Preparation and Antidiabetic Activity of New Substituted 3,5-Diarylpyrazolesulfonylurea Derivatives II: Structure-Activity Relationship

RAAFAT SOLIMAN*X, HASSAN M. FAID-ALLAH[‡], and SAMIR K. EL SADANY[‡]

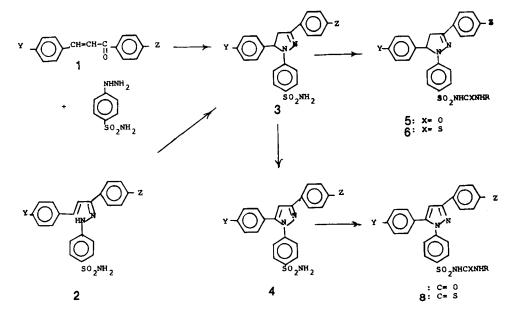
Received January 27, 1987, from the *Department of Pharmaceutical Chemistry, College of Pharmacy, and the *Department of Chemistry, College of Science, University of Alexandria, Alexandria, Egypt. Accepted for publication June 17, 1987.

Abstract \Box Four series of substituted p-(3,5-diaryl-2-pyrazoline-1) benzenesulfonylurea and thiourea derivatives, along with their corresponding substituted p-(3,5-diarylpyrazole-1) benzenesulfonylurea and thiourea derivatives, were prepared for evaluation as hypoglycemic agents. Preliminary biological testing revealed that the new compounds possess potent hypoglycemic activity.

It has been reported that 3,5-dimethylpyrazoles possess hypoglycemic activities as great as 100 times that of tolbutamide in glucose-primed intact rats.¹⁻⁵ Studies have been conducted on the synthesis of new 3,5-disubstituted pyrazoles.⁶⁻¹² In continuation of our previous work,⁸⁻¹² many new substituted 3,5-diaryl-2-pyrazolinesulfonylurea derivatives and their corresponding pyrazole derivatives were prepared.

In light of the biological data presented here and published previously, a possible structure-activity relationship for antidiabetic activity may result.

Four series of p-{5-(p-methylphenyl)-3-phenyl-2-pyrazolin-1-yl]-, p-{5-(p-chlorophenyl)-3-phenyl-2-pyrazolin-1-yl]-, p-{5-(p-bromophenyl)-3-phenyl-2-pyrazolin-1-yl]-, and p-{5-phenyl-3-(p-methylphenyl)-2-pyrazolin-1-yl]-benzenesulfonylurea derivatives and their corresponding pyrazoles were synthesized. Some compounds were tested for hypoglycemic activity. Preliminary biological testing revealed that the compound showed potent antidiabetic activity.


1-(p-Sulfamylphenyl)3,5-diaryl-2-pyrazolines (3) were prepared by condensation of the appropriate chalcone (1) with psulfamylphenylhydrazine hydrochloride. The resulting benzenesulfonamides were either treated with the appropriate isocyanate or isothiocyanate to afford the corresponding urea or thiourea derivatives, or oxidized with bromine water to the corresponding pyrazoles and similarly treated with the appropriate isocyanate or isothiocyanate to afford their corresponding urea or thiourea derivatives.

The physical and analytical data of these new pyrazolines and pyrazoles are listed in Tables I–III. The antidiabetic activity of some of these compounds is given in Table IV.

Experimental Section

Melting points were determined in open glass capillaries and are uncorrected. The IR spectra were determined using sodium chloride plates on a Perkin Elmer 297 spectrophotometer as a solution in bromoform. The ¹H NMR spectra were recorded on a Varian A 60 spectrometer using Me₄Si as the internal standard. The ¹³C NMR spectra were recorded on a Jeol JNH-FX 100 NMR spectrometer.

1-(p-Sulfamylphenyl)-hydrazones (2; Table V)—A solution of the appropriate chalcone (1, 0.1 mol) in ethanol (100 mL) was refluxed with a mixture of *p*-sulfamylphenylhydrazine hydrochloride (0.1 mol) and sodium acetate (0.12 mol) in water (10 mL) for 1 h over a steam bath, concentrated, cooled, and poured into water. The crude hydrazones were separated and recrystallized from methanol to yield yellow needles. The IR spectra of these compounds revealed two absorption bands at 1330–1355 and 1170–1190 cm⁻¹ that are

Scheme

626 / Journal of Pharmaceutical Sciences Vol. 76, No. 8, August 1987 0022-3549/87/0800-0626\$01.00/0 © 1987, American Pharmaceutical Association

