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Abstract

Two 2-pyridone tautomeric analogs, methoxypyriddrendN-methylpyridoneb, were
synthesized, and their spectroscopic properties weestigated both experimentally and
computationally. A detailed photophysical studye&¢ thatt shows high fluorescence
guantum yields not only in chloroform but also thanol, and the strong fluorescence in
solution might be attributed to the enol form (pyme) of the 2-pyridone. Furthermore, we
designed and synthesized novel 2-substitued pwsdio achieve more intense emissions in
both solution and the solid state. Substituent freadion with phenylsulfonyl, morpholino,
and 4-diethylamino groups greatly affected thersaence properties, and methoxypyridine
7 and morpholinopyridine compou@kshowed fluorescence in various solverdis{
0.59-0.95) and the solid state € 0.12—0.15). A hypsochromic shift in the emission
maximum wavelength and strong fluorescence in thid state ¢ = 0.39) were observed for
dimorpholinopyridined. Morpholinopyridinell showed intense fluorescence in all nonpolar
and polar solvents. Systematic time-dependent teiusictional theory calculations were
performed for the compounds whose electronic amatéiscent maxima were computationally
reproduced with good agreement to those from exyaen. In detail, the drastic difference in
the emission intensity betwedrand5 in solution was successfully explained using CAESC

calculations, which revealed conical intersectibesveen the ground and the excited states.

Keywords. keto—enol tautomerism of 2-pyridone; pyridinepfiescence; TDDFT; CASSCF;

conical intersection
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1. Introduction

Fluorophores are one of the most useful matemalsrious chemical, biological, and material
sciences because of their sensitivity, simpli@gpr tunability, and low cost [1-3]. Each
fluorophore, which could be an organic moleculeofescent protein, or quantum dot, for
example, has a specific wavelength of absorbangemaission of light from the visible to near
infrared region [1,4—6]. In organic molecules, maitarly heterocyclic compounds, these
fluorescence characteristics can be easily tunethbgnical modification [7,8]. Therefore,
there has been significant effort to develop flgptrares based on organic molecules for
applications as clinical diagnostic probes and mighght-emitting materials [9-15].
2-Pyridone is a nitrogen-containing heterocyclimpound and is used as a scaffold for
antibacterial, anticancer, antiviral, and antimalaagents [16—19]. In addition,
2-pyridone-based fluorophores exhibiting strong@fescence have been reported [20-22].
Previously, we also reported several fluorescepyridone compounds,
6-(4-dialkylamino)phenyl-2-pyridones, that exhiggregation-induced emission
enhancement (AIEE)-based fluorescence in the stdig [23,24]. These 2-pyridone
compounds also exhibited fluorescence in solutimd, the fluorescence quantum yieldy (
in chloroform were very highd§ = 0.90-0.92) [25]. However, the fluorescence isiigrof
the 2-pyridone compounds decreased in polar s@\wmh as ethanab(= 0.11-0.22) [25]. It
has been reported that the 2-pyridone ring hasawitmmeric forms (keto and enol); the
favored form depends on the solvent polarity. THe/@xypyridine enol form is favored in
nonpolar solvents, whereas the 2-pyridone keto fsrfavored in polar solvents [26—29].
Therefore, we assumed that the tautomerism of4tngidone ring affects the fluorescence
intensity in nonpolar and polar solvents.

Thus, to elucidate this hypothesis, we synthesizpgridone tautomeric analogs,

methoxypyridine compoundlandN-methylpyridone compoun®, and characterized their
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fluorescence properties using photophysical studiesvell as quantum chemical
calculations. We have found that the enol form gyemntributes to the fluorescence intensity
in both nonpolar and polar solvents. In heterocycimpounds, the arrangement of the
electron—donating or electron—withdrawing grougedas the intramolecular charge transfer

(ICT) and enhances the fluorescence intensity [233]. In addition, we reported that the

steric hindrance of the alkyl group reduces theemdar aggregation of 2-pyridone and
induced AIEE-based fluorescence [23,25]. Most AlR&terials previously reported exhibited
strong fluorescence in the solid state, but tHearéscence in solution was very weak [33].
Therefore, the development of fluorophores exhmpgifiuorescence in both solution and the
solid state has attracted attention. In this papereport the synthesis and characterization
of novel 2-substituted pyridine compoundsq and11) that exhibit strong fluorescence in

various solvents and the solid state.

