Accepted Manuscript

Unconventional Knoevenagel-type Indoles: Synthesis and Cell-based Studies for the Identification of Pro-apoptotic Agents

Dr. Andrea Spallarossa, Chiara Caneva, Matteo Caviglia, Silvana Alfei, Stefania Butini, Giuseppe Campiani, Sandra Gemma, Margherita Brindisi, Daniela M. Zisterer, Sandra A. Bright, Clive D. Williams, Emmanuele Crespan, Giovanni Maga, Giuseppina Sanna, Ilenia Delogu, Gabriella Collu, Roberta Loddo

PII: S0223-5234(15)30193-8

DOI: 10.1016/j.ejmech.2015.08.009

Reference: EJMECH 8045

To appear in: European Journal of Medicinal Chemistry

Received Date: 25 April 2015

Revised Date: 22 July 2015

Accepted Date: 4 August 2015

Please cite this article as: A. Spallarossa, C. Caneva, M. Caviglia, S. Alfei, S. Butini, G. Campiani, S. Gemma, M. Brindisi, D.M. Zisterer, S.A. Bright, C.D. Williams, E. Crespan, G. Maga, G. Sanna, I. Delogu, G. Collu, R. Loddo, Unconventional Knoevenagel-type Indoles: Synthesis and Cell-based Studies for the Identification of Pro-apoptotic Agents, *European Journal of Medicinal Chemistry* (2015), doi: 10.1016/j.ejmech.2015.08.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Unconventional Knoevenagel-type Indoles: Synthesis and Cell-based **Studies for the Identification of Pro-apoptotic Agents**

Andrea Spallarossa,^{*,a} Chiara Caneva,^a Matteo Caviglia,^a Silvana Alfei,^a Stefania Butini,^b Giuseppe Campiani,^b Sandra Gemma,^b Margherita Brindisi,^b Daniela M. Zisterer,^c Sandra A. Bright,^c Clive D. Williams,^c Emmanuele Crespan,^d Giovanni Maga,^d Giuseppina Sanna,^e Ilenia Delogu,^e Gabriella Collu,^e Roberta Loddo.^e

^aDipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy

^bEuropean Research Centre for Drug Discovery & Development, Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy

^cSchool of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland ^dInstitute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, 27100 Pavia (Italy).

^eDipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Cagliari, Cittadella Universitaria, s.p. 8, Km 0.700, I-09042 Monserrato (Cagliari), Italy

**Corresponding author:*

Dr. Andrea Spallarossa Dipartimento di Farmacia Sezione di Chimica del Farmaco e del Prodotto Cosmetico Università degli Studi di Genova Viale Benedetto XV, 3 16132 - Genova, Italy phone: +39 010 353 8364; fax: +39 010 353 8358; e-mail: andrea.spallarossa@unige.it

Abstract

A new series of indole-based analogues were recently identified as potential anticancer agents. The Knoevenagel-type indoles herein presented were prepared via a one-pot condensation of iminium salts with active methylene reagents and were isolated as single geometric isomers. Biological evaluation in different cell-based assays revealed an antiproliferative activity for some analogues already in the nanomolar range against leukaemia, breast and renal cancer cell lines. To explain these effects, the most promising analogues of the series were engaged in further cell-based studies. Compounds **5e,l,p** and **5a,b** highlighted a pro-apoptotic potential being able to induce apoptosis in HL60, K562 and MCF-7 cell lines in a dose and time-dependent manner. The ability of these compounds to arrest cell cycle at the G2/M phase inspired the immunofluorescence studies which allowed us to identify tubulin as a potential target for compounds **5l** and **6b**.

Keywords

Indoles Antiproliferative agents Pro-apoptotic agents Tubulin immunostaining

1. Introduction

Indole is a privileged scaffold for drug discovery [1,2]. Indole derivatives have been described as useful chemical templates in different therapeutic areas, including the treatment of neurodegenerative diseases [3-5], psychiatric disorders [6] and inflammation [7,8]. Moreover, indole derivatives were found to be endowed with antiviral [9], antioxidant [10], antiplasmodial [11], antiproliferative and antitumor efficacy [12-20]. Recently induction of methuosis, which is one of the most recently acknowledged nonapoptotic cell death phenotype involving the accumulation of cytoplasmic vacuoles derived from macropinosomes, was identified as the mechanism of action of conjugated 3-vinyl indoles [21]. Interestingly, Knoevenagel-type indoles, such as 3-vinyl indoles bearing two electron-withdrawing groups at the terminal exocyclic double bond carbon, showed promising properties in different research areas [22-27].

In previous works, the chemical reactivity of *N*-methyleneiminium chlorides of cyclic (thio)ureas towards active methylene reagents (AMRs) was investigated. By reacting ethylenethiourea and ethyleneurea with benzoyl chloride in DMF, the corresponding iminium salts were isolated and directly condensed with a series of AMRs to obtain the stereoselective synthesis of α , β -unsaturated(thio)ureas [28]. A similar protocol was recently applied for the one-pot stereoselective preparation of Knoevenagel-type indoles [29].

The chemical accessibility to Knoevenagel-type indoles and the above mentioned rich literature background on this heterocyclic scaffold prompted us to evaluate the antiproliferative activity of a series of indole derivatives **2-10** (Chart 1 and Table 2).

Chart 1. General structure of title compounds 2-10 and structure of reference PBOX-15

2. Results and discussion

2.1. Chemistry

As previously described [29], iminium salts **Im11-Im17** were obtained by reacting indoles **11-17** with the DMFbenzoyl chloride complex and directly condensed with the active methylene reagents **I-XXX** (Scheme 1, Table 1) in the presence of triethylamine to afford the desired indole derivatives **2-8** (Table 2). By this two-step one-pot procedure we were able to prepared 48 indole analogues; the series included previously described compounds (namely, **2a-e,g**; **3a,b**; **4a-d**; **5a,b,f,h-m,o,s-u,aa,ab,ac**; **6a,b**; **7a,b**; **8a,b**) [29-31] and 14 unreported derivatives (namely, **2f**; **5c-e,g,n,p-r,v-z**).

Scheme 1. Two-step one-pot procedure for the synthesis of antiproliferative indoles 2-8

Table 1. The active methylene reagents employed in the synthesis.

