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ABSTRACT
A one-pot synthetic strategy was developed for the synthesis of heterocyclic 1,4,2-oxazaphosphi-
nanes via a three component Kabachnik-Fields reaction of 2-aminophenol, diphenyl H-phospho-
nate and carbonyl compounds. Through this newly developed method, 12 organophosphorus
heterocycles and 2 related chrysin derivatives were synthesized with high yields. The target com-
pounds were characterized by 1H, 31P and 13C NMR and MS.
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Introduction

Organophosphorus heterocycles have received considerable
attention owing to their unique structural features and wide
range of biological and physiological activities, such as herbici-
dal, insecticidal, bactericidal, antitumor, antiviral activity, etc.[1]

Therefore, a good deal of organophosphorus heterocyclic com-
pounds have been synthesized in the past two decades. Among
these countless types of phosphorus heterocyclics, 1,4,2-oxaza-
phosphinanes belong to the pharmacologically and industrially
important heterocyclic a-aminophosphates, which are the bioi-
sosterism of natural a-amino acid esters.[2] However, to the best
of our knowledge, there are very few approaches in ther literature
about the synthesis of this important kind of 1,4,2-oxazaphos-
phinanes, and most of them were based on the intramolecular
transesterification or phosphinic acid esterification,[3] multicom-
ponent cyclization of o-aminophenol with dichloro(phenyl)-
phosphane[4] or dialkyl phosphorodichloridite.[5] These
methods suffer obvious drawbacks including non-availability of
the starting materials, toxic phosphorous reagents and narrow
substitute scopes.H-Phosphonates are a type of readily available,
environmental stable and low-cost organic phosphorous com-
pounds, which occupy a major position in organophosphorus
chemistry and are frequently used as starting materials for the

synthesis of a variety of phosphorus containing compounds.[6]

Several works relating to the application of H-phosphonates
have been reported from our laboratory.[7] As to the synthesis of
novel heterocyclic a-aminophosphates, we have developed a
convenient approach starting from 2-hydroxyacetophenones or
2-hydroxybenzaldehyes together with amines and dialkyl H-
phosphonates (Scheme 1a).[8] Therefore, in the course of our
synthesis, we continuously committed our efforts to obtain six-
membered heterocyclic organophosphorus compounds using an
amino group on the benzene ring instead of carbonyl or alde-
hyde groups (Scheme 1b). Herein, we would like to describe a
facile and convenient approach for the synthesis of 1,4,2-oxaza-
phosphinanes from o-aminophenol, carbonyl compounds and
easily available, nontoxic diphenyl H-phosphonates in toluene.
Different carbonyl compounds including ketones and aldehydes
are all tolerated in this new method. Starting from 8-amino-
chrysin, two phosphorous-containing chrysin derivatives were
successfully synthesized in satisfactory isolated yields.

Results and discussion

Initially, the optimal reaction conditions for the synthesis of
1,4,2-oxazaphosphinanes were investigated by the use of 2-
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aminophenol 1, acetone 2 and diphenyl H-phosphonate 3
(DPPH) as starting materials. Several solvent systems at
reflux temperatures as well as a solvent-free system at
approximately 125 �C were firstly employed to explore the
optimal reaction condition for the synthesis of cyclic com-
pound 3,3-dimethyl-2-phenoxy-3,4-dihydrobenzo[e][1,4,2]
oxazaphosphinine 2-oxide (4a) (Table 1, entries 1–9). These
reaction solutions were refluxed for 1 h, respectively. The
results showed that nearly no products were formed in n-
hexane, C2H5OH, i-C3H7OH, p-dioxane and DMF, and rela-
tively low yields were found in CCl4 and THF. When the
reaction was carried out under solvent-free conditions, we
obtained a viscous oil, which was difficult to handle and

purify (entry 8). When the mixture was refluxed in toluene, a
satisfactory isolated yield was obtained (89%, entry 7).
Subsequently, the influence of the reaction temperature was
investigated. The reaction mixtures were stirred at different
temperatures, i.e., 30, 50, 70, 90 and 110 �C for 1 h (Table 1,
entries 7, 10–13). It can be seen that the yield was very low
(< 50%) when the reaction temperature was below 70 �C,
and quickly increased from 46% to 89% over the range of
70–110 �C. However, the reaction temperature could not be
further increased after the mixture began to reflux at
approximately 110 �C, the boiling point of toluene. The reac-
tion time was also investigated as can be seen in entries 7,
14–17 in Table 1. The results showed that at least 1 h was

Scheme 1. Comparison of our previous work with the present work.

Table 1. Optimization of the reaction conditionsa.