2. Materials and methods

All chemicals were reagent grade and used withatihér purification unless otherwise
specified. The identification of new compounds #mmeasurement of the fluorescence
properties were performed with the following equerh Melting points were measured using
a Laboratory Devices Mel-Temp Il apparatus and &Mura Riken Kogyo Mel-Temp
apparatus. The NMR spectra of the compounds weeenaal using Gemini 300NMR (300
MHz) and JEOL-GX-400 (400 MHz) spectrometers. Mgssctra (MS) and high-resolution
(HR) MS were obtained using a JEOL DX-303 masstspeeter. Elemental microanalyses

were recorded using a Perkin-Elmer CHN analyzer.



98 2.1 Synthesis of

99  6-(4-dimethylamino)phenyl-4-methyl sulfanyl-2-methoxypyridine-3-carbonitrile (4) and
100  6-(4-dimethylamino)phenyl-1-methyl-4-methyl sul fanyl-3-cyano-2H-pyridone (5)
101 As described previously [25],
102  6-(4-(dimethylamino)phenyl)-4-(methylsulfanyl)-2-@x ,2-dihydropyridine-3-carbonitrile
103 (3; 86 mg, 0.29 mmol, 29%) was prepared by the readf 4'-dimethylaminoacetophenone
104 (1a; 1.63 g, 10.0 mmol) and 3,3-bis(methylsulfanyl)omainitrile Qa; 2.86 g, 10.0 mmol)
105 using powdered NaOH (1.60 g, 40 mmol) as a bademethyl sulfoxide (DMSO, 20 mL). To
106 asuspension & (285 mg, 1.0 mmol) in DMSO (5.0 mL) and 2 N sodiayaroxide (3.0 mL),
107 dimethyl sulfate (189 mg, 1.5 mmol) was added @Zemin, and the resulting suspension was
108 stirred for 1.5 h. After pouring 50 mL water inteetreaction mixture, a precipitate formed,
109 which was collected by filtration and washed seMarges with water. Purification by silica gel
110 column chromatography (10 g of silica gel) elutathwoluene gavéd (86 mg, 0.29 mmol,
111 29%) and that with toluene and methanol (ratio 4ave5 (107 mg, 0.36 mmol, 36%). An
112 analytical sample was recrystallized from methdodalive pale yellow needles 4f(mp
113 171-172 °C). IR (KBr, cm): 2921, 2211, 1609, 1566, 1539, 1364, 1187, 11684, 812.
114 H-NMR (CDCk, 400 MHz): 2.62 (3H, s, SMe), 3.06 (6H, s, NyJet.11 (3H, s, OMe), 6.75
115 (2H,d,J=9.1 Hz, 3, 5-H), 7.06 (1H, s, 5-H), 7.96 (2H,XE 9.1 Hz, 2, 6™-H).1*C-NMR
116 (CDCls, 100 MHz): 14.4, 41.3, 54.2, 106.4, 114.5, 12857.1, 164.4. M®z 300 (M + 1,
117  70), 299 (M, 100), 298 (83), 282 (11), 240 (22), 236 (11). A@alcd for GeH17N3sSO =
118 299.1092: C, 64.19%; H, 5.72%; N, 14.04%. Found®4236%; H, 5.74%; N, 14.10%. An
119 analytical sample was recrystallized from methdogjive yellow needles & (mp
120  218-220 °C). IR (KBr, ci): 3250, 3000, 2910, 2820, 2210 (CN), 1640 (C=6}Ql 1510,
121 1490, 1440, 1420, 1360, 1310, 1290, 1240, 1215),11@60, 1040*H-NMR (CDCl, 400

122 MHz): 2.52 (3H, s, Me), 3.07 (6H, s, Ni)e3.44 (3H, s, NMe), 6.05 (1H, s, 5-H), 6.80 (2H,
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J=9.1Hz, 3,5-H), 7.27 (2H, d] = 9.1 Hz, 2’, 6-H).**C-NMR (CDCk, 100 MHz): 14.4,
34.9, 40.3, 95.68, 103.5, 111.9, 115.0, 129.3,21864.3, 160.7, 161.1. M&z 300 (M' + 1,
47), 299 (M, 100), 298 (13), 127 (11), 112 (12), 99 (15). Atgdlcd for GeH17N3SO =

299.1092: C, 64.19%; H, 5.72%; N, 14.04%. Found3401%; H, 5.68%; N,13.86%.