AMRs	Х	Y	AMRs	X	Y
Ι	CN	CN	XVI	COMe	COMe
II	CN	$COC(Me)_3$	XVII	COMe	SO ₂ Me
III	CN	COPh	XVIII	COMe	SO_2Ph
IV	CN	CO-C ₆ H ₄ - <i>p</i> Cl	XIX	COMe	$SO_2-C_6H_4-pCl$
V	CN	2-thenoyl	XX	COPh	COMe
VI	CN	COOEt	XXI	COPh	COPh
VII	CN	COOCH ₂ CH ₂ OCH ₃	XXII	COPh	COOEt
VIII	CN	CONH ₂	XXIII	COPh	SO_2Ph
IX	CN	CON[(-CH ₂) ₅ -]	XXIV	CO-C ₆ H ₄ - <i>p</i> Cl	COOEt
Х	CN	CO-NHC ₆ H ₄ - <i>p</i> Cl	XXV	$CO-C_6H_4-pNO_2$	COOEt
XI	CN	$PO(OEt)_2$	XXVI	2-furoyl	COCF ₃
XII	CN	$PO(O^{i}C_{3}H_{7})_{2}$	XXVII	COOMe	SO ₂ Me
XIII	CN	SO ₂ Me	XXVIII	COOMe	SO_2Ph
XIV	CN	SO ₂ Ph	XXIX	COOEt	COMe
XV	CN	$SO_2-C_6H_4-pCH_3$	XXX	COOEt	COOEt

The condensation procedure resulted to be stereoselective in terms of E/Z isomerism at the exocyclic double bond. In fact, products **2-8** were obtained as single stereoisomers as demonstrated by the measurement of the ${}^{3}J_{C,H}$ and the ${}^{3}J_{P,H}$ coupling constants between the vinyl proton and the phosphorus (compounds **2b**; **5k**) or the X α -carbon (compounds **2c,g**; **4b,d**; **5c,l,p,q,v,z,aa**) or the X and Y α -carbons (compounds **2f**; **5b,f,h,i,s,u,x,ab**) [29]. The configurations of the remaining compounds have been attributed by comparison with the configurations of the analogues bearing the same X and Y groups. Most of the indole derivatives were isolated as *E*-isomers with the only exception of compounds **5s** and **5ab** that were obtained as *Z*-isomers (Table 2).

Table 2. Yields, *E/Z* ratio and MT-4 cell-based cytotoxicity of Knoevenagel-type indoles 2-8.

	- 1	_ 2	_ 1		K			<u> </u>
IDs	<u>R'</u>	<u>R²</u>	<u>R'</u>	X	Ŷ	Isomer	Yield	"EC ₅₀ μM
2a	H	H	Н	CN	CN	-	72	36±2
2b	H	Н	H	CN	$PO(OEt)_2$	E	28	80±3
2c	H	Н	H	CN	SO_2Me	E	73	>100
2d	Н	Н	Н	CN	SO_2Ph	E	78	>100
2e	Н	Н	Η	COPh	COOEt	E	50	>100
2f	Н	Н	Н	$CO-C_6H_4-pNO_2$	COOEt	Ε	32	100 ± 5
2g	Н	Н	Н	COOMe	SO_2Ph	E	53	>100
3a	Me	Н	Н	CN	SO_2Me	E	45	>100
3b	Me	Н	Η	CN	SO_2Ph	E	60	>100
4a	Η	Me	Η	CN	CN	E	77	56±2
4 b	Η	Me	Η	CN	SO_2Me	E	40	>100
4 c	Н	Me	Η	CN	SO ₂ Ph	E	45	>100
4d	Н	Me	Η	COOMe	SO ₂ Ph	E	39	31±1.5
5a	Н	Ph	Н	CN	CN		74	0.4 ± 0.05
5b	Н	Ph	Н	CN	COCMe ₃	E	51	0.5 ± 0.05
5c	Н	Ph	Н	CN	COPh	E	72	0.5 ± 0.02
5d	Н	Ph	Н	CN	$CO-C_6H_4-pCl$	E	83	0.4 ± 0.01
5e	Н	Ph	Н	CN	2-thenoyl	E	40	0.4 ± 0.01
5f	Н	Ph	Н	CN	COOEt	E	91	1.7 ± 0.02
5g	Н	Ph	Н	CN	COOCH ₂ CH ₂ OMe	E	89	1.2 ± 0.05
5h	Н	Ph	Н	CN	CONH ₂	E	55	6.0±0.4
5i	Н	Ph	Н	CN	$\operatorname{COPip}^{\tilde{b}}$	E	60	9.6±0.6
5i	Н	Ph	Н	CN	CO-NHC ₆ H ₄ -pCl	Ε	62	1.7 ± 0.08
5k	Н	Ph	Н	CN	$PO(OiPr)_2$	Ε	36	11±0.4
51	Н	Ph	Н	CN	SO ₂ Me	Ε	78	0.3±0.06
5m	Н	Ph	Н	CN	SO ₂ Ph	Ε	69	0.4±0.03
5n	Н	Ph	Н	CN	$SO_2 - C_6H_4 - pCH_3$	Ε	72	0.4 ± 0.02
50	Н	Ph	Н	COMe	COMe	-	42	1.5 ± 0.04
5p	Н	Ph	Н	COMe	SO ₂ Me	Ε	48	0.5 ± 0.02
5a	Н	Ph	Н	COMe	so ₂ Ph	Ε	4	0.4±0.03
5r	Н	Ph	H	COMe	$SO_2 - C_6H_4 - pCl$	Ε	12	>100
5s	Н	Ph	Н	COPh	COMe	Ζ	40	2.0±0.04
5t	Н	Ph	Н	COPh	COPh	-	14	8.9±0.5
5u	Н	Ph	H	COPh	COOEt	Ε	36	7.0±0.9
5v	Н	Ph	Н	COPh	SO ₂ Ph	Ε	17	3.0±0.06
5w	Н	Ph	н	CO-C ₆ H ₄ -pCl	COOEt	Ε	47	9.0±0.5
5x	Н	Ph	Н	$CO-C_6H_4-pNO_2$	COOEt	Ε	22	1.5 ± 0.08
5v	Н	Ph	Н	2-furoyl	COCF ₃	n.d.	10	0.8 ± 0.01
5z	Н	Ph	Н	COOMe	SO ₂ Me	Ε	43	0.4±0.03
5aa	Н	Ph	Н	COOMe	SO ₂ Ph	Ε	42	1.0±0.03
5ab	Н	Ph	Н	COOEt	COMe	Ζ	45	0.6 ± 0.01
5ac	Н	Ph	Н	COOEt	COOEt	-	13	2.3±0.07
6a	Н	4-MeO-C ₆ H ₄	Н	CN	CN	-	70	0.3±0.01
6b	H	4-MeO-C _c H ₄	Н	CN	SO ₂ Ph	Ε	62	0.2±0.06
7a	H	Ph	MeO	CN	CN	-	58	1.0±0.05
7b	Н	Ph	MeO	CN	SO ₂ Ph	Ε	78	1.3 ± 0.02
8a	Н	 4-MeO-C∠H₄	MeO	CN	CN	-	73	0.3 ± 0.01
8b	Н	4-MeO-C ₂ H ₄	MeO	CN	SO ₂ Ph	Ε	53	0.2 ± 0.04
Doxori	ıbicin			- • •		-		0.03 ± 0.001
	1							5.05_0.001

^{*a*}Compound concentration (μ M) required to reduce the viability of mock-infected MT-4 cells by 50%, as determined by the MTT method, under conditions allowing untreated controls to undergo at least three consecutive rounds of multiplication. Data represent mean values (±SD) for three independent determinations.

