme 7). This suggests that a rapid pre-
equilibrium has been reached and that the barrier for hydride 
insertion and β-hydride elimination is likely to be 

insignificant compared to the barrier for C–CN reductive 
elimination. Thus, a rapid scrambling of the hydrogens at the 
branched and linear positions can occur. This result further 
verifies that selectivity in our reaction arises from the 
insurmountable barrier for C–CN reductive elimination at 
the linear position in the absence of co-catalytic Lewis acid.

This observation, combined with the results shown in 
Schemes 2 and 3, allows us to understand the origins of the 
branched selectivity (Scheme 7). Irreversible 
dehydrocyanation of the malononitrile generates the 
corresponding H–Ni–CN intermediate. Rapid and reversible 
alkene insertion into the Ni–H bond allows for an 
equilibrium to be established between the branched and the 
linear alkyl nickel intermediates. Finally, reversible 
reductive elimination to form the desired branched isomer 
occurs with high kinetic control over formation of the linear 
isomer.

Scheme 6. Resolution of a regioisomeric mixture by 
selective dehydrocyanation.
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the linear isomer in the regioisomeric mixture.

Scheme 7. Labeling studies and proposed catalytic 
cycle.
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In conclusion, we have discovered a HCN-free transfer 
hydrocyanation manifold that exhibits high kinetic 
selectivity for the thermodynamically less stable, branched 
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isomer but, significantly, also remains reversible. Key to this 
selectivity is the lower barrier for C–CN oxidative addition 
and reductive elimination at the benzylic position in the 
absence of co-catalytic Lewis acid. This manifold was 
exploited to achieve a highly selective transfer 
hydrocyanation of styrenes by using a novel design of HCN 
donor. To date, no other transfer reactions have been 
demonstrated to be both kinetically selective and reversible. 
Extending this concept could have enormous potential in 
organic synthesis, opening new strategies to both selectively 
functionalize multiple bonds and, through the reverse 
reaction, selectively defunctionalize complex molecules.
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 reversible reaction  selective for thermodynamically
less stable isomer

 new HCN donor  resolution of regioisomeric mixture

CN
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selective
transfer
reaction

 HCN-free transfer hydrocyanation
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