2.2 Synthesis of

6-(4-dimethylamino) phenyl-4-methyl sulfanyl -3-phenyl sulfonyl-2-methoxypyridine (7)

As described previously [25],
6-(4-(dimethylamino)phenyl)-4-(methylsulfanyl)-3h@nylsulfonyl)pyridin-2(1H)-oneq)

(0.96 g, 2.40 mol) was prepared by the reactiotadqfL.63 g, 10.0 mmol) and
3,3-bis(methylsulfanyl)-2-phenylsulfonyl-acryloniér (2b; 1.43 g, 5.0 mmol) using powdered
NaOH (1.12 g, 28 mmol) and morpholine (1.5 g, I#fol) in DMSO (20 mL). To a
suspension 06 (150 mg, 3.75 mmol) in DMSO (10 mL) and a solutadri N sodium
hydroxide (6.0 mL), dimethyl sulfate (250 mg, 1.5wl) was added over 30 min, and the
resulting suspension was stirred for 1.5 h. After addition of 50 mL water to the reaction
mixture, the formed precipitate was collected lydtion and washed several times with water.
Purification by silica gel column chromatograph® (.of silica gel) eluted with toluene gave
pale yellow needles af (65 mg, 0.157 mmol, 42%, mp 194—195 °C). IR (K&n): 2920,
2367, 2337, 1615, 1527, 66®-NMR (CDCl, 400 MHz): 2.55 (3H, s, Me), 3.07 (6H, s,
NMe,), 3.93 (3H, s, OMe), 6.73 (2H, d= 9.3 Hz, 3",5"-H), 7.11 (1H, s, 5-H), 7.48 (2H, m,
3',5-H), 7.56 (1H, m, 4'-H), 7.91 (2H, d| = 9.3 Hz, 2",6"-H), 8.06 (2H, m, 2",6'-H).
¥3C-NMR (CDCk, 100 MHz): 16.0, 16.1, 40.1, 40.1, 53.8, 107.(0;.10111.7, 124.5, 127.6,

128.2, 128.4, 142.7, 151.8, 155.8, 157.4, 160.9(FAB) m/z: 415 (M+ H").



147 2.3 Synthesis of 6-(4-(dimethylamino)phenyl)-4-(methyl sulfanyl)-2-mor pholinonicotinonitrile
148 (8) and 6-(dimethylamino)phenyl-2,4- dimorpholinopyridine-3-carbonitrile (9)

149 Asolution ofla (1.63 g, 10.0 mmolRa (2.86 g, 10.0 mmol), and NaOH (1.60 g, 40 mmol) in
150 DMSO (20 mL) was stirred at 10-15 °C for 5 h. Attee addition of 300 mL of ice water to the
151 reaction mixture, the mixture was acidified witlPa@ydrochloric acid. The resulting

152 caramel-colored intermediate was collected by detiam and washed with ice cold water
153 several times. A solution of the intermediate irtevand morpholine (3.0 g, 34.4 mmol) was
154 heated for 20 min at about 200 °C. After filtratidine filtrate was concentrated in vacuo.
155 Purification by silica gel column chromatograph® @of silica gel) eluted with

156 toluene:methanol (4:1) gad960 mg, 2.40 mmol, 24%,(92 mg, 0.26 mmol, 2.6%), ard
157 (82 mg, 0.21 mmol, 2.1%). An analytical sample waystallized from methanol to give
158 colorless needles & (mp 167—168 °C). IR (KBr, ci): 2854, 2367, 2336, 1570, 1532, 1112.
159 H-NMR (CDCl, 400 MHz): 3.04 (6H, s, NMg 3.42 (2H, m, N-Ch+), 3.70 (2H, m,

160 N—-CH,-), 3.87 (4H, m, -CH-O—CH-), 6.73 (2H, dJ = 8.8 Hz, 3’, 5'-H), 7.91 (2H, d]= 8.8
161 Hz, 2, 6'-H). ®C-NMR (CDCk, 100 MHz): 14.5, 40.4, 48.8, 66.8, 89.3, 104.2.21116.8,
162 128.5,157.3, 157.4, 161.6. M8z 355 (M’ + 1, 28), 354 (M, 100), 339 (14), 324 (16), 323
163 (20), 297 (60), 296 (87), 269 (14), 222 (11). Arzalcd for GoH22N,SO = 354.1514: C,