Moreover, two of the obtained products (derivatives 2d and 2e) were *N*-alkylated to afford compounds 9a, b and 10a via deprotonation of the indole nitrogen with sodium hydride and subsequent reaction of the corresponding salts with different ω -bromoacetophenones (Scheme 2).

Scheme 2. Synthesis of compounds 9a,b and 10a

2.2. Biological evaluation

Compounds 2-10 were preliminary tested in MT-4 cell-based assay in order to evaluate their cytotoxic activity (Table 2). The antiproliferative activity was found to be affected by both the nature of the substituent of the indole scaffold and the X and Y groups (Table 2). Thus, all the compounds showing submicromolar EC_{50} values bear at position 2 of the indole nucleus either a phenyl (derivatives 5a-e,g,l-n,p,q,y,z,ab) or a p-anisyl (derivatives 6, 7 and 8) group. Conversely, the unsubstituted indole compounds 2 emerged to be poorly active or inactive. Similarly, N-alkylation led to inactive compounds (derivatives 3, 9 and 10) and also the introduction of a 2-methyl group was found to be detrimental for activity (derivatives 4 vs 5 and 6). The activity of Knoevenagel-type indoles appears to be influenced also by the nature of the X and Y groups as highlighted by the different potencies of the 2-phenylindole derivatives 5 (Table 2). Thus, when X is a cyano group and Y is a cyano, keto, ester, N-phenylamido or sulphonyl substituent we registered a good antiproliferative activity (EC₅₀ value range: 0.4-1.7 µM, see derivatives **5a-g,j,l,m,n**); conversely 5h,i,k, sharing the X cyano group and characterized by an amide or a phosphonic ester as Y substituents were poorly active (EC₅₀ value range: 6.0-11.0 µM). The presence of a benzoyl substructure as X substituent seemed to correlate with poor activity (see compounds 5t-v) even if derivative 5s emerged to be active at micromolar concentrations. Furthermore the introduction of a p-NO₂ group at the benzoyl moiety led to a 5-fold increase in activity (5u vs 5x), while the p-Cl substitution caused a slight reduction in potency (5u vs 5w). Finally, derivatives 5y-ac bearing as X groups a 2-furoyl or an ester substituent showed EC₅₀ values in the (sub)micromolar concentration range.

In order to define the safety profile of the most interesting compounds, their cytotoxic activity for tumour cells (haematological and solid human tumour-derived cell lines) was compared to that for non-neoplastic cell lines (Tables 3 and 4). Doxorubicin was used as reference drug. This analysis revealed a cytotoxic potential for compounds **6b** and **8b** against all the human leukaemia-lymphoma-derived cell lines evaluated. Notably, compounds **5g**, **6b** and **8b** showed a good activity against lung squamous, prostate and hepatocellular human carcinoma accompanied by a favourable selectivity index.

Table 3. Cytotoxic activity of selected indole compounds against human leukaemia-lymphoma-derived (CCRF-CEM, WIL-2NS, CCRF-SB) cell lines

		$^{a}\mathrm{EC}_{50}\left(\mu\mathrm{M}\right)$	
IDs	^b CCRF-CEM	^c WIL-2NS	^d CCRF-SB
5d	1.1±0.1	4.5±0.4	0.6±0.001
5e	1.2 ± 0.2	6.4 ± 0.7	0.6 ± 0.004
5g	1.6 ± 0.1	2.2 ± 0.1	2.2 ± 0.1
5s	8.1±0.3	12±0.9	11±0.8
5t	12±0.5	72±4	12±0.8
5u	8±0.3	12±1	9.6±0.9
5x	1.8±0.2	2.4 ± 0.2	2.2±0.3
5y	1.9±0.09	2.3±0.1	1.8 ± 0.1
5ab	1.4 ± 0.1	2.7±0.1	1.6±0.1
6b	0.3±0.1	0.4 ± 0.008	0.3±0.005
7b	1.5 ± 0.2	2.8 ± 0.2	1.9±0.09
8b	0.3 ± 0.001	0.5 ± 0.003	0.3 ± 0.003
Doxorubicin	0.02 ± 0.001	0.04 ± 0.002	0.01 ± 0.001

^{*a*}Compound concentration (μ M) required to reduce cell proliferation by 50%, as determined by the MTT method, under conditions allowing untreated controls to undergo at least three consecutive rounds of multiplication. Data represent mean values (± SD) for three independent determinations. ^{*b*}CD4⁺ human acute T-lymphoblastic leukaemia. ^{*c*}Human splenic B-lymphoblastoid cells. ^{*d*}Human acute B-lymphoblastic leukaemia.

Table 4. Cytotoxic activity of selected indole compounds against solid tumour-derived (SK-MEL 28, SK-MES-1, D	U-
145, Hep-G2, MCF-7) and normal control (MRC-5 and CRL 7065) cell lines.	

			^a H	EC ₅₀ (µM)			
IDs	^b MRC-5	^c CRL-7065	^d SK-MEL28	^e SK-MES 1	^f DU-145	^g Hep-G2	^h MCF-7
5d	14 ± 1.5	7.4±2.4	15±2.5	19±4	11±2.2	37±14	28±3.5
5e	20 ± 2.1	45±6	28±6	4±0.5	11 ± 0.8	25±1	29±1.2
5g	>100	76±3	9.3±2	5 ± 0.05	4.2 ± 1	85±3	12±0.7
5s	>100	>100	>100	>100	>100	79±2	>100
5t	>100	>100	>100	>100	>100	>100	>100
5u	>100	>100	>100	>100	68±2	31±3	43±5
5x	>100	>100	>100	19±1	11±0.9	28±3	40±2
5y	12	8.1±0.7	33±5	27±1	9.2±0.6	16±3	10 ± 2.6
5ab	31±3	83±2	30±1.5	23±1	11 ± 2	19±2	32 ± 2.5
6b	73±5	>100	>100	43±4	2±0.3	11 ± 2.5	>100
7b	14 ± 2.8	11±0.1	10±0.3	12±1.3	10 ± 0.2	9.6 ± 1.9	12±0.5
8b	22±2	>100	>100	>100	3±1	6.4 ± 0.4	40±3
Doxorubicin	0.3±0.01	0.9 ± 0.02	0.7 ± 0.01	0.1 ± 0.009	0.2 ± 0.03	0.3±0.01	0.3 ± 0.02

^{*a*}Compound concentration (μM) required to reduce cell proliferation by 50%, as determined by the MTT method, under conditions allowing untreated controls to undergo at least three consecutive rounds of multiplication. Data represent mean values (±SD) for three independent determinations. ^{*b*}Human normal lung fibroblasts. ^{*c*}Human normal foreskin fibroblasts. ^{*d*}Human skin melanoma. ^{*e*}Human lung squamous carcinoma. ^{*f*}Human prostate carcinoma. ^{*g*}Human hepatocellular carcinoma. ^{*b*}Human breast adenocarcinoma.

