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Hydrogenation (3 atm) of readily available pyrido[1,2-a]pyrimidines 10, 14, and 17 over 5% Rh/Al2O3

forms 1,5-diazabicyclo[4.4.0]dec-5-enes 9, 15, and 18 in >95% yield, providing a general route to this lit-
tle-studied class of compounds. All attempts to form the tetrahydro-1,2,4-triazine moiety of cinachyr-
amine (1) by rearrangement of amidinium dimethylhydrazone 8 using the procedures developed by
Kamatori to convert hydrazone 3a to tetrahydro-1,2,4-triazine 4a were unsuccessful.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Cinachyramine (1), a novel alkaloid possessing a hydrazone and
two aminals, was isolated in 2006 from the Okinawan sponge
Cinachyrella sp. (see Scheme 1).1 The structure was assigned by
spectroscopic analysis and degradation under acidic conditions to
afford azoalkene 2. Cinachyramine trifluoroacetate showed weak
cytotoxic activity against HeLa S3 cells with an IC50 of 6.8 lg/mL.
The structural novelty of cinachyramine and our continuing
interest in amidine- and guanidine-containing natural products
prompted us to attempt its synthesis.

Kamatori and co-workers reported an extensive series of stud-
ies on the rearrangements of the dimethylhydrazones of 1,1,1-tri-
fluoro-2,3-diones such as 3a (see Scheme 2).2 Heating 3a absorbed
on silica gel with ammonium acetate (50 equiv) at 60 �C for 2 days
afforded 4a (36%) with the same tetrahydro-1,2,4-triazine ring as
cinachyramine.2c The mechanism probably involves imine forma-
tion and protonation to give 5a, which can also be drawn as the
resonance structure 6a. A 1,5-sigmatropic hydrogen shift will give
iminium salt 7a, which will cyclize to give 4a after deprotonation.

We hoped that amidinium dimethylhydrazone 8 would
undergo a similar 1,5-sigmatropic hydrogen shift followed by
cyclization to give cinachyramine (1) (see Scheme 3). This route
was particularly appealing because the conditions are mild enough
for a similar sequence to occur in the biosynthesis of 1. We
expected that oxidation of the hydroxy group of 9 to a ketone
and hydrazone formation would lead to 8. We thought that
hydroxy amidinium salt 9 should be available by partial hydroge-
nation of the readily available pyrido[1,2-a]pyrimidinium salt
10.3,4

Results and discussion

Reaction of 2-amino-3-hydroxypyridine (11) with 1,1,3,3-tetra-
ethoxypropane in 60% perchloric acid and ethanol at 80 �C by the
literature procedure led to the formation of 10 which precipitated
from solution and was isolated in pure form in 85% yield by
filtration (see Scheme 4).4 We were delighted to find that hydroge-
nation5 of 10 under 3 atm of H2 over 5% Rh/Al2O3 provided 9 as the
(1).
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Scheme 4. Synthesis of amidinium hydrazone 8.

Figure 1. Crystal structure of oxo amidinium perchlorate 12.
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Scheme 2. Conversion of hydrazone 3 to tetrahydro-1,2,4-triazine 4.
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Scheme 3. Retrosynthesis of cinachyramine (1).
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perchlorate salt in 97% yield. Oxidation of the hydroxy group in 9
with Jones reagent gave oxo amidinium perchlorate salt 12 in
42% yield. Although the amidinium salt is quite stable, deprotona-
tion with K2CO3 or NaOH led to partial hydrolysis of the unproto-
nated amidine. Consistent with this observation, the Swern
oxidation and other neutral or basic oxidation procedures were
unsuccessful. Therefore, Jones oxidation was the method of choice
despite the moderate yield.

The structure of 12 was confirmed by X-ray crystal structure
analysis (see Fig. 1), which also established that the perchlorate
ion was tightly bound and did not exchange with the sulfate ion
from the sulfuric acid in the Jones oxidation.6 It should also be
noted that oxo amidinium cation 12 appeared to slowly equilibrate
with the hemiketal during prolonged storage in CD3OD solution.7

Oxo amidinium perchlorate 12 was stirred in excess 1,
1-dimethylhydrazine for 4 h to afford hydrazone salt 8 in
quantitative yield. With the key intermediate 8 in hand we began
to investigate the 1,5-sigmatropic hydrogen shift and cyclization
needed to complete the synthesis of cinachyramine (1). Unfortu-
nately, no reaction occurred on heating 8 in the presence of silica
gel with or without NH4OAc in an oil bath or in a MW oven at
70–100 �C. No reaction occurred in TFA at 25 �C or on microwave
heating with silica gel prior to decomposition at 250 �C.