Entry Solvent Temperature (�C) Time (h) Yield%b

1 n-Hexane Reflux (�68) 1 NDc

2 CCl4 Reflux (�76) 1 20
3 C2H5OH Reflux (�78) 1 NDc

4 THF Reflux (�80) 1 44
5 i-C3H7OH Reflux (�82) 1 Tracec

6 p-Dioxane Reflux (�102) 1 NDc

7 Toluene Reflux (�110) 1 89
8 None Reflux (�125) 1 14
9 DMF Reflux (�153) 1 NDc

10 Toluene 30 1 Tracec

11 Toluene 50 1 11
12 Toluene 70 1 46
13 Toluene 90 1 61
14 Toluene Reflux (�110) 0.3 38
15 Toluene Reflux (�110) 0.5 57
16 Toluene Reflux (�110) 0.8 89
17 Toluene Reflux (�110) 1.2 88
18 Toluene Reflux (�110) 1 81d

19 Toluene Reflux (�110) 1 83e

aReaction conditions: 2-aminophenol (5.0mmol), acetone (5.0mmol) and DPPH (5.0mmol) were refluxed in toluene (10mL).
bIsolated yields were provided. ND¼ not detected.
cDetected by 31P NMR.
dAcetone (6.0mmol).
eDPPH (6.0mmol).
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necessary for this conversion and an extended time might
cause a decreased isolated yield of 4a. Finally, the molar ratio
of 1, 2 and 3 were investigated. 1.2 eq. of acetone (6.0mmol)
or DPPH (6.0mmol) employed in this reaction could cause a
decreased isolated yield of 4a (Table 1, entries 18–19).
Therefore, the optimal reaction conditions for the synthesis
of 4a were 5.0mmol of 2-aminophenol 1, 1 eq. of acetone 2
and 1 eq. of diphenyl H-phosphonate 3 in toluene at 110 �C
for 1 h as shown in entry 7.

The scope of the reactants was then enlarged to cover vari-
ous carbonyl compounds and H-phosphonates as shown in
Scheme 2. Firstly, a series of ketones, including alkyl ketone
such as butan-2-one, cyclopentanone and cyclohexanone as
well as aromatic ketones such as acetophenone, 1-(4-methoxy-
phenyl)ethan-1-one and benzophenone, were employed to
react with o-aminophenol and diphenyl H-phosphonate in
toluene under reflux conditions for 1 h. It is worth illustrating
here that only the corresponding cyclic 1,4,2-oxazaphosphi-
nanes (4a–4g) were afforded in relatively good yields ranging
from 82% to 90%, as shown in Scheme 2. Following that, four
representative aldehydes were used in this transformation. As
can be seen, four corresponding 3-mono-substituted 1,4,2-
oxazaphosphinanes (4h–4k) were successfully obtained in
good isolated yields (72–81%). It is well known that aldehydes

are usually more reactive toward nucleophilic additions than
ketones because of both steric and electronic effects. However,
herein, the use of ketones led to much better yields than those
of aromatic or aliphatic aldehydes. This result strongly sug-
gested that the relatively high steric hindrance of ketones
forced the formation of the heterocyclic 1,4,2-oxazaphosphi-
nanes. Moreover, three more dialkyl H-phosphonates, includ-
ing dibenzyl H-phosphonates, diethanyl H-phosphonates and
diisopropyl H-phosphonates, were used to react with 1 and 2
under our optimal reaction conditions, respectively. As
expected, cyclic product 4l was formed by employing dibenzyl
H-phosphonate as a phosphoryl reagent. However, instead of
affording the cyclic product, the reaction of 1, 2 with dieth-
anyl or diisopropyl H-phosphonates mainly led to acyclic
a-aminophosphonates (4m–4n) according to Kabachnik-
Fields reaction[9] (Scheme 2). It may be attributed to the better
leaving ability of the phenoxide anion than that of the alkox-
ide anion or more positive of phosphorus atom in case of
diphenyl H-phosphonate than dialkyl H-phosphonate.

1D and 2D NMR spectra data were used to identify the
structures of the heterocyclic 1,4,2-oxazaphosphinanes.
Compounds 4a was taken as an example for structural iden-
tification (see 1D and 2D NMR spectrum and data in
Supplemental Materials). The 13C NMR and DEPT-135 of

Scheme 2. Reaction Scopesa. aReaction conditions: 2-aminophenol (5.0 mmol), carbonyl compounds (5.0mmol) and H-phosphonates (5.0mmol) were refluxed in
toluene (10mL) for 1 h. Isolated yields are provided.
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compound 4a showed 13 carbon peaks, including four qua-
ternary carbon atoms and 8 double peaks due to the phos-
phorus atom. The 3-C at d 49.1 was greatly split by the
adjacent phosphorus atom with bigger coupling constant
(J(P-C) ¼ 143.7Hz). According to the 1H NMR spectrum of
compound 4a along with H-H COSY and HSQC spectra, we
could conclude that these quaternary carbon atoms are C-3,
C-5, C-10 and C-1’ and these double peaks are C-3, C-5, C-
9, C-10, C-1’, C-2’, C-1” and C-2”. In the remote related
HMBC spectrum diagram of 4a, the correlation of H and C
atoms well matched the configuration of 4a proposed in our
manuscript (Figure 1).

In the course of our syntheses, a further application of this
reaction was performed to afford modified natural products.
By the use of 8-amino-chrysin and diphenyl H-phosphonate
together with ketones, two chrysin derivatives 5a and 5 b were
successfully obtained in satisfactory yields under reflux condi-
tions in toluene for 6 h as shown in Scheme 3.