Derivatives **2-8** were submitted to the NCI (Bethesda MA-USA) developmental therapeutics program for antiproliferative testing against different human tumour cell lines, organized into 9 disease-oriented panels; the fifteen derivatives reported in Tables 5-7 were selected and screened by NCI. The results are expressed as GI_{50} (measure the growth inhibitory power), TGI (measure of the cytostatic activity) and LC_{50} (measure of the cytocidal effect). Table 5 summarizes the number of cell lines against which each compound was screened, the number of lines against which it

gave a positive (inferior to 100 μ M) GI₅₀, TGI or LC₅₀ values and the corresponding concentration range. The GI₅₀ values of the fifteen molecules are reported in Tables 6 and 7.

	G	$I_{50} (\mu M)^a$	Т	$GI(\mu M)^b$	LC	$L_{50} (\mu M)^{c}$
IDs	No d	Range	No d	Range	No d	Range
4d	56	1.1-17.4	47	5.2-96.7	35	22.2-98.7
5a	59	0.246-43.2	50	0.698-90.4	10	12.1-98.4
5c	54	0.370-65.3	13	4.1-86.9	1	58.2
5m	60	0.288-23.6	52	4.7-96.3	12	7.6-86.7
5р	59	0.415-43.8	21	5.6-88.1	3	17.3-67.7
5s	59	0.295-7.2	56	2.0-46.6	39	4.7-81.4
5v	31	3.1-97.1	-	-	-	-
5z	58	0.671-19.6	46	4.0-98.5	16	8.2-69.8
5ac	60	0.219-23.9	60	12.7-66.0	37	33.2-99.1
6a	60	0.0173-2.8	50	3.2-80.7	5	1.9-23.9
6b	60	< 0.01-19.3	52	4.7-96.3	9	6.8-90.8
7a	60	0.607-44.2	20	3.3-57.6	2	55.4-75.0
7b	58	1.1-37.3	18	7.1-85.5	- /	
8a	47	0.075-23.0	21	5.6-88.1	- /	
8b	58	0.276-46.1	50	3.2-80.7	4	8.5-47.0

Table 5. GI₅₀, TGI and LC₅₀ values ranges of selected compounds from NCI's in vitro screening.

^{*a*}Compound concentration that gives 50% growth inhibition. ^{*b*}Compound concentration that gives total growth inhibition. ^{*c*}Compound concentration that produces 50% lethal (cytocidal) effect. ^{*d*}The table shows the number of cell lines on which each compound gave a positive (i.e. lower than 100 μ M) GI₅₀ or TGI or LC₅₀ value and the corresponding concentration ranges.

With the exception of derivatives **4d**, **5v** and **7b**, all the tested compounds showed submicromolar GI_{50} values against specific tumour cell lines. Derivatives **6a,b** and **8a,b** were endowed with a widespread submicromolar activity against the tested tumour panels and proved to be particularly effective against selected cell lines [**6a**: GI_{50} (leukaemia-SR) = 17.3 nM; **6b**: GI_{50} (breast cancer-MDA-MB-468) < 10 nM; **8a**: GI_{50} (renal cancer-A498) = 75 nM].

	Panel / cell line				6		$)^a$			
		4d	5a	5c	5m	5p	5a	5v	5z	5ac
	CCRF-CEM	n.d. ^b	2.4	7.3	2.6	4.7	1.4		7.6	2.6
	HL-60 (TB)	n.d. ^b	1.8	n.d. ^b	1.8	2.6	1.7	5.0	3.4	4.4
Leukaemia	K-562		0.478		0.348	0.679	0.442	6.5	n.t. ^c	3.6
	MOLT-4	1.9	43.2	n.d. ^b	2.2	4.4	1.6	n.d. ^b	4.7	3.9
	RPMI-8226	3.2	0.582	2.4	0.714	3.0	2.2	7.6	6.2	0.219
	SR	1.1		n.d. ^b	17.3	n.t. ^c	n.tc	9.9	8.1	2.1
	A549/ATCC	4.9	4.6	7.6	3.7	7.3	7.2	35.0	5.3	6.4
	EKVX	5.0	5.8	10.0	6.2	6.4	3.3	4.6	8.9	12.4
Non-Small	HOP-62	7.7	11.3	16.3	9.3	12.1	1.2		10.7	5.5
	HOP-92	4.1	7.7	4.5	10.3	3.8	5.9	5.0	6.6	8.8
Cell	NCI-H226	4.3	4.1	6.8	4.1	27.1	1.9		5.0	11.4
Lung Cancer	NCI-H23	4.8	4.7	16.0	4.7	4.0	1.6	9.6	8.0	2.9
8	NCI-H322M	8.8	11.4	3.8	9.2	9.6	6.1		7.4	12.7
	NCI-H460	3.0	2.1	4.5	2.7	2.8	1.1	5.9	3.5	3.8
	NCI-H522	3.2	9.6	4.0	4.6	3.6	1.3	91.8	3.1	3.4
	COLO 205	7.5	1.8	5.0	1.4	3.0	1.7	7.8	4.4	4.9
	HCC-2998	4.9	10.4	14.5	10.9	8.0	1.4	7	8.8	10.1
Colon Cancer	HCT-116	3.8	2.3	5.3	2.0	2.9	0.754	4.9	4.2	4.3
colon cuncer	HCT-15	3.1	0.971	3.5	1.1	2.0	0.836	n.d. ^{<i>v</i>}	2.4	4.1
	HT29	5.2	0.526	3.4	0.595	1.6	0.589		3.6	4.6
	KM12	2.4	0.684	2.0	0.652	2.1	1.0	5.1	1.5	3.5
	SW-620	5.2	0.539	3.0	0.570	2.1	0.778	n.d."	2.9	5.6
	SF-268	3.3	13.4	5.7	4.5	4.2	3.4		4.3	6.8
CNIC C	SF-295	3.1	1.6	3.0	2.4	3.9	2.4	3.5	3.1	7.6
CNS Cancer	SF-539	3.4	2.1	6.0	2.5	1.9	1.3		3.1	14.5
	SNB-19	7.6	5.7	16.8	8.3	3.4	6.1	10.1	8.7	23.9
	SNB-75	3.1	2.0	3.2	1.7	1.5	1.7	10.1	2.3	7.0
	<u>U251</u>	3.4	1.2	4.7	2.6	2.9	1.2	8.6	3.6	4.9
	LOX IMVI	2.0	3.3	7.4	4.6	3.4	1.4	74.7	5.1	5.6
	MALME-3M	1.3	26.0	12.3	8.4	4.8	2.1	15 6	12.2	8.9
	M14	4.4	1.9	4.8	3.8	1.6	0.521	15.6	3.3	4.2
Melanoma	MDA-MB-435	2.9	0.246	0.370	0.288	0.415	0.295	3.9		3.4
	SK-MEL-2	10.6	27.0	35.2	12.7	8.0	1.4		11.8	4./
	SK-MEL-28	5.8	5.1	12.0	8.3	3.3	2.0	0.0	6.0	1.1
	SK-MEL-5	n.t.	1.1	n.t.	1.82	1.9	0.832	9.0	n.t	3.8
	UACC-257	7.0	28.1	10.9	18.2	43.8	2.2	0.0	11.2	1.5
	UACC-02	2.8	2.0	3.0	2.0	3.2	1.0	9.0	3.3	4.0
	IGKUVI OVCAD 2	1.5	0.757	2.5	5.5 1.4	8.3	1.5		1./	5.7
Overien	OVCAR-5	2.1	1.0	2.4 65 2	1.4	2.3	1.0	66	1.9	4.2
Ovarian Como en	OVCAR-4	3.7	3.2 10.7	03.5	3.3 12.0	3.0 16 1	5.7 2.0	0.0	0.2	10.5
Cancer	OVCAR-3	2.0	19.7	2.2	15.9	10.1	2.0		19.0	18.3
	NCI/ADD DES	5.9 4 0	0.0	2.2	0.0	3.2	2.5		0.5	4.1
	NCI/ADR-RES	4.2	0.820	3.1	1.1	2.1	2.0	76	5.5 12.1	2.9 13.6
	786.0	<u>2.5</u> 8 7	8.6	16.5	0.0	3.5	<u> </u>	7.0	75	12.0
	A 498	0.2 5 5	3.0	15.3	7.2 11 0	3.5	$\frac{1.0}{2.0}$	$\mathbf{n} d^{b}$	1.J 6.6	16.0
	ACHN	5.5	73	7 2	7.0	5.9	2.0	67	9.0 9.7	<u> </u>
Renal Cancer	CAKI-1	33	61	2.5	5.5	5.6	1.0 2 1	3.1	1.8	10.3
Kenar Cancer	PYE 303	3.5	33	2.5	3.5	2.6	2. 4 1.3	07.1	$\frac{1.0}{7.2}$	37
	SN12C	2.6	5.5 6.8	5.0 5.7	5.0	2.0 6.0	1.5	77.1	3.1	5.1
	TK-10	2.0 8.1	53	11 1	5.6	13.5	3.8		J.1 77	13.6
	UO-31	44	11.1	30.5	67	58	1.6		55	4.0
Prostate	PC-3	5.6	3.0	35	3.4	4 5	2.5	5.0	4.2	33
Concor	DU-145	29	33	5.5	2. 4 2.9	т.5 3 5	2.5	5.0	$\frac{1.2}{25}$	9.5 9.7
Cancer	MCF7	2.2	11	4.0	2.2	2.5	0.045	5.0	2.5	<u> </u>
	MDA-MB-	$\frac{2.0}{2.7}$	1.8	13.2	3.8	5.5	1.7	5.0	$\frac{2.9}{2.4}$	5.8
Breast Cancer	HS 578T	2.9	2.3	63	23.6	1.6	5.0	39 5	3 5	3.8
	BT-549	54	9.4	3.0	11.6	2.4	1.9	57.5	43	53
	T-47D	3.2	4.6	53	3.8	2.3	1.4	34	2.8	2.7
	MDA-MB-468	6.3	1.0	5.6	1.9	1.8	1.7	4.2	5.4	3.1