Table I—Substituted	-(3,5-Diaryl-2-pyrazolin-1-yl)-benzene sulfonylurea (5) and Thiourea (6) Deriva	atives
---------------------	---	--------

se run Cach Found Cach Found 5s (CH ₂) ₂ CH ₂ O CH ₃ H 82 183 $C_{ac}H_{3}M_{O}A_{O}S$ C 665. 665. 5b (CH ₂) ₂ CH ₃ O CH ₃ H 70 196 $C_{ac}H_{3}M_{O}A_{O}S$ C 661. 661. 661. 5c C ₄ H ₁ O CH ₃ H 75 202 $C_{ac}H_{3}M_{O}A_{O}S$ C 667. 67.	Compound	R	х	Y	z	Yield,	Melting	Formula		An:	alysis, %
	Jompound	n 	^	т	2	%	Point			Calc.	Found
Sb $(CH_{2})_{3}CH_{3}$ O CH_{3} H 70 198 $C_{2}H_{2}N_{1}O_{2}S$ N 118 120 661	5a	(CH ₂) ₂ CH ₃	0	CH₃	н	82	183	C ₂₆ H ₂₈ N₄O ₃ S	C		
bb (CH2)2CH3 O CH3 H 70 198 C2H30AQ5 C 66.1<									N		12.0
Sec CaH11 O CH3 H 75 202 CaH2NAQ5 N 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 10.2 <td>5b</td> <td>(CH₂)₃CH₃</td> <td>0 [.]</td> <td>CH₃</td> <td>н</td> <td>70</td> <td>198</td> <td>C₂₇H₃₀N₄O₃S</td> <td>С</td> <td>66.1</td> <td>66.1</td>	5b	(CH₂)₃CH₃	0 [.]	CH₃	н	70	198	C ₂₇ H ₃₀ N₄O ₃ S	С	66.1	66.1
Sc C ₄ H ₁ , O CH ₃ H 75 202 C ₂₂ H ₁₂ N,O ₂ S C 67.4 67.5 60.5 5d C ₄ H ₅ O CH ₃ H 80 195 C ₂₂ H ₁₂ N,O ₂ S C 66.1 60.1 5e (CH ₂) ₂ CH ₃ O CI H 80 212 C ₂₃ H ₂₇ CH,O ₂ S C 60.1 60.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 60.6 50.5 55.6 60.6 50.5 55.6 60.6 50.5 55.6 60.6 50.5 55.6 60.6 50.5 55.6 60.6 50.5 55.6 60.6 60.2 60.6 60.2 60.6 60.2 60.6 60.2 60.6											
Bd C ₄ H ₆ O CH ₃ H B0 195 C ₂₂ H ₄₀ N ₄ O ₅ S C B22 6.0 Se (CH ₂) ₂ CH ₃ O Cl H B0 212 C ₂₃ H ₄₀ CN ₄ O ₅ S C 6.0 4 6.5 7 11.3 11.1 10.1 10.0 10.1 </td <td>50</td> <td>C-H.</td> <td>0</td> <td>CH</td> <td>н</td> <td>75</td> <td>202</td> <td></td> <td></td> <td></td> <td></td>	50	C-H.	0	CH	н	75	202				
		06.111	•	0.73		, -		- 23324 - 3 -	н	6.2	6.0
		.	•				105				
5e (CH ₂) ₂ CH ₃ O CI H 80 212 $C_{22}H_{22}CRA,O_2S$ C 11.0 <td>5d</td> <td>C₆H₅</td> <td>0</td> <td>CH3</td> <td>н</td> <td>80</td> <td>195</td> <td>C₂₉H₂₆N₄O₃S</td> <td></td> <td></td> <td>52</td>	5 d	C ₆ H ₅	0	CH3	н	80	195	C ₂₉ H ₂₆ N ₄ O ₃ S			52
5f (CH_2)_2CH_3 O CI H 71 196 $C_{29}H_{27}CIN_0O_5S$ H 52 53 5g $C_{q}H_1$ O CI H 78 207 $C_{29}H_{27}CIN_0O_5S$ C 663 55 5g $C_{q}H_{5}$ O CI H 80 198 $C_{29}H_{27}CIN_0O_5S$ C 663.3 63.2 5g $C_{q}H_{5}$ O Br H 80 198 $C_{29}H_{25}CIN_0O_5S$ C 65.3 63.2 5g (CH_2)_2CH_3 O Br H 69 210 $C_{29}H_{22}BIN_4O_5S$ C 65.2 56.0 5g C_{q}H_1, O Br H 69 210 $C_{29}H_{29}BN_4O_5S$ C 65.2 56.0 5g C_{q}H_1, O Br H 76 164 $C_{29}H_{29}BN_4O_5S$ C 85.8 75.9 85.0 5g C_{q}H_1, O Br CH 82 <td></td>											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5e	$(CH_2)_2CH_3$	0	CI	н	80	212	C₂₅H₂₅CIN₄O₃S	C		60.5
ft (CH ₂) ₂ CH ₃ O Cl H 71 196 C ₂₀ H ₂ ,ClN,O ₃ S C 6.2. 6.3. 5g C ₀ H ₁ O Cl H 78 207 C ₂₀ H ₂₀ ClN,O ₃ S C 6.2. 5.3 5h C ₀ H ₄ O Cl H 78 207 C ₂₀ H ₂₀ ClN,O ₃ S C 6.2. 6.1. 5h C ₀ H ₄ O Cl H 80 198 C ₂₀ H ₂₀ ClN,O ₃ S C 6.2. 5.3 5h C ₀ H ₄ O Br H 63 197 C ₂₀ H ₂₀ ClN,O ₃ S C 6.5. 55.6 5h C ₄ H ₄ O Br H 69 210 C ₂₀ H ₂₀ B/N,O ₃ S C 6.52 5.56 5k C ₄ H ₄ O Br H 69 210 C ₂₀ H ₂₀ B/N,O ₃ S C 6.52 5.60 5m C ₄ H ₄ O Br H 82 157 82.0 1.0											
	54		0	CI	н	71	196	Cooldon CINLOOS			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	51	(012)3013	0	01			100	0261270114030	й		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									Ν		10.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5g	C_6H_{11}	0	CI	н	78	207	C ₂₈ H ₂₉ ClN₄O ₃ S			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											5.5 10.3
	5h	Cette	0	CI	н	80	198	C₂₀H₂₂CIN₄O₂S			63.2
Si (CH ₂) ₂ CH ₃ O Br H 83 197 C ₂₈ H ₂₅ BrN ₄ O ₃ S C 55.5 55.6 Si (CH ₂) ₃ CH ₃ O Br H 69 210 C ₂₈ H ₂₇ BrN ₄ O ₃ S C 55.5 55.6 Sk C ₆ H ₁ O Br H 69 210 C ₂₈ H ₂₇ BrN ₄ O ₃ S C 55.2 55.0 Sk C ₆ H ₁ O Br H 69 164 C ₂₈ H ₂₇ BrN ₄ O ₃ S C 57.8 58.0 Si C ₆ H ₁ O Br H 82 157 C ₂₈ H ₂₈ BrN ₄ O ₃ S C 558.4 58.5 Si C ₆ H ₅ O H CH ₃ 73 200 C ₂₇ H ₃₀ N ₄ O ₃ S C 651.6 66.0 Si C ₆ H ₁ O H CH ₃ 75 202 C ₂₉ H ₂₈ N ₄ O ₃ S C 66.1 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 <td>011</td> <td>00.15</td> <td>-</td> <td>÷.</td> <td></td> <td></td> <td></td> <td>-20-20- 4-3-</td> <td></td> <td></td> <td>4.3</td>	011	00.15	-	÷.				-20-20- 4-3-			4.3