Conclusions

In summary, a convenient one-pot three-component strategy
for the synthesis of 1,4,2-oxazaphosphinane compounds was
developed via the use of 2-aminophenol, diphenyl H-
phosphonate and carbonyl compounds as starting materials.
Besides, this method was further applied for the synthesis of
modified chrysin derivatives. This newly developed synthetic
strategy has significant advantages including experimental
simplicity, mild reaction conditions and easy work-up.

Experimental section

All reagents were of analytical grade, commercially available.
Toluene and acetone were distilled immediately prior to use.
All reagents were weighed and handled in air at room tem-
perature. Flash column chromatography was performed on
silica gel (200–300 mesh), and thin layer chromatography
(TLC) analyses were performed on silica gel plates (GF 254).
1H NMR, 13C NMR 31P NMR and 19F NMR spectra were
recorded on a Bruker 400MHz spectrometer with CDCl3 as
the solvent and TMS was used as an internal standard for
1H NMR and 13C NMR. All NMR spectra were recorded at
room temperature (20 ± 3 �C). 1H and 13C chemical shifts
are quoted in parts per million downfield from TMS. 31P
NMR spectra were recorded on the same instrument with
85% H3PO4 as an external standard. ESI-MS spectra were
recorded on a Bruker Esquire 3000. IR spectra were
recorded on a Shimadazu IR-408 Fourier Transform
Infrared spectrophotometer using a thin film supported on
KBr pellets. The Supplemental Materials contains sample
1H, 13C and 31P NMR for products 4 and 5
(Figures S8–S53).

General procedure for the synthesis of
compounds 4a–n

2-Aminophenol (5.0mmol), carbonyl compounds (5.0mmol)
and H-phosphonates (5.0mmol) were dissolved in toluene
(10mL) in a round bottom flask (25mL). The mixture was

Figure 1. 13C NMR and HSQC spectrum diagram of 4a.

Scheme 3. Synthesis of chrysin derivativesa. aReaction conditions: (i) chrysin, AcOH, conc. HNO3, 65 �C, 2 h; (ii) SnCl2�2H2O, EtOH, conc. HCl, 80 �C,7 h; (iii) 8-amino-
chrysin, ketones, DPPH, toluene, reflux, 6 h.
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refluxed with drying pipe for 1 h. Then, the solvent was
removed in vacuum and the resulting oil was purified by
column chromatography on silica gel by using petroleum
ether/ethyl acetate (v/v¼ 1/1) as eluent to give the desired
products 4a–n.

3,3-Dimethyl-2-phenoxy-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4a)

Orange solid, yield 89%, m.p. 98–100 �C. 1H NMR
(400MHz, CDCl3) d: 1.51 (d, 3JP-H ¼ 16.0Hz, 3H, –CCH3),
1.63 (d, 3JP-H ¼ 16.8Hz, 3H, –CCH3), 4.03 (d, 3JP-H ¼
23.50Hz, 1H, N–H), 6.71–6.74 (m, 1H), 6.79 (t, JH-H ¼
7.6Hz, 1H), 6.93–6.97 (m, 2H), 7.12–7.17 (m, 3H),
7.26–7.31 (m, 2H). 13C NMR (100MHz, CDCl3) d: 23.1 (d,
2JP-C ¼ 3.5Hz), 23.6 (d, 2JP-C ¼ 5.9Hz), 49.1 (d, 1JP-C ¼
143.7Hz), 117.4, 119.2 (d, 3JP-C ¼ 6.8Hz), 120.3, 120.5 (d,
3JP-C ¼ 4.2Hz), 124.7, 125.2, 129.7, 132.0 (d, 3JP-C ¼
7.5Hz), 140.4 (d, 2JP-C ¼ 7.4Hz), 150.2 (d, 2JP-C ¼
10.1Hz). 31P NMR (162MHz, CDCl3) d: 13.57. IR (KBr)
�max (cm

�1): 3439 (NH), 2978, 2928 (CH3), 1614 (Ar), 1264
(P¼O), 1199 (P–O–Ar), 736 (Ar–H). ESI MS found m/z:
290.1 [MþH]þ, 312.1 [MþNa]þ, 601.1 [2MþNa]þ.

3-Ethyl-3-methyl-2-phenoxy-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4b)