164 64.38%; H, 6.26%; N, 15.81%. Found: C, 64.32%; 12280; N, 15.85%. In addition, an

165 analytical sample was recrystallized from methdogjive colorless needles 8{(mp

166 197-198 °C). IR (KBr, ci): 2966, 2851, 2193 (CN), 1608, 1570, 1536, 1118, BH-NMR
167 (CDCls, 400 MHz): 3.04 (6H, s, NM 3.44 (4H, m, 2 x N—=CH), 3.70 (4H, m, 2 x N-CH),
168 3.88 (8H, m, 2 x O—CH). *C-NMR (CDC}, 100 MHz): 40.4, 49.2, 50.6, 66.6, 66.8, 82,3,
169 98.2,112.0, 118.8, 128.3, 158.9, 163.7, 163.9nVi5394 (M + 1, 24), 393 (M, 94), 336

170  (41), 335 (100), 315 (16), 299 (29). Anal. Calcd®a,H,7NsO, = 393.2165: C, 67.15%; H,

171  6.92%; N, 17.80%. Found: C, 67.01%; H, 7.05%; N71%.
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2.4 Synthesis of

6-(4-diethylamino)phenyl -4-methyl sulfanyl-2-mor pholinopyridine-3-carbonitrile (11)
Compoundll (54 mg 0.141 mmol, 2.8% yield) was prepared from
4-(diethylamino)phenylacetophenorid (0.86 g, 5.0 mmol) angha (0.85 g, 5.0 mmol) in a
manner similar to that described for the synthek& An analytical sample was recrystallized
from dimethylformamide (DMF) and methanol to givedgyellow needles (mp 137-138 °C).
IR (KBr, cmi'): 2898, 2845, 2200 (CN), 1608, 1537, 1524, 148861 814 H-NMR (CDCl,
400 MHz): 1.21 (6H, t) = 7.0 Hz, 2 x CK+CHs), 2.60 (3H, s, SMe), 3.43 (4H, @iF 7.0 Hz,

2 x N-CH-), 3.73 (4H, tJ = 5.1 Hz, 2 x -CkN), 3.68 (4H, tJ= 5.1 Hz, 2 x O-Ch}), 6.71
(2H, d,J=9.2 Hz, 3, 5-H), 6.93 (1H, s, 5-H), 7.91 (2H,3= 9.1 Hz, 2, 6'-H).*C-NMR
(DMSO-d6, 100MHz): 12.4, 13.6, 43.7, 48.5, 65.94.53104.6, 110.9, 116.6, 123.1, 129.0,
149.1, 156.7, 157.2, 161.1. Anal. Calcd feiH3:N»S,03 = 382.1827: C, 65.94%; H, 6.85%);

N, 14.65%. Found: C, 65.78%; H, 6.76%; N, 14.63%.

2.5. Fluorescence measurements

The solid-state fluorescence of powdered samplassmeasured in a Shimadzu RF-5300pc
fluorescence spectrometer. After the excitatiorcspen had been measured by scanning at the
fluorescent wavelength, the fluorescence spectrasiabtained using the excitation
wavelength. The fluorescence spectra in solutiorewbtained in a manner similar to that in
the solid state. To measure the fluorescence utieal the concentrations of samples were
adjusted using a molar absorption coefficient 860The fluorescence spectra in solution were
obtained in the same way as the solid-state measmts. Fluorescence quantum yields were
determined using an Absolute PL Quantum Yield Measgnt System (C9920-01) from

Hamamatsu Photonics.
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2.6. X-ray crystallography

X-ray diffractometry (XRD) data were obtained wéhRigaku Saturn724 diffractometer using
multilayer mirror monochromated MoeKradiation at -179 + 1 °C, and all calculations ever
conducted using CrystalClear (Rigaku). The striectf8 (CCDC-1896939) can be obtained
from the Cambridge Crystallographic Data Centrergguest
(www.ccdc.cam.au.uk/data_request/cif).