			_	_							
	51	(CH ₂) ₂ CH ₃	0	Br	н	83	197	C ₂₅ H ₂₅ BrN₄O ₃ S	C L		
5j (CH ₂) ₃ CH ₃ O Br H 69 210 C ₂₉ H ₂₉ BrN ₄ O ₃ S C 652 560 5k C ₆ H ₁ O Br H 76 164 C ₂₉ H ₂₉ BrN ₄ O ₃ S C 652 580 5l C ₆ H ₅ O Br H 82 157 C ₂₉ H ₂₉ BrN ₄ O ₃ S C 554 580 96 </td <td></td>											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5i	$(CH_2)_3CH_3$	Ο	Br	н	69	210	C ₂₆ H ₂₇ BrN₄O₃S		56.2	56.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-,										
		0.11	~	Π.	ы	76	164				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5K	C ₆ H ₁₁	0	Br	п	/0	164	C28⊓29DIN4O35	н		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									N		9.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	C₀H₅	0	Br	н	82	157	C ₂₈ H ₂₃ BrN₄O ₃ S	С		58.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E		0	ц	CH.	85	186	CHN-O-S			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	əm	(012)2013	Ū,	11	0113	05	100	0261 1281 4030			6.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									N	11.8	12.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5n	(CH ₂) ₃ CH ₃	0	н	CH₃	73	200	C₂7H ₃₀ N₄O ₃ S			66.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	CeH.	0	н	CHa	75	202	C₂9H32N₄O3S			
5p C ₆ H ₅ O H CH ₃ 80 195 C ₂₉ H ₂₆ N ₄ O ₃ S C 68.2 68.0 6a CH ₂ CH==CH ₂ S CH ₃ H 72 138 C ₂₆ H ₂₆ N ₄ O ₂ S ₂ C 63.7 63.8 6b (CH ₂) ₃ CH ₃ S CH ₃ H 72 138 C ₂₆ H ₂₆ N ₄ O ₂ S ₂ C 63.7 63.8 6b (CH ₂) ₃ CH ₃ S CH ₃ H 76 186 C ₂₇ H ₃₀ N ₄ O ₂ S ₂ C 64.0 64.1 6b (CH ₂) ₃ CH ₃ S CH ₃ H 75 167 C ₂₉ H ₃₂ N ₄ O ₂ S ₂ C 65.4 65.5 6c C ₆ H ₁ S CH ₃ H 75 167 C ₂₉ H ₃₂ N ₄ O ₂ S ₂ C 66.4 65.5 6d C ₆ H ₅ S CH ₃ H 78 134 C ₃₀ H ₂₈ N ₄ O ₂ S ₂ C 66.7 66.6 6f CH ₂ CH==CH ₂ S CI H <th< td=""><td></td><td>•0.11</td><td>_</td><td></td><td>- 5</td><td></td><td></td><td></td><td>н</td><td></td><td>6.1</td></th<>		•0.11	_		- 5				н		6.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-						-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5p	C ₆ H₅	0	н	CH3	80	195	C ₂₉ H ₂₆ N₄O ₃ S	С Ц		
6a CH2CH==CH2 S CH3 H 72 138 C28H28N4O2S2 C 63.7 63.8 6b (CH2)3CH3 S CH3 H 76 186 C27H30N4O2S2 C 64.0 64.1 11.4 6b (CH2)3CH3 S CH3 H 76 186 C27H30N4O2S2 C 64.0 64.1 6c CeH11 S CH3 H 75 167 C29H32N4O2S2 C 65.4 65.5 6d CeH11 S CH3 H 75 167 C29H32N4O2S2 C 66.2 66.1 6d CeH2 S CH3 H 80 159 C29H26N4O2S2 C 66.2 66.2 66.2 6d CeH2CH= S CH3 H 78 134 C30H28N4O2S2 C 66.7 66.6 6f CH2CH==CH2 S CI H 70 128 C28H28N4O2S2 C </td <td></td>											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6a		S	CH ₃	н	72	138	$C_{26}H_{26}N_4O_2S_2$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a t		<u> </u>	<u></u>	ы	76	196		N		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6D	$(CH_2)_3CH_3$	5	CH3	п	76	180	$O_{27} \Pi_{30} N_4 O_2 O_2$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6c	C ₆ H ₁₁	S	CH₃	н	75	167	$C_{29}H_{32}N_4O_2S_2$	С		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ed	<u>с н</u>	c	CH.	ц	80	159	C.H.N.O.S.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	0605	3	U 113		00	155	0291126140202	н		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									N		10.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6e	C ₆ H₅CH₂	S	CH₃	н	78	134	C ₃₀ H ₂₈ N₄O ₂ S ₂	C		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6f	CH°CH=+CH°	s	CI	н	70	128	C25H23N₄O2S2			59.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.20.00.2	-	.	••			~ 2J~ 2J~ 4 ~ 2 ~ 2	н		4.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	. .							
6h C ₆ H ₁₁ S CI H 70 194 C ₂₈ H ₂₉ CIN₄O ₂ S ₂ C 60.8 61.0 H 5.2 5.3 N 10.1 10.0	6g	(CH ₂) ₃ CH ₃	S	CI	н	72	152	$C_{26}H_{27}CIN_{4}O_{2}S_{2}$			
6h C ₆ H ₁₁ S CI H 70 194 C ₂₈ H ₂₉ ClN₄O ₂ S ₂ C 60.8 61.0 H 5.2 5.3 N 10.1 10.0											
H 5.2 5.3 N 10.1 10.0	6h	C ₆ H ₁₁	S	CI	н	70	194	C ₂₈ H ₂₉ ClN₄O ₂ S ₂	С	60.8	61.0
(Continued)									N	10.1	