٨	CCEPTED MANILISCRIPT
Table 6 GL ₂₀ values for compounds 4d ar	d Sa c m n d v z ac
Lable of Oly fulles for compounds tu u	

^{*a*}Compound concentration that gives 50% growth inhibition (Only the values < 100 μ M are reported). ^{*b*}Not determined. ^{*c*}Not tested. GI₅₀ values lower than 1.0 μ M are reported in bold.

	Panel / cell line			GL. (I	$(\mathbf{M})^a$		
	I and / cell line	69	6h	79	7h	8a	8h
	CCRF-CEM	0.352	1.3	3.4	6.5	ou	1.3
	HL-60 (TB)	0.271	0.294	2.5	2.4	0.363	0.899
Leukaemia	K-562	0.343	0.535	2.1	1.4	0.345	0.508
	MOLT-4	0.578	0.871	3.7	4.7	0.369	0.765
	RPMI-8226	0.490	2.1	2.6	n.t. ^c	5.1	1.3
	SR	0.0173	0.350	0.865	2.2	0.152	0.305
	A549/ATCC	0.700	0.803	7.0	6.0	3.8	2.8
	EKVX	0.656	1.3	4.1	6.9	$n.d.^b$	3.3
	HOP-62	1.2	1.0	5.3	8.3	3.3	3.1
Non-Small Cell	HOP-92	1.2	2.3	2.4	6.1	23.0	0.698
Lung Concor	NCI-H226	1.1	2.8	3.5	9.4	1.5	3.7
Lung Cancer	NCI-H23	0.600	0.932	4.1	8.0	2.0	0.946
	NCI-H322M	0.490	1.5	7.4	30.1	0.380	4.3
	NCI-H460	0.359	0.404	3.6	4.6	0.472	0.687
	NCI-H522	0.798	3.0	4.6	4.0		1.7
	COLO 205	0.223	0.254	2.1	7.4	0.291	0.396
	HCC-2998	0.751	1.2	6.1	18.7	n.d. ^{v}	2.0
Colon Cancer	HCT-116	0.411	0.399	4.4	3.7	0.487	0.539
	HCT-15	0.593	0.554	3.2	4.0	0.778	0.632
	H129	0.354	0.314	3.1	3.5	0.407	0.435
	KM12	0.374	0.374	3.5	3.0	0.590	0.654
	SW-620	0.440	0.506	3.6	4.0	0.579	0.540
	SF-268 SE 205	0.709	1.1	8.3	13.3	1./	1.6
CNS Concor	SF-295 SE 520	0.330	0.500	4.2	2.8	0.300	
CINS Cancer	ST-339 SNR 10	0.205	0.299	2.9	3.3 13.5	137	0.510 3 2
	SIND-19 SNR 75	1.0	0.803	28	15.5	15.7	5.2 0.612
	SIND-75 11251	0.410	0.579	2.0 3.5	J.9 1.6	0.595	0.012
		1.8	13	49	74	0.055	1.2
	MALME-3M	0.874	1.2	4.4	19.4		3.2
	M14	0.295	0.383	2.3	3.7	0.308	0.500
	MDA-MB-435	0.128	0.203	0.607	1.1	0.122	0.276
Melanoma	SK-MEL-2	0.763	18.1	5.9	3.7	5.9	9.0
	SK-MEL-28	1.2	1.8	4.4	6.1	1.7	0.787
	SK-MEL-5	0.350	0.344	2.9	3.1	0.324	0.319
	UACC-257	0.424	10.7	30.0	4.9		46.1
	UACC-62	0.357	0.597	2.5	3.8	0.357	0.660
	IGROV1	1.4	19.3	8.4	4.8	5.8	10.6
	OVCAR-3	0.265	0.244	3.1	5.0	0.424	0.359
Ovarian Cancer	OVCAR-4	0.798	0.578	5.4	8.3		2.1
ovuriun cuncer	OVCAR-5	1.8	1.9	44.2	37.3		4.6
	OVCAR-8	1.2	1.3	7.7	7.8		3.1
	NCI/ADR-RES	0.343	0.428	2.8	3.8	0.403	0.494
	SK-OV-3	0.445	0.528	4.8	7.1	0.892	0.901
	786-0	0.720	1.2	6.6	6.1	14.3	2.1
	A498	0.458	1.1	2.0	9.3	0.075	n.t.°
Denal Concer	ACHN CARL 1	2.3	1.9	/.4	12.9	0.202	1.8
Kenal Cancer	CAKI-1 DVE 202	0.079	0.997	4.1	4.5	0.392	4.2
	КАГ 393 SN12C	0.510	1.0	9.8 4 7	11.L. 7 0	J.J 15.0	22
	51112C TK-10	1.2 0.025	1.5	4./ 5.1	7.0 17.5	13.9	2.3 5.0
	IIC 31	0.945	4.8	5.1	17.5		3.0
Prostate Cancer	PC-3	0.547	0.557	5.4	83	0.342	0.534
Trostate Cancer	DU-145	0.484	0.337	5. 4 6.5	10.1	0.917	0.875
	MCF7	0.347	0.398	2.2	3.9	0.385	0.851
	MDA-MB-231/ATCC	0.562	0.649	3.8	7.5	1.3	1.4
Breast Cancer	HS 578T	0.241	0.682	2.4	7.6	0.513	0.538
	BT-549	0.769	1.6	2.2	11.6		4.8
	T-47D	0.481	0.533	2.3	5.2	2.6	0.905
	MDA-MB-468	0.418	<0.01	2.1	4.2	0.503	1.3