To verify that we were carrying out the reaction properly,
trifluoroacetyl hydrazone 3b was prepared by the literature
procedure.2a,b Heating 3b with NH4OAc in the presence of silica
in the MW oven for 1 h cleanly afforded a 1.7:1 mixture of
tetrahydro-1,2,4-triazine 4b and the analogous tetrahydro oxadi-
azine resulting from a 1,5-sigmatropic hydrogen shift prior to
imine formation. Therefore the facile 1,5-sigmatropic hydrogen
shift that occurs with the trifluoromethyliminium dimethylhyd-
razone cation 5 does not occur under the same conditions with
amidinium dimethylhydrazone 8. Presumably the trifluorometh-
yliminium cation of 5 is much more acidic and therefore more
reactive than the amidinium cation of 8.

We briefly investigated other procedures for the conversion of 8
to cinachyramine (1). No reaction occurred on irradiation with 300
or 350 nm UV light in CD3OD or D2O. Treating 8 with a wide range
of bases either gave recovered 8 or extensive decomposition
without any evidence for the formation of cinachyramine (1).

Although this approach to cinachyramine was not successful,
the hydrogenation of 10 provides a very simple and practical route
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to 7-hydroxy-1,5-diazabicyclo[4.4.0]dec-5-ene (9). 1,8-Diazabicy-
clo[5.4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4.3.0]non-5-
ene are readily available and widely used as bases,8 but the
intermediate compound 1,5-diazabicyclo[4.4.0]dec-5-ene (DBD,
16) has been reported only a few times.9 We therefore decided to
explore the generality of this route to DBD derivatives. Condensa-
tion of 2-aminopyridine (13) with 1,1,3,3-tetraethoxypropane
by the literature procedure10 in EtOH and 60% HClO4 at 80 �C for
2 h provided 14 in 86% yield (see Scheme 5). Hydrogenation
(3 atm) of a suspension of 14 in EtOH over 5% Rh/Al2O3 for 18 h
afforded amidinium salt 15 in 95% yield. We did not determine
the minimum amount of rhodium needed, but note that the hydro-
genation was efficient with 0.5% Rh (10 mg of 5% catalyst per mmol
of 14). Amidinium salts such as 15 are stable, but free amidines
such as 16 hydrolyze very readily to the N-aminopropyl lactam
as has also been noted for DBU.8b,11,12 Free amidine 16 was
prepared by passing a solution of 15 in CH2Cl2 through DOWEX
550A (OH� form) resin and concentration.12 Evaporative distilla-
tion gave 16 in 90% yield and >95% purity.

Condensation of 2-aminopyridine (13) with 3,3-dimethoxyb-
utan-2-one by the literature procedure10b,13 in MeOH and 70%
HClO4 at 25 �C for 24 h provided 17 in 61% yield (see Scheme 6).
Hydrogenation (3 atm) of a suspension of 17 in EtOH over
5% Rh/Al2O3 for 18 h afforded methyl-substituted amidinium
salt 18 in 95% yield.14

In conclusion, we were unable to convert amidinium dim-
ethylhydrazone 8 to cinachyramine (1) using the procedures
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developed by Kamatori to convert hydrazone 3a to tetrahydro-
1,2,4-triazine 4a. However, we have shown that hydrogenation
(3 atm) of readily available pyrido[1,2-a]pyrimidines 10, 14, and
17 over 5% Rh/Al2O3 forms 1,5-diazabicyclo[4.4.0]dec-5-enes 9,
15, and 18 in >95% yield. Since pyrido[1,2-a]pyrimidines can be
prepared in a single high-yield step from substituted 2-aminopyri-
dines and 1,3-dicarbonyl compounds,10b hydrogenation provides
a general route to a wide variety of novel substituted 1,5-diazabi-
cyclo[4.4.0]dec-5-enes.
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14. Hydrogenation of 17 over platinum black in EtOH was reported to give the
saturated aminal based on the absorption of 5 equiv of hydrogen and
elemental analysis for nitrogen.13a However, we found that hydrogenation of
14 (1 mmol) over PtO2 (10 mg) in EtOH under 3 atm gave only amidinium
perchlorate 15 resulting from the absorption of 4 equiv of hydrogen, although
the hydrogenation was not as clean as that run over Rh/Al2O3.
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