(Continued)

Compared	R	x	Y	z	Yield,	Melting	Formula		Analy	/sis, %
Compound	н	~	Ť	2	%	Point	Formula		Calc.	Found
6i	C ₆ H ₅	s	CI	н	78	181	C ₂₈ H ₂₃ CIN₄O ₂ S ₂	С	61.5	61.6
								н	4.2	4.2
						_		N	10.2	10.4
6j	C ₆ H₅CH₂	S	CI	н	75	157	C ₂₉ H ₂₅ ClN₄O ₂ S ₂	C	62.1	62.0
								Н	4.5	4.5
		_	_					N	10.0	9.9
6k	$CH_2CH = CH_2$	S	Br	н	70	144	C₂₅H₂₃BrN₄O₂S₂	C	54.1	54.1
								н	4.1	4.0
								N	10.1	10.0
61	(OH ₂) ₃ CH ₃	S	Br	н	73	159	C ₂₆ H ₂₇ BrN₄O ₂ S ₂	С	54.6	54.6
								н	4.7	4.6
								N	9.8	10.0
6m	C ₆ H ₁₁	S	Br	н	70	190	C ₂₈ H ₂₉ BrN₄O₂S₂	С	56.3	56.2
								н	4.9	5.0
								N	9.4	9.5
6n	C ₆ H₅	S	Br	н	78	178	C ₂₈ H ₂₃ BrN₄O ₂ S ₂	С	56.9	57.0
								н	3.9	3.8
								N	9.5	9.6
60	C ₆ H₅CH₂	S	Br	н	73	121	C₂9H₂5BrN₄O₂S₂	С	57.5	57.6
								н	4.1	4.2
								N	9.3	9.5
6p	$CH_2CH = CH_2$	S	н	CH₃	70	174	C ₂₆ H ₂₆ N₄O ₂ S ₂	С	63.7	63.7
•								н	5.3	5.3
								N	11.4	11.3
6q	(CH ₂) ₃ CH ₃	S	н	CH₃	76	182	C ₂₇ H ₃₀ N₄O ₂ S ₂	С	64.0	63.9
•	(2/0 0			-				н	5.9	6.0
								N	11.7	11.9
6r	C ₆ H ₁₁	S	н	CH₃	72	187	C ₂₉ H ₃₂ N₄O ₂ S ₂	С	65.4	65.5
	0							н	6.0	5.9
								N	10.5	10.5
6 s	C ₆ H₅	S	н	CH₃	75	168	C ₂₉ H ₂₆ N₄O ₂ S ₂	С	66.2	66.3
				2				н	4.9	5.1
								N	10.6	10.7
6t	C ₆ H₅CH₂	S	н	CH₃	70	140	C ₃₀ H ₂₈ N₄O ₂ S ₂	С	66.7	66.7
	- 01 10 - 11 4	-		5				н	5.2	5.3
								N	10.4	10.5