Table 7. GI₅₀ values for compounds 6a,b, 7a,b and 8a,b.

^{*a*}Compound concentration that gives 50% growth inhibition (Only the values < 100 μ M are reported). ^{*b*}Not determined. ^{*c*}Not tested. GI₅₀ values lower than 1.0 μ M are reported in bold.

With the aim of identifying the mechanism behind the Knoevenagel-type indoles antiproliferative activity and considering the recent literature on the pro-apoptotic properties of indole derivatives [32], the most promising compounds (**5e,l,p** and **5a,b**) were selected for further cellular studies concerning their antimitotic and pro-apoptotic efficacy. Time-dependent G2/M cell cycle arrest and time-dependent apoptosis induction were evaluated on various cancer cell lines. MCF-7, a breast carcinoma cell line, K562, a chronic myeloid leukaemia cell line and HL-60, a promyelocytic leukaemia cell line, were thus used as representative solid and haematological malignancies to evaluate the antitumor properties of these novel compounds. The obtained results are shown in Figures 1 and 2 while Figure 3 describes the immunofluorescence studies performed on MCF-7 cells.

Figure 1. Compounds **5e,l,p** and **6a,b** potently reduce cell viability and induce apoptosis in HL-60, K562 and MCF-7 cell lines. **A.** Cellular viability; ^aCompound concentration that gives 50% growth inhibition. Cells were analyzed for apoptotic cell death **B.** HL-60 cells, **C.** K562 cells and **D.** MCF-7 cells. Values represent the mean ± S.E.M. of three independent experiments performed in triplicate.

Results showed that the five compounds tested were able to dose-dependently and significantly reduce cell viability in all three cell lines used following a 48 h treatment (Figure 1A). Further analysis showed the compounds to actively induce apoptosis in these cells in a time dependent manner (Figure 1B-D). Our results highlighted **5e** and **6b** as the most potent compounds in HL-60 cells, inducing 61.3 ± 4.2 and $65.5 \pm 9.1\%$ apoptosis, while **5l** and **6a** were most potent in K562 cells inducing 47.5 ± 4.8 and $44.4 \pm 4.0\%$ apoptosis, respectively. For MCF-7 cells, **5l** and **5e** induced 28.4 ± 6.0 and $34.1 \pm 7.9\%$ apoptosis.

These results prompted us to study cell cycle progression for the most potent pro-apoptotic agents identified. Accordingly, compounds **51** and **6b** were chosen for further testing. Cell cycle analysis of cells treated with these two compounds showed apoptosis to be preceded by a G2/M arrest (Figure 2). **51** induced a G2/M arrest of 39.7 ± 5.0 , 46.8 \pm 0.9 and 41.3 \pm 3.5% in HL-60, K562 and MCF-7 cells after 18 h (HL-60, MCF-7) or 24 h (K562), respectively. Similarly, **6b** induced a G2/M arrest of 47.3 \pm 3.0, 42.4 \pm 7.6 and 40.4 \pm 7.0% in the same cell lines.

Figure 2. Apoptosis is preceded by a G2/M arrest following treatment with **51** and **6b**. Values represent the mean \pm S.E.M. of three independent experiments.

In the majority of cell proliferation and apoptosis assays performed, compound **6b** demonstrated the highest potency in terms of apoptosis and G2/M arrest, while **5e** and **5p** were somehow the less effective. Overall, the data so far acquired confirmed a pro-apoptotic character of the five indoles tested.

As microtubule targeting agents (MTAs) are associated with eliciting a G2/M arrest [33], MCF-7 cells were stained for tubulin and DNA and subjected to immunofluorescence. Cells treated with paclitaxel, a tubulin polymeriser and PBOX-15, a tubulin depolymeriser [34-36] were used as positive controls for highlighting the effect of MTAs on tubulin. In comparison to these MTAs, the tested analogues (**51** and **6b**) had, in analogy with PBOX-15, a partial depolymerising effect on tubulin suggesting that the molecular target of the **51** and **6b** compounds might be tubulin (Figure 3).

Figure 3. Effect of 51 and 6b on tubulin. DNA is colored red and microtubules in green. Bar represents 20 μ m. Results are representative of three independent experiments

As a further analysis we also explored the possibility that **51** could behave as a DNA intercalating agent. To this purpose we incubated saturating amounts of the inhibitor in the presence of double stranded plasmid DNA. Our experiments showed that **51** does not intercalate DNA since the electrophoretic mobility properties of the plasmid in the presence of **51** are not different from those of the plasmid alone (see figure S1 of the Supplementary Information).

3. Conclusions

The synthesized indole derivatives showed an overall good antiproliferative activity, which was specifically dependent on the presence of aryl substituents at position 2. Some of the compounds resulted selective for tumor cells, ensuring a good level of safety for normal cells. Moreover, activity data generated by NCI further confirmed the anti-proliferative potential of different indole compounds, in particular **6a,b** and **8a,b** are able to inhibit proliferation at submicromolar concentrations in most of the cancer cell lines tested. Further studies on selected compounds demonstrated their pro-apoptotic efficacy and tubulin was identified as their potential biological target.