Crystal data foB: A crystal was obtained by recrystallization frdie OH/acetonitrile (1:1),
which yielded colorless blocks of formulad&,:N4OS having approximate dimensions of
0.270 x 0.080 x 0.020 mm. The crystal was mounted glass fiber for data collection.
Crystal data formula weight: 354.47; crystal colmtorless; habit: block; crystal system:
triclinic; lattice type: primitive; lattice paramas:a = 11.072(3) Ap = 11.374(3) Ac =
15.493(4) AB = 90.259(3)°, V = 1819.7(7) Aspace groug®-1 (#2); Z-value: 4; calculated
density Deaicd: 1.294 g cri’; F(000) = 752.00; and absorption coefficienfMo-Ko)) = 1.923
cmi
3. Computational details

The ground state geometries of all molecules ivnwagere fully optimized at the density
functional theory (DFT) B3LYP/6-311++G(d,p) levdltheory. The lowest excited states)(S
were geometrically optimized in vacuo by meansroétdependent DFT (TDDFT)
calculations at the B3LYP/6-31+G(d,p) level of theasing the default convergence criterion
for force and displacement implemented in Gaus3®ei34]. For the optimized geometries, the
S—S1 (absorption) and the;SS, transition energies (fluorescence) were evaluatede
TDDFT/6-311++G(d,p) and 6-31+(d,p) levels using B&LYP [35], CAM-B3LYP [36],

PBEPBE [37], M06 [38], and M06-2X [38] exchange-fetation (XC) functionals. Solvent
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effects were taken into account using the polalezabntinuum model (PCM).

In the detailed study @f and>5, the relaxation paths im, vere explored from the
Franck—Condon (FC) state to therBinimum and to the minimum energy conical
intersections (MECIs) [39], respectively. The ME@isre located using MOLPRO [40] at the
CASSCEF(8,7)/def2-SV(P) level of theory. The singtent calculations were carried out at the
TDDFT(B3LYP)/def-TZVP level of theory using the TBRMOLE suite of program [41] to

refine the energies of thg-8C, the $minima, and the §S,-MECIs states.

4. Results and discussion

4.1 Synthesis and fluorescence of 2-pyridone tautomeric analogs (4 and 5)

The synthesis of 2-methoxypyridine compoudnahndN-methylpyridone compounglis
shown in Scheme 1. The reaction of 4'-dimethylamoetophenonelé) with cyano-keten
SS-acetal Ra) in the presence of sodium hydroxide as a baBMBO at room temperature
followed by the addition of 10% hydrochloric aciglged 2-pyridone compourglin 29%.
The methylation o8 was achieved using dimethyl sulfate in the preserdcodium
hydroxide, and the resultant mixturedénd5 was easily separated by silica gel column
chromatography. Methoxypyridine compouhdias firstly eluted using toluene in 29% vyield,
andN-methylpyridone compounglwas subsequently eluted using a mixture of toluere
methanol (ratio 4:1) in 36% yield. Next, we analyzle fluorescence properties of these
compounds in two solutions (chloroform and ethanaal) the solid state. The absorption
maxima f{may, €mission maximammay), and® values of compound3-5 are listed in Table
1. TheEmnax values o# and5 were observed at 461 nm in chloroform and at 48im
ethanol, which is a hypsochromic shift of the saxient as that induced by tNe or O-
methylation of3. The pyridine form compountlexhibited strong fluorescence in both

chloroform @ > 0.99) and ethanofi{ = 0.61), whereas th® values of the pyridone form

10
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compound were very low in both chloroformi = 0.12) and ethanofi{ = 0.05). Because
the fluorescence of 2-pyridofdewvas intense in chloroforn®d(= 0.90) but weak in ethanol
(® =0.11), we speculated that the fluorescencemfriztones3 in chloroform is due to the
pyridine form (the enol of 2-pyridone), whereasttimeethanol is due to the pyridone form
(the keto of 2-pyridone). In the solid state, Bm,.x values o4 and5 also occurred at
shorter wavelengths than that3thoweverN-methylpyridone compoun8l exhibited
stronger fluorescence(= 0.18) than methoxypyridine compouéd® = 0.03). In a
previous study, we revealed that 2-pyridones, mhiclg compound (® = 0.17), show
moderate fluorescence in the solid state, and serabported that the keto—enol equilibrium
of these 2-pyridones is remarkably shifted to thy&done tautomer on the basis of X-ray
crystal structure analysis [25]. Therefore, th@fkscence intensity &fin the solid state is

consistent with our previous results.

Scheme 1.

Table 1.