Table II—Substituted p-(3,5-Diarylpyrazol-1-yl)-benzenesulfonylurea (7) and Thiourea (6) Derivatives

Compound	R	· · · ·	Y	Z	Yield,	Melting	Formula		Analy	vsis, %
Compound	н	R X		2	%	Point	ronnola		Calc.	Found
7a	(CH ₂) ₂ CH ₃	0	CH ₃	н	80	152	C ₂₆ H ₂₅ N₄O ₃ S	С	66.0	66.2
			-					н	5.3	5.4
								N	11.8	12.0
7b	(CH ₂) ₃ CH ₃	0	CH₃	н	70	160	C ₂₇ H ₂₈ N₄O ₃ S	С	66.4	66.5
			-					н	5.7	5.7
								N	11.5	11.5
7c C ₆ H ₁₁	C ₆ H ₁₁ O	0	CH₃	н	72	150	C ₂₉ H ₃₀ N₄O ₃ S	С	67.7	67.7
								н	5.8	5.9
								N	10.9	11.0
7d	C ₆ H₅	0	CH₃	н	79	194	C ₂₉ H ₂₄ N ₄ O ₃ S	С	68.5	68.4
	•••		-					н	4.7	4.6
								N	11.0	10.9
7e (CH ₂) ₂ CH ₃	(CH ₂) ₂ CH ₃	0	Ci	н	78	145	C ₂₅ H ₂₃ ClN₄O ₃ S	С	60.7	60.8
								н	4.7	4.7
								N	11.3	11.5
7f	C ₆ H ₅	0	Cl	н	80	162	C ₂₈ H ₂₁ ClN₄O ₃ S	С	63.4	63.5
								н	4.0	4.0
								N	10.6	10.5
7g	(CH ₂) ₂ CH ₃	0	Br	н	70	150	C₂₅H₂₃BrN₄O₃S	С	55.7	55.6
•								н	4.3	4.4
								N	10.4	10.4
7h	C ₆ H₅	0	Br	н	75	158	C ₂₈ H ₂₁ BrN₄O ₃ S	С	58.7	58.7
	0 0	-						н	3.7	3.8
								N	9.8	9.7
71	C ₆ H₅	0	н	CH₃	78	172	C₂9H₂₄N₄O₃S	С	68.5	68.6
				-				н	4.7	4.6
								N	11.0	11.0

Table	II-Contin	nued
-------	-----------	------

0		v	V	z	Yield,	Melting	Farmeria		Analy	/sis, %
Compound	R	x	Y	2	%	Point	Formula		Calc.	Found
8a	C ₆ H ₁₁	s	CH₃	н	79	174	C ₂₉ H ₃₀ N₄O ₂ S ₂	C	65.7	65.8
								н	5.7	5.8
	.	~	O 11					N	10.6	10.5
8b	C₅H₅	S	CH₃	н	75	168	C₂9H₂₄N₄O₂S₂	C	66.4	66.5
								н	4.6	4.7
_		_	.					N	10.7	10.6
8c	C ₆ H₅CH₂	S	CH₃	н	80	155	C ₃₀ H ₂₆ N₄O₂S₂	С	66.9	67.0
								н	4.8	4.9
								Ν	10.4	10.5
8d	$CH_2CH = CH_2$	S	CI	н	70	138	C ₂₅ H ₂₁ ClN₄O ₂ S ₂	С	59.0	59.1
								н	4.1	4.1
								N	11.0	11.1
8e	C ₆ H ₁₁	S	CI	н	74	167	C ₂₈ H ₂₇ ClN₄O ₂ S ₂	С	61.0	61.1
	•							н	4.9	5.0
								Ν	10.2	10.2
8f	C ₆ H₅	S	CI	н	78	185	C ₂₈ H ₂₁ ClN₄O ₂ S ₂	С	61.7	61.6
	-0.5							н	3.9	4.0
								N	10.3	10.2
8g	C₅H₅CH₂	S	Br	н	76	157	C₂9H₂3BrN₄O₂S₂	С	62.3	62.2
• 3	•0···5•··2	•		• •			-29. 23	Ĥ	4.1	4.2
								N	10.0	9.9
8h	$CH_2CH = CH_2$	S	Br	н	70	138	C ₂₅ H ₂₁ BrN₄O ₂ S ₂	c	54.3	54.5
011		U	21	••			0251 12101140202	н	3.8	4.0
								N	9.9	9.8
8 i	C ₆ H ₁₁	S	Br	н	73	142	C ₂₈ H ₂₇ BrN₄O ₂ S ₂	Ċ	58.5	58.4
01	06/11	0	0,		75	174	02812701140202	н	4.5	4.6
								N	4.5 9.4	4 .0 9.5
01	<u>с н</u>	s	Br	н	75	158	C ₂₈ H ₂₁ BrN₄O ₂ S ₂	C	9.4 57.0	9.5 57.1
8j	C ₆ H₅	3	DI	п	75	100	0 ₂₈ n ₂₁ 01140202			
								H	3.6	3.7
								N	9.5	9.6