White solid, yield: 89%, m.p. 90–93 �C. 1H NMR (400MHz,
CDCl3) d: 0.98–1.22 (m, 3H, CCH2CH3), 1.51 (q, 3JP-H ¼
16.4Hz, 3H, CCH3), 1.85–2.21 (m, 2H, CCH2CH3), 3.91 (d,
3JP-H ¼ 29.76Hz, 1H, N–H), 6.74–6.78 (m, 1H), 6.79–6.85
(m, 1H), 6.95–7.00 (m, 2H), 7.16–7.20 (m, 3H), 7.30–7.34 (t,
JP-H ¼ 7.72Hz, 2H). 13C NMR (100MHz, CDCl3) d: 6.2 (d,
JP-C ¼ 10.4Hz), 7.9 (d, JP-C ¼ 6.8Hz), 19.0 (d, JP-C ¼
4.1Hz), 20.0 (d, JP-C ¼ 5.7Hz), 7.2 (d, JP-C ¼ 6.2Hz), 29.2
(d, JP-C ¼ 2.4Hz), 52.5 (m), 117.1, 117.5, 119.0 (d, JP-C ¼
2.6Hz), 119.1 (d, JP-C ¼ 2.3Hz), 120.0, 120.2, 120.6 (d, JP-C
¼ 4.2Hz), 124.7 (d, JP-C ¼ 4.6Hz), 125.2 (d, JP-C ¼ 4.3Hz),
129.7, 131.9 (d, JP-C ¼ 7.6Hz), 132.0 (d, JP-C ¼ 7.3Hz),
140.2 (d, JP-C ¼ 7.3Hz), 140.5 (d, JP-C ¼ 7.5Hz), 150.1 (d,
JP-C ¼ 7.6Hz), 150.2 (d, JP-C ¼ 7.6Hz). 31P NMR
(162MHz, CDCl3) d: 12.77, 12.44. IR (KBr) �max (cm�1):
3439 (NH), 2972, 2934 (CH3, C2H5), 1611 (Ar), 1262
(P¼O), 1197 (P–O–Ar), 744 (Ar–H). ESI MS found m/z:
304.1 [MþH] þ, 326.1 [MþNa] þ, 629.2 [2MþNa] þ.

2-Phenoxy-4H-spiro[benzo[e][1,4,2]oxazaphosphinine-
3,1’-cyclopentane] 2-oxide (4c)

White solid, yield: 90%, m.p. 123–124 �C. 1H NMR
(400MHz, CDCl3) d: 1.79–1.80 (m, 6H), 2.20–2.26 (m, 1H),
2.46–2.52 (m, 1H), 4.39 (s, 1H, N–H), 6.72–6.79 (m, 2H),
6.89–6.95 (m, 2H), 7.10–7.17 (m, 3H), 7.24–7.28 (m, 2H).
13C NMR(100MHz, CDCl3) d: 24.2–24.6(m), 34.6, 35.1 (d,
JP-C ¼ 9.1Hz), 58.7 (d, JP-C ¼147.3Hz), 117.9, 119.2 (d, JP-C
¼ 6.7Hz), 120.2, 120.7 (d, JP-C ¼ 4.1Hz), 124.5, 125.2,
129.6, 132.5 (d, JP-C ¼ 6.9Hz), 140.9 (d, JP-C ¼ 7.3Hz),
150.3 (d, JP-C ¼ 9.7Hz). 31P NMR (162MHz, CDCl3) d:

13.95. IR (KBr) �max (cm�1): 3440 (NH), 2965 (CH2), 1612
(Ar), 1261 (P¼O), 1201 (P–O–Ar), 754 (Ar–H). ESI MS
found m/z: 316.0 [MþH]þ, 338.1 [MþNa] þ, 653.1
[2MþNa] þ.

2-Phenoxy-4H-spiro[benzo[e][1,4,2]oxazaphosphinine-
3,1’-cyclohexane] 2-oxide (4d)

White solid, yield: 90%, m.p. 145–146 �C. 1H NMR
(400MHz, CDCl3) d: 1.45–1.50 (m, 1H), 1.54–1.60 (m, 1H),
1.66–1.71 (m, 3H), 1.82–1.83 (m, 2H), 1.94–2.08 (m, 2H),
2.18–2.25 (m, 1H), 4.12 (d, 3JP-H ¼ 22.5Hz, N–H),
6.81–6.85 (m, 2H), 6.97–7.02 (m, 2H), 7.15–7.19 (m, 3H),
7.30–7.34 (m, 2H). 13C NMR (100MHz, CDCl3) d:
19.7–20.3 (m), 24.97, 29.5–30.0 (m), 51.4 (d, JP-C ¼
144.4Hz), 117.6, 119.1 (d, JP-C ¼ 8.7Hz), 120.3 (d, JP-C ¼
1.3Hz), 120.5 (d, JP-C ¼ 4.2Hz), 124.6, 125.1, 129.7, 131.5
(d, JP-C ¼ 7.4Hz), 140.7 (d, JP-C ¼ 7.50Hz), 150.2 (d, JP-C ¼
10.1Hz). 31P NMR (162MHz, CDCl3) d: 11.77. IR (KBr)
�max (cm

�1): 3439 (NH), 2935, 2857 (CH2), 1597 (Ar), 1253
(P¼O), 1192 (P–O–Ar), 748 (Ar–H). ESI MS found m/z:
330.0 [MþH]þ, 352.1 [MþNa]þ, 682.1 [2MþNa]þ.