4.2 Synthesis and fluorescence of 2-substituted pyridines

The molecular packing arrangement and orientataused by substituents often influence
the fluorescence intensity in the solid state [2b,@/e previously reported that the
introduction of sulfonyl group disrupts the molemuplanarity of 2-pyridones, thus
decreasing the—r stacking interactions [25,42]. Therefore, compausidowing strong
fluorescence in both solution and the solid statddcbe developed by introducing a
substituent into the pyridine that exhibits strélugrescence in solutiomhus, we prepared a

series of 2-substitued pyridine compound< and11 (Scheme 2). After sulfonyl pyridone

11
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compounds had been prepared from the reactiodafvith 2b, the methylation 06 using
dimethyl sulfate was conducted, similar to the bgses oft and5. In this reaction, however,
methoxypyridine compoundwas only obtained in 42% yield. Morpholinopyridine
compounds3 and9 were prepared frorha and2a using morphine. After filtration the major
products, 3,2-morpholinopyridine compoudnd 2,4-dimorpholinopyridine compoufgd
were obtained from the filtrate in 2.6% and 2.1%lds, respectively. Fig. 1 shows the X-ray
crystal structure of compour@ We previously reported that the replacement ef th
dimethylamino group with a diethylamino group a @ipositon of the 2-pyridone ring
reduces the molecular aggregation, and diethylaripgridone compountiO showed
stronger fluorescence than dimethylamino 2-pyridoo@pound3 in solution [25,43].
6-(4-Diethylamino)phenyl-2-morpholinopyridine compwl 11 was obtained in a similar

manner from the reaction &b and2a.

Scheme 2.

Fig. 1.

The fluorescence properties 9 and11 in solution (chloroform and ethanol) and the solid
state are summarized in Table 2. Thealues of phenylsulfonyl-methoxypyridine compound
7 were 0.95 in chloroform and 0.62 in ethanol, whach comparable to that of
methoxypyridine compourdl Meanwhile, the solid state fluorescenc& @fas increased to
0.15, suggesting that molecular planarity disrupt®induced by the introduction of the
phenylsulfonyl group, as in the 2-pyridones [25n@ounds8 and9 contain a morpholino
group instead of a methoxy group and also exhilstezhg blue fluorescence in the solid

state (Fig 2), especially dimorpholinopyridine caupd9, which showed intense

12
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fluorescenced® = 0.39). In contrast, th& values in solutiodecreased with increasing
number of morpholino groups. Tlken,.x 0f 9 exhibits hypsochromic shifts about 50-65 nm
in solution. 4-Diethylamino morpholinopyridine cooymd11 exhibited stronger

fluorescence than 4-dimethylamino morpholinopyrdaompound in solution and the solid
state. The emission maximum wavelength&loh chloroformand ethanol were
hypsochromically shifted by about 25 nm, and, e$éngly, the solid state emission
wavelength was bathochromically shifted by abouh&b The results indicated that the
arrangement of substituents might enable the dpuetat of fluorophores exhibiting strong
fluorescence in both solution and the solid state, these compounds had a potential to be a

fluorophore for clinical diagnostic probes and angdight-emitting materials.

Table 2.

Fig.2

4.3 Solvatochromic effects on absor ption and emission

The fluorescence solvatochromic effects dependerchemical structure and arrangement
of the substituents. We investigated the solvatmtiism of compound4, 5, 7-9, and11 in
various solvents except for water. All compoundsen®ardly soluble in water. The
absorption maxima, emission maxima and fluorescspeetra in nonpolar, aprotic polar, and
protic polar solvents are given in Table 3 and Bidgl'he absorption maximum wavelengths
of all compounds did not change significantly, th& emission maximum wavelengths of
these compounds were bathochromically shifted apttarity of the solvent increased. As a
consequence, their Stokes shifts increased in polaents. The fluorescence intensity of
pyridine compoundd, 7-9, and11 were stronger than that of the 2-pyridone compduimd

all solvents (Table 2). Th& values o#, 7, and8 in nonpolar and aprotic polar solvents were

13



322 higher than those in a protic solvent (ethanol).ti@nother hand, dimorpholinopyridine
323 compound exhibited strong fluorescence in chloroform and M 4-Diethylamino

324  morpholinopyridine compountl exhibited intense fluorescence in all solventdidating
325 that it is possible to develop an efficient andkamissive fluorophore unaffected by

326 solvent properties.