Table III—Nuclear Magnetic Resonance Spectral Data of Pyrazoline and Pyrazole Derivatives*

				¹ H NM	1R		13C	NMR
Compound	Y	z	Pyrazo	oline H	Other H	Pyraz	oline C	Other C
·			H-4 (2H,m)	H-5 (1H,m)		C-4	C-5	
3	CH₃	Н	2.8–4.1	5.4	7.0–7.9(13H,m) 6.5(2H, s, NH ₂) 2.3(3H, s, CH ₃)	43.1	62.6	149.0, 146.1, 138.4, 137.0, 132.7, 131.8, 129.6, 129.0, 128.4, 127.1, 125.8, 125.5, 112.0, 20.7(CH ₃)
3	CI	н	2.9–4.1	5.3	6.9–7.9(13H,m) 6.5(2H, s, NH₂)	43.0	62.4	148.9, 146.0, 140.0, 133.2, 131.7, 131.3, 129.2, 128.5, 127.6, 127.0, 125.9, 120.3, 111.9
3	Br	н	2.9–4.3	5.2	7.0−8.0(13H, m) 6.7(2H, s, NH₂)	42.7	62.0	148.8, 145.7, 140.4, 133.0, 131.8, 131.7, 129.0, 128.3, 127.5, 127.0, 125.7, 120.8, 111.8
3	н	CH₃	3.0-4.2	5.4	6.9–8.0(13H, m) 6.7(2H, s, NH₂) 2.3(3H, s, CH₃)	43.3	62.6	149.3, 146.2, 141.5, 132.3, 129.8, 129.0, 128.3, 127.5, 127.1, 125.5, 124.3, 113.9, 111.7, 20.8(CH ₃) (Continued)

Journal of Pharmaceutical Sciences / 629 Vol. 76, No. 8, August 1987

Table III—Continued

				1H NN	/IR		¹³ C	NMR
Compound	Y	z	Pyrazo	oline H	Other H	Pyrazo	oline C	Other C
			H-4 (2H,m)	H-5 (1H,m)		C-4	C-5	
4	CH₃	н			7.0–8.3(14H, m) 6.4(2H, s, NH ₂) 2.4(3H, s, CH ₃)			148.1, 144.3, 142.0, 135.2, 132.1, 131.9, 130.4, 129.2, 128.9, 128.3, 126.4, 125.4, 122.0, 120.1, 111.9, 20.9(CH ₃)
4	CI	н			7.0–8.2(14H, m) 6.3(2H, s, NH₂)			148.2, 143.2, 140.8, 136.6, 135.1, 134.6, 131.6, 130.3, 129.4, 128.8, 127.9, 126.1, 122.4, 121.7, 112.0
4	Br	н			7.0−8.3(14H, m) 6.5(2H, s, NH₂)			149.4, 143.5, 140.7, 136.3, 135.3, 132.0, 131.6, 131.3, 129.4, 128.6, 128.0, 126.1, 122.1, 121.2, 112.1
4	н	CH₃			7.1–8.4(14H, m) 6.6(2H, s, NH ₂) 2.4(3H, s, CH ₃)			148.0, 144.0, 142.0, 135.6, 132.0, 131.8, 130.8, 129.6, 129.3, 128.7, 126.4, 125.2, 121.6, 113.6, 111.6, 21.0(CH ₃)

^a Solutions in CDCl₃; o in ppm; s: singlet, m: multiplet.

Table IV—Antidiabetic Activity of Substituted p-(3,5-Diaryl-2pyrazolin-1-yl)- and p-(2,5-Diarylpyrazol-1-yl)-benzenesulfonylurea Derivatives

Compound	Reduction in Plasma Glucose Level, % ^a
5c	3
5e	3.5
5f	5 ^c 3
5j	3
5n	4
6a	3.5
6h	2.8
60	1
7a	7 <i>°</i>
7Ь	8.3 ^b
7c	9 ^{<i>b</i>}
7d	5.5
7e	12 ^b
71	6 <i>°</i>
7g	86
7ĥ	5 <i>°</i>
71	6.5 ^b
8b	4
8d	5.5 ^b
8h	3

^aTested using alloxan-treated mice (100 mg/kg); phenformin (0.4 mmol) was used as the positive control; the hypoglycemic activity of phenformin was 10% reduction (statistically significant when compared with the untreated controls, p < 0.01). ^b Statistically significantly different when compared with the untreated controls at p < 0.01. ^c Statistically significantly different when compared with the untreated controls at p < 0.05.

indicative of the $SO_2N <$ group, a band at 3360–3400 cm⁻¹ that is indicative of the NH group, and two bands at 3210–3250 and 3308–3320 cm⁻¹ for the NH₂ group.

1-(*p*-Sulfamylphenyl)-3,5-diaryl-2-pyrazolines (3; Table VI)—A mixture of *p*-sulfamylphenylhydrazine hydrochloride (0.1 mol) and the appropriate chalcone (0.1 mol) in ethanol (150 mL) was refluxed for 6 h over a steam bath, concentrated, and allowed to cool. The crude products that separated out were recrystallized from ethanol as needles. The IR spectra of these pyrazolines showed two absorption bands at 1330–1350 and 1170–1180 cm⁻¹ for the SO₂N< group, and bands at 3230–3255 and 3310–3330 cm⁻¹ that are indicative of the NH₂ group.