4. Experimental section

4.1. Chemistry

All reactions were carried out in dried glassware. The commercially available building blocks were purchased from Alfa Aesar and Aldrich Chemical (Milan, Italy) and were used without further purification. 2-(4-methoxyphenyl)indole **15**, 5-methoxy-2-phenyl-1H-indole **16**, 5-methoxy-2-(4-methoxyphenyl)-1H-indole **17** were prepared according literature procedures [37].

Solvents were reagent grade. DMF was dried on molecular sieves (5Å 1/16" inch pellets). Organic solutions were dried over anhydrous sodium sulfate and evaporated using a rotatory evaporator operating at reduced pressure of about 10-20 Torr. Thin layer chromatography system for routine monitoring the course of reactions and confirming the purity of analytical samples employed aluminium-backed silica gel plates (Merck DC-Alufolien Kieselgel 60 F254); chloroform and methanol were used as developing solvents and detection of spots was made by UV light and/or by iodine vapours. Melting points were determined on a Fisher-Johns apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer 398 spectrometer. ¹H NMR spectra were collected on a BRUKER DPX-300 (300 MHz) or on a Varian Gemini 200 (200 MHz) instrument. ¹³C NMR spectra were acquired on a BRUKER DPX-300 at 75.5 MHz. TMS was used as internal reference and DMSO-d₆ or CDCl₃ were used as solvents. ¹H NMR spectra were assigned with the help of homo-decoupling, COSY and NOE-difference experiments. Coupling constant values were given in Hertz. Fully decoupled ¹³C NMR spectra are reported. For the determination of ${}^{3}J_{CH}$, fully coupled ¹³C NMR spectra were acquired in the gated-decoupled mode with at least 0.5 Hz/pt digital resolution. Some selective proton-decoupling experiments were also needed. Chemical shifts were reported in δ (parts per million) units relative to the internal standard tetramethylsilane, and the splitting patterns were described as follows: s (singlet), d (doublet), t (triplet) and m (multiplet). Elemental analyses were performed by an EA1110 Analyser, Fison Instruments (Milan) and were within ±0.4% of theoretical values. UV analysis was carried out by a Thermo Scientific Evolution 300 spectrophotometer.

4.1.1. General one-pot procedure for the preparation of compounds 2-8.

To a stirred solution of the suitable indole **11-17** (10 mmol) in dry DMF (5 mL), benzoyl chloride (1.41 g, 10 mmol) was added in a single portion. After stirring at rt for 1 h, the reaction mixture was allowed to stand at 0 °C for 18-48 h. Then, a solution of the suitable active methylene reagent (11 mmol) and triethylamine (1.21 g, 12 mmol) in dry DMF (8 mL) pre-warmed at 80 °C, were added in a single portion. The reaction mixture was stirred for 45 min at 90 °C (for **5b** and **5u**: 1.5 h at 105 °C; for **5v**: 1.5 h at 120 °C). After cooling to rt, Et_3N ·HCl precipitated and the resulting suspension was treated with water (50 mL). Then, work-ups 1-4 were carried out, as follows:

<u>Work-up 1</u> (for 2a,c-g, 3b, 4a,b, 5a-h,j,l-p,r,s,u,x,z, 6a,b, 7a,b, 8a,b): the precipitate obtained was filtered off, dried and crystallized from the suitable solvent or solvent mixture.

<u>*Work-up 2*</u> (for 4d, 5i,w,y): the precipitate was filtered off and dissolved in CH_2Cl_2 . The organic layer was washed with water (3 × 20 mL), dried over anhydrous Na_2SO_4 and filtered through a pad of Florisil. After evaporation of the solvent, the crude product was purified by crystallization from ethanol.

<u>*Work-up 3*</u> (for 4c, 5k,q,t): the precipitate was filtered off, air dried, purified by chromatography (eluents: petroleum ether/ethyl acetate) and then crystallized from the suitable solvent or solvent mixture.

<u>Work-up 4</u> (for 2b, 3a, 5v,aa-ac): the reaction mixture was extracted with ethyl acetate (2b, 3a, 5ac) or CH₂Cl₂ (5v,aa,ab) (3×35 mL). The combined organic extracts were washed with water (5×30 mL), dried over anhydrous Na₂SO₄ and filtered through a pad of Florisil. After evaporation of the filtrate, the crude products 3a and 5v,ac

were crystallized from the proper solvent(s). Conversely, the crude products of **2b** and **5z,aa** were purified by chromatography (eluent: petroleum ether/ethyl acetate) and then crystallized from the proper solvent mix.

4.1.1.1. 1H-(Indol-3-vlmethylene)malononitrile (2a) [29].

4.1.1.2. Diethyl (E)-1-cyano-2-(1H-indol-3-yl)vinylphosphonate (2b) [29].

4.1.1.3. (2E)-3-(1H-Indol-3-yl)-2-(methylsulfonyl)acrylonitrile (2c) [29].

4.1.1.4. (2E)-3-(1H-Indol-3-yl)-2-(phenylsulfonyl)acrylonitrile (2d) [29].

4.1.1.5. Ethyl (2E)-2-benzoyl-3-(1H-indol-3-yl)acrylate (2e) [29].

4.1.1.6. *Ethyl* (2*E*)-3-(1*H*-indol-3-yl)-2-(4-nitrobenzoyl)acrylate (2*f*). Yellow solid; Yield 32%; mp: 161-162°C; IR (KBr, v_{max} cm⁻¹): 3228 (NH), 1698 (COOEt), 1675 (COAr), 1603 (C=C), 1523 (NO₂), 1345 (NO₂), 1249 (COOEt); ¹H NMR (300 MHz, DMSO-*d*₆): δ 1.07 (t, *J* = 7.0 Hz, 3H, CH₃), 4.12 (q, *J* = 7.0 Hz, 2H, CH₂), 7.14-7.18 (m, 2H, Ar-H), 7.39-7.42 (m, 2H, Ar-H), 7.71-7.75 (m, 1H, Ar-H), 8.12 (d, *J* = 8.4 Hz, 2H, Ar-H), 8.25 (s, 1H, CH=C), 8.29 (d, *J* = 8.4 Hz, 2H, Ar-H), 11.87 (br s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 13.95, 60.61, 108.90, 112.43, 118.18, 121.11, 122.30, 122.83, 124.23, 124.23, 126.81, 129.75, 129.94, 129.94, 135.58, 136.02, 140.79, 150.25, 164.70, 195.16; ³*J*_{C,H} = 10.2 Hz (CO); 7.5 Hz (COO); Anal. Calcd for C₂₀H₁₆N₂O₅: C, 65.93; H, 4.43; N, 7.69; Found: C, 65.84; H, 4.34; N, 7.64.

4.1.1.7. Methyl (2E)-3-(1H-indol-3-yl)-2-(phenylsulfonyl)acrylate (2g) [29].

4.1.1.8. (2E)-3-(1-Methyl-1H-indol-3-yl)-2-(methylsulfonyl)acrylonitrile (3a) [29].

4.1.1.9. (2E)-3-(1-methyl-1H-indol-3-yl)-2-(phenylsulfonyl)acrylonitrile (3b) [29].