3-Methyl-2-phenoxy-3-phenyl-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4e)

White solid, yield: 87%, m.p. 161–162 �C. 1H NMR
(400MHz, CDCl3) d: 1.93 (d, 3JP-H ¼ 16.8Hz, 3H, CH3),
4.42 (d, 3JP-H ¼ 20.2Hz, 1H, N–H), 6.76 (t, JP-H ¼7.84Hz,
1H), 6.82–6.90 (m, 2H), 7.00–7.04 (m, 1H), 7.12–7.16 (m,
3H), 7.26–7.34 (m, 5H), 7.64–7.67 (m, 2H). 13C NMR
(100MHz, CDCl3) d: 25.3 (d, JP-C ¼ 4.1Hz), 56.0 (d, JP-C ¼
141.3Hz), 116.5, 119.5 (d, JP-C ¼ 6.7Hz), 120.0, 120.6 (d, JP-
C ¼ 4.2Hz), 125.1, 125.3, 126.7 (d, JP-C ¼ 4.8Hz), 128.0 (d,
JP-C ¼ 2.3Hz), 128.6 (d, JP-C ¼ 2.0Hz), 129.7, 132.7 (d,
J¼ 8.6Hz), 139.4 (d, JP-C ¼ 3.8Hz), 140.1 (d, JP-C ¼
7.2Hz), 150.2 (d, JP-C ¼ 10.2Hz). 31P NMR (162MHz,
CDCl3) d: 8.22. IR (KBr) �max (cm�1): 3439 (NH), 2936
(CH3), 1612 (Ar), 1263 (P¼O), 1192 (P–O–Ar), 751
(Ar–H). ESI MS found m/z: 352.1 [MþH] þ, 374.1
[MþNa] þ, 725.2 [2MþNa] þ.

3-(4-Methoxyphenyl)-3-methyl-2-phenoxy-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4f)

White solid, yield: 85%, m.p. 142–144 �C. 1H NMR
(400MHz, CDCl3) d: 1.91 (d, 3JP-H ¼ 16.8Hz, 3H, –CCH3),
3.75 (s, 3H, –OCH3), 4.45 (d, 3JP-H ¼ 20.88Hz, 1H, N–H),
6.75–6.77 (m, 1H), 6.82–6.88 (m, 4H), 6.98–7.00 (m, 1H),
7.11–7.16 (m, 3H), 7.25–7.29 (m, 2H), 7.54–7.57 (m, 2H).
13C NMR (100MHz, CDCl3) d: 25.2 (d, JP-C ¼ 3.66Hz),
55.0 (d, JP-C ¼ 49.6Hz), 56.2, 114.0 (d, JP-C ¼ 2.0Hz),
116.5, 119.4, 119.4, 119.8, 120.6 (d, JP-C ¼ 4.2Hz), 125.0,
125.2, 128.0 (d, JP-C ¼ 4.8Hz), 129.7, 131.3 (d, JP-C ¼
3.5Hz), 132.9 (d, J¼ 8.5Hz), 140.0 (d, JP-C ¼ 7.2Hz), 115.2
(d, J¼ 10.1Hz), 159.2 (d, JP-C ¼ 2.5Hz). 31P NMR
(162MHz, CDCl3) d: 8.70. IR (KBr) �max (cm�1): 3439
(NH), 2935 (CH3), 1611 (Ar), 1261 (P¼O), 1195 (P–O–Ar),
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1068 (O-CH3), 833 (Ar-H). ESI MS found m/z: 382.2
[MþH] þ, 404.1 [MþNa] þ,753.3 [2MþNa] þ.

2-Phenoxy-3,3-diphenyl-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4g)

White solid, yield: 82%, m.p. 221–223 �C. 1H NMR
(400MHz, CDCl3) d: 4.79 (d, 3JP-H ¼ 21.7Hz, 1H, N–H),
6.77–6.82 (m, 3H), 6.86–6.89 (m, 1H), 6.93–6.97 (m, 2H),
7.06–7.08 (m, 1H), 7.14–7.18 (m, 2H), 7.23 (d, JH-H ¼
7.2Hz, 1H), 7.29 (d, JH-H ¼ 7.4Hz, 2H), 7.34–7.37 (m, 3H),
7.68–7.73 (m, 4H). 13C NMR (100MHz, CDCl3) d: 63.5 (d,
JP-C ¼ 141.1Hz), 118.0, 119.3 (d, JP-C ¼ 7.2Hz), 120.3 (d,
JP-C ¼ 4.3Hz), 121.1, 124.8, 125.0, 127.7, 127.8, 128.0, 128.2,
128.2, 128.4, 128.4, 128.7 (d, JP-C ¼ 2.15Hz), 129.4, 132.0
(d, JP-C ¼ 7.5Hz), 138.2 (d, JP-C ¼ 7.5Hz), 140.0 (d, JP-C ¼
7.1Hz), 141.0 (d, JP-C ¼ 7.4Hz), 150.3 (d, JP-C ¼ 9.7Hz).
31P NMR (162MHz, CDCl3) d: 5.20. IR (KBr) �max (cm�1):
3439 (NH), 1612 (Ar), 1262 (P¼O), 1199 (P–O–Ar), 751
(Ar–H). ESI MS found m/z: 414.1 [MþH] þ, 436.2
[MþNa] þ, 849.1 [2MþNa] þ.