The pyrazolines (3) were also prepared in 75-85% yield by heating their corresponding hydrazones (2) over a steam bath with a few drops of hydrochloric acid for 1 h.

1-(p-Sulfamylphenyl)-3,5-diarylpyrazoles (4; Table VI)—A suspension of the appropriate pyrazoline (0.01 mol) in water (20 mL) was treated with 5% bromine water until a faint yellow color persisted. The mixture was stirred for 2 h and the crude pyrazoles were filtered and recrystallized from methanol as needles. The IR spectra exhibited two bands at 1335–1360 and 1155–1180 cm⁻¹ for the SO₂N< group, and bands at 3230–3250 and 3320–3340 cm⁻¹ for the NH₂ group.

Substituted p-(3,5-Diaryl-2-pyrazolin-1-yl)-benzenesulfonylurea (5) and p-(3,5-Diarylpyrazol-1-yl)-benzenesulfonylurea¹³ (7) Derivatives—A mixture of 3 or 4 (0.05 mol) and anhydrous potassium carbonate (0.1 mol) in dry acetone (100 mL) was stirred and refluxed for 1.5 h. At this temperature, a solution of the appropriate isocyanate (0.075 mol) in dry acetone (20 mL) was added in a dropwise manner. After the mixture was stirred and refluxed overnight, acetone was removed under reduced pressure and the solid residue was dissolved in water. The crude product was isolated by acidification with 2 M hydrochloric acid and purified by recrystallization from ethanol as needles. The IR spectra of these compounds

revealed two absorption bands at 1550–1350 and 1170–1190 cm⁻¹ that are indicative of the $SO_2N <$ group, in addition to a urea band at 1660–1665 cm⁻¹.

Substituted p-(3,5-Diaryl-2-pyrazolin-1-yl)-benzenesulfonylthiourea (6) and p-(3,5-Diarylpyrazol-1-yl)-benzenesulfonylthiourea (8) Derivatives—A mixture of 3 or 4 (0.05 mol) and anhydrous potassium carbonate (0.1 mol) in dry acetone (100 mL) was stirred and treated with the appropriate isothiocyanate (0.06 mol). After the mixture was stirred and refluxed for 10 h, acetone was removed under reduced pressure. The solid mass thus obtained was dissolved in water and acidified with 2 M hydrochloric acid. The crude product was purified by recrystallization from ethanol as needles. The IR spectra of these compounds showed a characteristic band in the region 1100-1140 cm⁻¹ that is indicative of the C=S group, besides two bands at 1330-1360 and 1120-1190 cm⁻¹ that are indicative of the SO₂N< group. The ¹H NMR spectra of pyrazoline 3 exhibited, besides the aromatic protons at $\delta 6.9-8.0$, two multiplets at $\delta 2.8-4.3$ and 5.2-5.4 for H-4 (CH₂) and H-5 (CH), respectively, as well as an exchangeable NH₂ signal at $\delta 6.5-6.7$. On the other hand, the ¹H NMR spectra of the pyrazoles (4) showed a multiplet (14 protons) at $\delta 7.0-8.3$ for the benzene ring protons together with H-4 of the pyrazole ring, as well as the exchangeable NH₂ signal at $\delta 6.3-6.6$

The ¹³C NMR spectra of the pyrazoline 3 showed, besides the aromatic carbons, two signals at δ 42.7-43.3 and 62.0-62.6 for C-4 and C-5, respectively, of the pyrazoline ring.

Biological Testing Method—Compounds 5c, e, f, j, and n, 6a, h, and o, 7a-i, and 8b, d, and h were tested for hypoglycemic activity. Alloxanized female Sprague-Albino mice, 18-20 g (Alexandria University Research Center), were used. Alloxan (100 mg/kg) in a 10mg/mL saline solution was injected into the tail vein. Three days later, the mice were given the test compounds orally in a 1%

Table V—Hydrazone Derivatives (2)

Compound	Y	Ζ	Yield, Melting	Melting	Formula	Analys	sis, %
Compound	1	2	%	Point	Formula	Calc.	Found
2a	CH3	Н	88	120	C ₂₂ H ₂₀ N ₃ O ₂ S	C 67.7 H 5.1 N 10.8	67.9 5.0 11.0
2b	CI	н	85	108	$C_{21}H_{17}CIN_3O_2S$	C 61.4 H 4.1 N 10.2	61.5 4.0 10.1
2c	Br	н	84	126	$C_{21}H_{17}BrN_3O_2S$	C 55.4 H 3.7 N 9.2	55.5 3.6 9.1
2d	н	CH3	88	128	C ₂₂ H ₂₀ N ₃ O ₂ S	C 67.7 H 5.1 N 10.8	67.8 5.0 10.9

Table Vi—Substituted 1-(p-Sulfamylphenyl)-3,5-diaryl-2-pyrazoline (3) and Pyrazole (4) Derivatives