327

328

329 Table 3
330 Fig.3
331

332 4.4 Computational analysis of the spectroscopic properties. A drastic difference in emission

333 intensity between 4 and 5

334 Regarding the absorption spectra, Table 4 listetineputed first intensknax values of all

335 compounds. Among the tested XC functionals, th¢ igeement between the experimental
336 and computednax values were obtained using B3LYP. The computedimaexhibited red
337 shifting in order of CAM-B3LYP < M06-2X < M06 < B3{P < PBEPBE. The long-range
338 corrected functional CAM-B3LYP severely overestigththe vertical transition energies,
339 whereas PBEPBE underestimated the energies ugeddit theh .. The inclusion of

340 solvent effects via the PCM resulted in a red shithe B3LYP-maxima from 16 nn®)to 41
341 nm () in chloroform. The B3LYR\max dependency on the two basis set (6-31+(d,p),

342 6-311++G(d,p)) is limited to a variation of 2 nnr fdl the compounds, as shown in Table 5.
343 Both4 and5 undergo considerable intramolecular electron fearfsom the dialkylaminoaryl
344 moiety to methylthioaryl moiety upony$S; excitation, as shown in Fig. 4. The two molecules,
345 however, have contrasting molecular structuresvddrirom the steric hindrance around the

346 central single bond. For exampleretains a nearly flat structure, wher&dsas a considerable
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twist around the bond owing to the repulsion betwtbe methylthio group and the counterpart

aryl group, as shown in Fig. 5.

Table4
Table5
Fig. 4

Fig. 5

For the fluorescence spectra, Table 6 shows theuted first intense emission maxima for all
compounds. The 6-31+G(d,p) basis set was unifoemgloyed considering the minor basis
set dependency mentioned above. The predictiod ieesimilar to that observed for
absorption, and .« shifted bathochromically in order of CAM-B3LYP <(4-2X < M06 <
B3LYP < PBEPBE. The best agreement exists betw@&tiYB (overestimation) and PBEPBE
(underestimation), excludirgand5, whose maxima were consistently predicted at short

wavelength using all XC functionals.

Table6

Notably,4 and5 exhibited contrasting emission intensities in 8oludespite only differing in
the modification at the nitrogen atom of the pymaring. We attempted to elucidate the
mechanism by locating thg-inima and the S; crossing seam along with the relaxation
pathways. The non-radiative decay channels ocomgahe seam of the/S; conical
intersections (ClIs), which are represented by itsmum energy points (MECIs). The
Sy/S1-MECI geometries oft and5 optimized at the CASSCF(8,7)/def2-SV(P) levelladdry,

are shown in Fig. 6.
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Fig. 6

Our calculations clearly show the drastic differeha the energy gap between thedeE and
the $/S;-MECI for the two molecules with severely distorfgdidine rings, as shown in Fig. 7.
Compound4 has a large gap, which is sufficient to sepataggwo states and prohibit the
interconversion between-&C and the 8S,-MECI states, resulting i being highly emissive.
Converselys has a small gap, which allows the two states tobtially accessible, and the S
excited molecule can radiationlessly return togtaind state via theys;-MECI. The $
energy is not exactly identical to the éhergy because the optimized MECI geometry was

obtained at the CASSCF(8,7)/def2-SV(P) level obthgnot B3LYP/def-TZVP).

Fig. 7

In the solid state, the fluorescence intensit§ became weak, whereas thabafas enhanced

in comparison with that in ethanol. This indicatiest the intermolecular stacking interactions
dominate the emission intensities of the two mdkesurhat is4, which has a planar structure,
can stack in the solid state, which activates razhative energy dissipation pathways, whereas
the emission enhancementxfwhich has a twisted structure, is caused byrthedessibility

of the $/S;-MECI state owing to intermolecular steric hindranchis is consistent with the
observation of the emission enhancemer®, @fhich has two bulky moieties, compared to the

emissions oft and>b.

5. Conclusion

To elucidate the influence of the keto—enol tautosne of 2-pyridone rings on the

16



397 fluorescence intensity, we synthesized two 2-pyre@tautomeric analogs, methoxypyridine
398 compound andN-methylpyridone compouns, and demonstrated that compouh@nol

399 form) shows strong fluorescence in both nonpolar @olar solvents, whereésshows quite
400 weak fluorescence. The computational analysis sstaky explained the drastic difference in
401 the fluorescence intensities between the two médsan solution, which arises because of the
402 energy gap between the-BC and the 8S;,-MECI states of the two molecules. Thatd$as a
403 gap that is sufficiently large to separate the staies and prohibit their interconversion, thus
404 maintaining4 in a highly emissive state. On the other h&nldlas a small gap that allows the
405 two states to transition between each other, amdilecule returns to the ground state via the
406 Sy/S;-MECI radiationlessly. On the basis of these ressuovel 2-substituted pyridine