3-Isobutyl-2-phenoxy-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4h)

White solid, yield: 75%, m.p. 122–123 �C. 1H NMR
(400MHz, CDCl3) d: 1.06 (d, 4JP-H ¼ 6.8Hz, 3H,
-CH(CH3)2), 1.18 (d, 4JP-H ¼ 6.8Hz, 3H, –CH(CH3)2),
2.29–2.36 (m, 1H, –CHCH(CH3)2), 3.45–3.52 (m, 1H,
–CHCH(CH3)2), 4.23 (d, 3JP-H ¼ 26.1Hz, 1H, N–H),
6.72–6.77 (m, 2H), 6.93–6.97 (m, 2H), 7.1–7.19 (m, 3H),
7.29–7.33 (m, 2H). 13C NMR (100MHz, CDCl3) d: 18.4 (d,
JP-C ¼ 7.90Hz), 20.2 (d, JP-C ¼ 8.8Hz), 30.1 (d, JP-C ¼
2.8Hz), 53.2 (d, JP-C ¼ 136.8Hz), 116.0, 119.4 (d, JP-C ¼
6.8Hz), 119.6, 120.6 (d, JP-C ¼ 4.3Hz), 124.9, 125.4, 129.8,
132.8 (d, JP-C ¼ 10.2Hz), 139.8 (d, JP-C ¼ 7.4Hz), 149.8 (d,
JP-C ¼ 8.7Hz). 31P NMR (162MHz, CDCl3) d: 10.25. IR
(KBr) �max (cm�1): 3438 (NH), 2925, 2859 (C3H7), 1614
(Ar), 1262 (P¼O), 1196 (P–O–Ar), 742 (Ar–H). ESI MS
found m/z: 318.2 [MþH]þ, 340.2 [MþNa]þ,
657.3 [2MþNa]þ.

2-Phenoxy-3-phenyl-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4i)

White solid, yield: 81%, m.p. 173–175 �C. 1H NMR
(400MHz, CDCl3) d: 4.27 (d, 3JP-H ¼ 29.2Hz, 1H, N–H),
4.92 (d, 3JP-H ¼9.9Hz, 1H, –CHPh), 6.84–6.90 (m, 4H),
7.02–7.11 (m, 3H), 7.18–7.22 (m, 2H), 7.43–7.45 (m, 3H),
7.65–7.68 (m, 2H). 13C NMR (100MHz, CDCl3) d: 55.1 (d,
JP-C ¼ 140.6Hz), 116.5, 119.7, 119.6, 120.3 (d, JP-C ¼
4.4Hz), 120.6 (d, JP-C ¼ 1.6Hz), 124.8, 125.1, 128.1 (d, JP-C
¼ 5.4Hz), 129.0 (d, JP-C ¼ 3.1Hz), 129.1 (d, JP-C ¼ 3.5Hz),
129.510, 132.6 (d, JP-C ¼ 10.9Hz), 133.7 (d, JP-C ¼ 6.0Hz),
140.0 (d, JP-C ¼ 6.8Hz), 150.0 (d, JP-C ¼ 10.1Hz). 31P NMR
(162MHz, CDCl3) d: 5.32. IR (KBr) �max (cm�1): 3439
(NH), 1614 (Ar), 1257 (P¼O), 1199 (P-O-Ar), 1070, 789

(Ar–H). ESI MS found m/z: 338.2 [MþH]þ, 359.9
[MþNa]þ, 696.9 [2MþNa]þ.

3-(4-Fluorophenyl)-2-phenoxy-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4j)

White solid, yield: 73%, m.p. 158–159 �C. 1H NMR
(400MHz, CDCl3) d: 4.20 (d, 3JP-H ¼ 29.6Hz, 1H, N–H),
4.94 (d, 3JP-H ¼ 9.8Hz, 1H, CHPhF), 6.84–6.91 (m, 4H),
7.03–7.0 8(m, 2H), 7.10–7.17 (m, 3H), 7.23 (t, JH-H ¼
7.8Hz, 2H), 7.64–7.68 (m, 2H). 13C NMR (100MHz,
CDCl3) d: 53.6–55.1 (m), 115.9, 115.9, 116.0, 116.1, 116.1,
116.2, 116.5, 116.6, 119.7, 119.7 (d, JP-C ¼ 2.8Hz), 119.8,
120.2 (d, JP-C ¼ 4.4Hz), 120.7, 120.7, 124.9, 125.2, 129.6,
129.8, 129.9 (d, JP-C ¼ 2.7Hz), 130.0, 133.4(t, JP-C ¼ 6.2Hz),
139.9 (m), 149.9 (d, JP-C ¼ 10.0Hz), 161.9, 164.4. 31P NMR
(162MHz, CDCl3) d: 4.09. 19F NMR (376MHz, CDCl3) d:
�112.24. IR (KBr) �max (cm

�1): 3432 (NH), 1604 (Ar), 1258
(P¼O), 1184 (P–O–Ar), 1108 (–C–F), 742 (Ar–H). ESI MS
found m/z: 356.1 [MþH]þ, 378.2 [MþNa]þ.