Compound	Y	Z	Yield,	Melting	Formula	Analy	sis, %
Compound	r	2	%	Point	Formula	Calc.	Found
38	CH3	н	88	220	C ₂₂ H ₂₁ N ₃ O ₂ S	C 67.5 H 5.4 N 10.7	67.6 5.5 10.8
3b	CI	н	82	204	$C_{21}H_{18}CIN_3O_2S$	C 61.2 H 4.4 N 10.2	61.0 4.5 10.2
3с	Br	н	85	222	$C_{21}H_{18}BrN_3O_2S$	C 55.3 H 3.9 N 9.2	55.4 4.0 9.1
3d	н	CH₃	84	216	$C_{22}H_{21}N_3O_2S$	C 67.5 H 5.4 N 10.7	67.5 5.3 10.5
4a	CH₃	н	70	195	C ₂₂ H ₁₉ N ₃ O ₂ S	C 67.9 H 4.9 N 10.8	68.0 5.0 10.9
4b	Cl	н	68	152	$C_{21}H_{16}CIN_3O_2S$	C 61.5 H 3.9 N 10.3	61.6 4.0 10.2
4c	Br	н	72	186	$C_{21}H_{16}BrN_3O_2S$	C 55.5 H 3.5 N 9.3	55.6 3.5 9.4
4d	н	CH ₃	78	188	C ₂₂ H ₁₉ N ₃ O ₂ S	C 67.9 H 4.9 N 10.8	67.8 4.8 10.9

carboxymethylcellulose suspension at the rate of 0.4 mmol/kg. On each day of the experiment, a group of four mice was used as the control; one group of four mice was given the standard 100 mg (0.4 mmol) of phenformin/kg. Up to five groups of four mice each received the test compounds. Blood samples were collected into a 0.04% NaF solution at 0, 1, and 3 h.

Glucose was determined by the fluorescence polarization immunoassay of Abbott.14 Results are expressed as a percent reduction of plasma glucose levels compared with the control value. Statistical significance was assessed by the *t* test, where the calculated *t* value exceeded the tabulated t value at the p = 0.05 level.

From the results cited in Table IV, it is obvious that among the four new series of substituted p-(3,5-diarylpyrazole)-benzenesulfonylurea derivatives only compound 7 showed marked hypoglycemic activity. The potency of most of these compounds, however, is more than that of phenformin. This study also shows that substituted pyrazole derivatives are much more active as antidiabetic agents than their corresponding 2-pyrazoline derivatives. p-Substitution of the aryl groups attached at the 3 or 5 positions of the pyrazole ring does not significantly influence the hypoglycemic activity of such derivatives.

From the data presented previously⁸⁻¹⁰ and in this report, it is obvious that many 3,5-disubstituted pyrazole-benzenesulfonylurea derivatives possess marked hypoglycemic activity. Maximum activity is found in the substituted 3,5-dimethylpyrazolebenzenesulfonylurea derivatives, followed by the substituted 3-methyl-5-phenylpyrazolebenzenesulfonylurea derivatives. Substituted 3.5diarylpyrazolebenzenesulfonylurea derivatives showed the lowest antidiabetic activity. Generally, the thiourea derivatives are much less active than the corresponding urea derivatives. Primarily, introduction of a bromine atom in the 4-position of the pyrazole ring reduces the hypoglycemic activity.

References and Notes

- 1. Wright, J. B.; Dulin, W. E.; Markillie, J. H. J. Med. Chem. 1964,
- 7, 102.
- Gerritsen, G. C.; Dulin, W. E. *Diabetes* 1965, 14, 507. Smith, D. L.; Forist, A. A.; Dulin, W. E. J. Med. Chem. 1965, 8, 3. 350.
- 4. Gerritsen, G. C.; Dulin, W. E. J. Pharm. Exp. Ther. 1965, 150, 491.
- 5. Smith, D. L.; Forist, A. A.; Gerritsen, G. C. J. Pharm. Exp. Ther. 1965, 150, 316.
- 6. Soliman, R.; Mokhtar, H.; El Ashry, E. S. Pharmazie 1978, 33, 184.
- Mokhtar, H.; Soliman, R. Pharmazie 1978, 33, 649.
 Soliman, R. J. Med. Chem. 1979, 22, 321.
 Soliman, R.; Feid Allah, H. M. J. Pharm. Sci. 1981, 70, 602.
- Soliman, R.; Feid Allah, H. M.; El Sadany, S. K.; Mohamed, H. F. J. Pharm. Sci. 1981, 70, 606. 11. Soliman, R.; Mokhtar, H.; Mohamed, H. F. J. Pharm. Sci. 1983,
- 72.999. 12. Soliman, R.; Mokhtar, H.; Mohamed, H. F. J. Pharm. Sci. 1983,
- 72, 1004 13. Marshall, F. J.; Sigal, M. V.; Roots, M. A. J. Med. Chem. 1963, 6, 60
- Jolley, M. E.; Stroupe, S. D.; Schwenzer, K. S.; Wang, C. J.; Lu-Steffes, M.; Hill, H. D.; Popelka, S. R.; Holen, J. T.; Kelso, D. M. J. Clin. Chem. 1981, 27, 1575.