407 compound¥-9 and1l were synthesized from dialkylaminoacetophenonés eyianoketen
408 SSacetals, and their fluorescence properties intssland the solid state were evaluated.
409 The substituents including phenylsulfonyl, morpholiand 4-diethylamino groups greatly
410 affected the fluorescence intensity in solution Hrelsolid state. 2-Methoxypyridine

411 compound/ and 2-morpholinopyridine compouBeexhibited solid-state fluorescence and a
412  high fluorescence quantum yield in solution. Altgbuts solution fluorescence was

413 decreased, dimorpholinopyridine compoexhibited strong fluorescenc® € 0.39) in the
414 solid state. In addition, a 4-diethylamino morphojpyridine compound having

415 4-diethylamino groupld) exhibited intense fluorescence in all solventsaose aggregation
416 was prevented. These findings may be useful fodéwelopment of fluorophores exhibiting
417  strong fluorescence in solution and the solid state

418
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Table 4 Computed absoption Amax (M) and Oschillator strength f using several X C-functionals

Compounds B3LYP B3LYP in CHCI3 CAM-B3LYP PBEPBE MO6 MO06-2X
Amax f Amax f Amax f Amax f Amax f Amax f
4 377 0.77 409 0.93 330 0.97 440 0.55 366 0.82 331 0.98
5 374 0.54 415 0.57 331 0.65 447 0.32 362 0.59 331 0.67
7 370 0.73 39 0.87 323 0.97 444 0.40 360 0.78 325 0.97
8 380 0.57 403 0.85 335 0.67 437 0.43 370 0.62 337 0.69
9 363 0.44 379 0.81 319 0.65 414 0.34 352 0.56 320 0.67
11 382 0.63 404 0.88 336 0.71 441 0.39 371 0.66 337 0.73




Table5 Computed absoption Ama (NM) and Oschillator strength f using the two basis sets

6-31+G** 6-311++G**
Compounds
Xmax f }Lmax f
4 377 0.77 378 0.77
5 374 0.54 375 0.4
7 370 0.73 372 0.73
8 380 0.57 381 0.56
9 363 0.44 364 0.44

11 382 0.63 383 0.62




Table 6 Computed fluorescence A max (NM) and Oschillator strength f using several X C-functionals

Compounds B3LYP CAM-B3LYP PBEPBE MO6 MO0O6-2X
Amax f Amax f Amax f Amax f Amax f
4 351 0.03 337 0.00 415 0.02 349 0.03 312 0.03
5 363 0.24 349 0.26 460 0.02 435 0.02 352 0.18
7 386 0.95 344 111 446 0.69 377 0.98 345 1.12
8 392 0.82 347 1.00 457 0.47 383 0.86 348 1.01
9 372 0.79 334 1.03 421 0.57 365 0.9 335 1.03
11 402 0.77 347 1.00 482 0.51 388 0.83 348 0.99
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Fig. 1. ORTEPdrawing of 8.



Fig. 2. Solid stare fluorescence photographs of 4,5, 7—9and 11
irradiated with black light (365 nm).
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Fig. 3. Fluorescence spectrain benzene, chloroform, acetone, acetonitrile, DM SO,
ethanol (1 x 10°M): (a) 4, (b) 5, (¢) 7, (d) 8, (e) 9, (f) 11.



Fig.4 HOMO, LUMO and Sy/S,-€electron density difference of 4 (left) and 5 (right)



= s 2 S

Sy 6=2.79 (deg.) S, 6=52.3(deg)

B o2y 820

C}" S, 6=0.71(deg.) S, 6=45.1(deg.)

Fig.5 TheS,, S, optimized geometry of 4 (left) and 5 (right)
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Fig. 6 MECI geometries of 4 (left) and 5 (right)
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Fig. 7 The energy diagram of 4 (left) and 5 (right) (The energiesin atomic unit.)
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Highlights

» Joint experimental and computational studies of new 2-pyridone tautomeric

compounds were performed.

» Strong fluorescence in solution is attributed to the enol form of the 2-pyridone.

» Methoxypyridine and morpholinopyridines exhibited solid-state fluorescence and a
high fluorescence quantum yield in solution.

» Fluorescence solvatochromic effects depend on the chemical structure and
arrangement of the substituents were observed.