3-(4-Bromophenyl)-2-phenoxy-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4k)

White solid, yield: 72%, m.p. 152–154 �C. 1H NMR
(400MHz, CDCl3) d: 4.81 (d, 2JP-H ¼ 19.8Hz, 1H),
6.77–6.82 (m, 2H), 6.96–7.02 (m, 2H), 7.14–7.18 (m, 3H),
7.29–7.33 (m, 4H), 7.45 (d, JH-H ¼ 8.3Hz, 2H). 13C NMR
(100MHz, CDCl3) d: 52.8 (d, JP-C ¼ 138.9Hz), 116.2, 119.7
(d, JP-C ¼ 6.9Hz), 120.1, 120.6 (d, JP-C ¼ 4.2Hz), 122.8 (d,
JP-C ¼ 3.9Hz), 125.3, 125.7, 129.3 (d, JP-C ¼ 5.7Hz), 129.9,
132.1 (d, JP-C ¼ 2.6Hz), 132.7, 132.778, 134.0 (d, JP-C ¼
3.0Hz), 139.4 (d, JP-C ¼ 6.8Hz), 149.7 (d, JP-C ¼ 8.8Hz).
31P NMR (162MHz, CDCl3) d: 5.51. IR (KBr) �max (cm�1):
3438 (NH), 1636 (Ar), 1255 (P¼O), 1198 (P-O-Ar), 787
(Ar-H), 568 (C–Br). ESI MS found m/z: 416.1 [MþH]þ,
338.2 [MþNa]þ, 853.3 [2MþNa]þ.

2-(Benzyloxy)-3,3-dimethyl-3,4-
dihydrobenzo[e][1,4,2]oxazaphosphinine 2-oxide (4l)

White solid, yield: 80%, m.p. 93–95 �C. 1H NMR (400MHz,
CDCl3) d: 1.42–1.50 (m, 6H), 4.11–4.16 (m, 1H, N–H),
5.17–5.29 (m, 2H, OCH2Ph), 6.72–6.80 (m, 2H), 6.90–6.95
(m, 2H), 7.32 (s, 5H). 13C NMR (100MHz, CDCl3) d: 23.3
(m), 48.9 (d, JP-C ¼ 143.6Hz), 68.5 (d, JP-C ¼ 7.3Hz), 117.4,
119.0 (d, JP-C ¼ 6.7Hz), 120.1, 124.4, 128.0, 128.6 (d, JP-C ¼
3.4Hz), 132.2 (d, JP-C ¼ 7.1Hz), 136.0 (d, JP-C ¼ 5.4Hz),
140.5 (d, JP-C ¼ 7.2Hz). 31P NMR (162MHz, CDCl3) d:
18.36. IR (KBr) �max (cm�1): 3439 (NH), 2973, 2932 (CH3),
1608 (Ar), 1253 (P¼O), 1202 (P–O–Ar), 1053 (O–C), 880,
752 (Ar–H). ESI MS found m/z: 303.1 [MþH]þ, 326.2
[MþNa]þ, 629.3 [2MþNa]þ.
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Diethyl (2-((2-hydroxyphenyl)amino)propan-2-
yl)phosphonate (4m)

Green oil, yield 44%. 1H NMR (400MHz, CDCl3) d: 1.31
(m, 6H, CH2CH3), 1.40 (d, 3JP-H ¼ 16.0Hz, 6H, C(CH3)2),
3.02 (s, 1H, N–H), 4.13–4.18 (m, 4H, CH2CH3), 6.77 (m,
1H), 6.93 (d, JH-H ¼ 7.6Hz, 1H), 6.99–7.04 (m, 2H), 8.32 (s,
1H, O–H). 13C NMR (100MHz, CDCl3) d: 16.5 (d, JP-C ¼
6.0Hz), 23.3 (d, JP-C ¼ 2.0Hz), 54.8 (d, JP-C ¼ 159Hz), 62.9
(d, JP-C ¼ 7.7Hz), 116.3, 119.6, 125.7, 127.4, 130.5 (d, JP-C
¼ 7.8Hz), 153.0. 31P NMR (162MHz, CDCl3) d: 31.62. ESI
MS found m/z: 310.2 [MþH]þ, 332.1 [MþNa]þ,
642.2 [2MþNa]þ.

Diisopropyl (2-((2-hydroxyphenyl)amino)propan-2-
yl)phosphonate (4n)

Orange oil, yield 55%. 1H NMR (400MHz, CDCl3) d: 1.29
(d, JH-H ¼ 6.2Hz, 6H, C(CH3)2), 1.35 (s, 6H, C(CH3)2), 1.38
(d, JH-H ¼ 10.5Hz, 6H, C(CH3)2), 4.72–4.79 (m, 2H,
2CH(CH3)2) , 6.77 (t, JH-H ¼ 7.6Hz, 1H), 6.94 (d, JH-H ¼
8.0Hz, 1H), 7.03 (m, 2H), 8.41 (s, 1H, O–H). 13C NMR
(100MHz, CDCl3) d: 23.2 (d, JP-C ¼ 2.2Hz), 23.8 (d, JP-C ¼
5.0Hz), 24.2 (d, JP-C ¼ 3.9Hz), 54.7 (d, JP-C ¼ 161.2Hz),
71.4 (d, JP-C ¼ 8.1Hz), 116.4, 119.5, 125.9, 127.8, 130.5 (d,
JP-C ¼ 7.5Hz), 153.3. 31P NMR (162MHz, CDCl3) d: 30.00.
ESI MS found m/z: 338.2 [MþH]þ, 360.1 [MþNa]þ,
677.2 [2MþNa]þ.

General procedure for the synthesis of compounds
5a and 5b

Synthesis of 8-amino-chrysin

(i) chrysin (2.0 g, 7.87mmol) was dissolved in AcOH
(250mL). AcOH (10mL) containing HNO3 (0.2mL,
conc.70%) was added dropwise into the chrysin solution.
The mixture was stirred and reacted at 65 �C for 2 h. Then,
the mixture was poured into ice water (200mL) and the yel-
low precipitate was filtered, washed with water and recrys-
tallized from ethanol to provide 8-nitro-chrysin. (ii) 8-nitro-
chrysin (250mg, 0.5mmol) and SnCl2�2H2O (1.13 g,
5mmol) were dissolved in EtOH (100mL) and 10mmol of
conc. HCl were dropwised in the solutions. Then, the mix-
ture were reacted at 80 �C for 7 h. After the reaction was
completed, the solvent was evaporated in vacuum. The resi-
due was extracted by EtOAc, washed by brine and dried
over Na2SO4. The pure 8-animo-chrysin was obtained as a
brick-red solid by evaporation of the solvent.

Synthesis of chrysin derivatives 5a and 5b

8-Amino-chrysin (0.135 g, 0.5mmol), ketones (0.5mmol)
and DPPH (0.117 g, 0.5mmol) were dissolved in toluene
(30mL) in a 100mL round bottom flask. The mixture was
refluxed with drying pipe for 6 h. The solvent was removed
in vacuum and the resulting oil was purified by column
chromatography on silica gel by using petroleum ether/ethyl

acetate (v/v¼ 1/1) as eluent to give the desired products 5a
and 5 b.

Chrysin derivatives 5a

White solid, yield: 76%, m.p. 205–206 �C. 1H NMR
(400MHz, CDCl3) d: 1.60 (d, 3JP-H ¼ 16.3Hz, 3H,
–C(CH3)2), 1.78 (d, 3JP-H ¼ 16.8Hz, 3H, –C(CH3)2), 3.91
(d, 3JP-H ¼ 18.5Hz, 1H, N-H), 6.55 (s, 1H), 6.73(s, 1H),
7.19–7.24 (m, 1H), 7.34–7.38 (m, 1H), 7.57–7.65 (m, 1H),
7.87–7.91 (m, 1H), 12.08 (s, 1H, O–H). 13C NMR
(100MHz, CDCl3) d: 23.1 (d, 2JP-C ¼ 2.5Hz), 23.3 (d, 2JP-C
¼ 5.9Hz), 48.5 (d, J P-C ¼ 141.4Hz), 102.2 (d, JP-C ¼
6.9Hz), 106.7, 108.0, 112.9, 120.4 (d, JP-C ¼ 4.3Hz), 125.6,
126.4, 129.3, 129.9, 131.2, 132.2, 146.3–146.4 (m), 149.8,
154.4, 164.1, 182.7. 31P NMR (162MHz, CDCl3) d: 13.50. IR
(KBr) �max (cm�1): 3439, 3269 (O–H), 2976, 2896 (CH3),
1655 (C¼O), 1617 (Ar), 1261 (P¼O), 1199 (P¼O–Ar),
1071 (O–C), 786 (Ar–H). ESI MS found m/z: 450.1
[MþH]þ, 472.1 [MþNa]þ, 921.2 [2MþNa]þ.

Chrysin derivatives 5b

White solid, yield: 68%, m.p. 205–206 �C. 1H NMR
(400MHz, CDCl3) d: 2.00 (d, 3J P-H ¼ 16.9Hz, 3H, CH3),
4.40 (d, 3J P-H ¼ 26.6Hz, 1H, N–H), 6.64 (s, 1H), 6.73 (s,
1H), 6.75–6.76 (m, 2H), 7.07–7.11 (m, 1H), 7.17–7.21 (m,
2H), 7.47–7.49 (m, 1H), 7.52–7.62 (m, 5H), 7.59 (m, 2H),
7.85–7.87 (m, 2H), 7.90–7.93 (m, 2H), 12.07 (s, 1H). 13C
NMR (100MHz, CDCl3) d: 23.2, 55.2 (d, J P-C ¼ 137.0Hz),
102.4 (d, J P-C ¼ 6.5Hz), 106.9, 108.1, 113.4, 120.0, 125.3,
126.3, 126.9, 128.7, 129.1, 129.4, 129.6, 131.2, 132.3, 137.2,
154.0, 164.1, 182.6. 31P NMR (162MHz, CDCl3) d: 8.83. IR
(KBr) �max (cm�1): 3439, 3269 (O–H), 2975, 2896 (CH3),
1655 (C¼O), 1619 (Ar), 1262 (P¼O), 1199 (P–O–Ar),
1091 (O–C), 3008, 787 (Ar–H). ESI MS found m/z: 512.2
[MþH]þ, 1045.2[2MþNa]þ.
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