4.1.1.10. [(2-Methyl-1H-indol-3-yl)methylene]malononitrile (4a) [29].

4.1.1.11. (2E)-3-(2-Methyl-1H-indol-3-yl)-2-(methylsulfonyl)acrylonitrile (4b) [29].

4.1.1.12. (2E)-3-(2-Methyl-1H-indol-3-yl)-2-(phenylsulfonyl)acrylonitrile (4c) [29].

4.1.1.13. Methyl (2E)-3-(2-methyl-1H-indol-3-yl)-2-(phenylsulfonyl)acrylate (4d) [29].

4.1.1.14. [(2-Phenyl-1H-indol-3-y)lmethylene]malononitrile (5a) [29].

4.1.1.15. (2E)-2-(2,2-Dimethylpropanoyl)-3-(2-phenyl-1H-indol-3-yl)acrylonitrile (5b) [29].

4.1.1.16. (2*E*)-2-*Benzoyl-3*-(2-*phenyl-1H-indol-3-y)acrylonitrile* (**5***c*). Yellow solid; Yield: 72%; mp: 254-256 °C; IR (KBr, υ_{max} cm⁻¹): 3323 (NH), 2209 (CN), 1622 (CO), 1549 (C=C); ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.23-7.40 (m, 2H, Ar-H), 7.48-7.60 (m, 9H, Ar-H), 7.73-7.78 (m, 2H, Ar-H), 8.08 (s, 1H, CH=C), 8.22-8.31 (m, 1H, indole H-4), 12.97 (br s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 103.25, 108.42, 112.65, 118.92, 121.78, 122.92, 123.95, 124.71, 128.37, 128.37, 128.44, 128.44, 128.89, 128.89, 129.53, 130.01, 130.05, 130.05, 131.91, 137.13, 137.27, 149.32,

151,18, 190.89; ${}^{3}J_{C,H} = 13.5$ Hz (CN); Anal. Calcd for C₂₄H₁₆N₂O: C, 82.74; H, 4.63; N, 8.04; Found: C, 83.02; H, 4.94; N, 8.04.

4.1.1.17. (*E*)-2-(4-Chlorobenzoyl)-3-(2-phenyl-1H-indol-3-yl)prop-2-enenitrile (**5d**). Yellow solid; Yield: 83%; mp: 232-234 °C; IR (KBr, v_{max} cm⁻¹): 3219 (NH), 2210 (CN), 1632 (CO), 1558 (C=C); ¹H NMR (200 MHz, DMSO-*d*₆): δ 7.15-7.65 (m, 10H, Ar-H), 7.73-7.81 (m, 2H, Ar-H), 8.07 (s, 1H, CH=C), 8.28-8.33 (m, 1H, indole H-4), 13.01 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO-*d*₆): δ 97.25, 102.41, 108.24, 112.37, 118.55, 121.56, 122.61, 123.73, 124.53, 128.17, 128.59, 129.14, 129.77, 130.03, 135.65, 136.39, 136.95, 149.38, 150.99, 189.47; Anal. Calcd for C₂₄H₁₅ClN₂O: C, 75.29; H, 3.95; N, 7.32; Found: C, 75.29; H, 4.18; N, 7.25.

4.1.1.18. (2*E*)-3-(2-Phenyl-1*H*-indol-3-yl)-2-(thien-2-ylcarbonyl)acrylonitrile (5*e*). Orange solid; Yield: 40%; mp: 206-207 °C; IR (KBr, v_{max} cm⁻¹): 3232 (NH), 2206 (CN), 1587 (CO), 1561 (C=C); ¹H NMR (200 MHz, DMSO-*d*₆): δ 7.27-7.42 (m, 3H, Ar-H), 7.58-7.66 (m, 6H, Ar-H), 8.06-8.29 (m, 3H, Ar-H), 8.40 (s, 1H, CH=C), 13.02 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO-*d*₆): δ 100.83, 108.46, 112.34, 119.08, 121.48, 122.61, 123.66, 124.40, 128.28, 128.67, 129.38, 129.79, 130.38, 135.02, 136.89, 141.68, 149.16, 150.51, 178.99; Anal. Calcd for C₂₂H₁₄N₂OS: C, 74.55; H, 3.98; N, 7.90; S, 9.05; Found: C, 74.64; H, 4.34; N, 7.90; S, 8.88.

4.1.1.19. Ethyl (2E)-2-cyano-3-(2-phenyl-1H-indol-3-yl)acrylate (5f) [29].

4.1.1.20. 2-Methoxyethyl (2E)-2-cyano-3-(2-phenyl-1H-indol-3-yl)acrylate (5g). Yellow solid; Yield: 89%; mp: 198-200 °C; IR (KBr, v_{max} cm⁻¹): 3445 (NH), 2218 (CN), 1716 (CO), 1577 (C=C); ¹H NMR (200 MHz, DMSO-d₆): δ 3.28 (s, 3H, CH₃), 3.58-3.63 (m, 2H, CH₂), 4.32-4.37 (m, 2H, CH₂), 7.30-7.39 (m, 2H, Ar-H), 7.56-7.64 (m, 6H, Ar-H), 8.21-8.25 (m, 1H, indole H-4), 8.30 (s, 1H, CH=C), 12.94 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO-d₆): δ 57.82, 64.31, 69.30, 93.77, 107.57, 112.28, 117.31, 121.38, 122.20, 123.53, 124.44, 128.64, 129.38, 129.74, 136.78, 148.45, 149.47, 163.43; Anal. Calcd for C₂₁H₁₈N₂O₃: C, 72.82; H, 5.24; N, 8.09; Found: C, 72.95; H, 5.54; N, 8.03.

4.1.1.21. (2E)-2-Cyano-3-(2-phenyl-1H-indol-3-yl)acrylamide (5h) [29].

4.1.1.22. (2E)-3-(2-Phenyl-1H-indol-3-yl)-2-(piperidin-1-ylcarbonyl)acrylonitrile (5i) [29].

4.1.1.23. (E)-N-(4-Chlorophenyl)-2-cyano-3-(2-phenyl-1H-indol-3-yl)prop-2-enamide (5j) [29].

4.1.1.24. Diisopropyl (E)-1-cyano-2-(2-phenyl-1H-indol-3-yl)vinylphosphonate (5k) [29].

4.1.1.25. (2E)-2-(Methylsulfonyl)-3-(2-phenyl-1H-indol-3-yl)acrylonitrile (5l) [29].

4.1.1.26. (2E)-3-(2-Phenyl-1H-indol-3-yl)-2-(phenylsulfonyl)acrylonitrile (5m) [29].

4.1.1.27. (*E*)-3-(2-Phenyl-1H-indol-3-yl)-2-(*p*-tolylsulfonyl)prop-2-enenitrile (**5n**). Orange solid; Yield: 72%; mp: 234-235 °C; IR (KBr, υ_{max} cm⁻¹): 3262 (NH), 2209 (CN), 1566 (C=C), 1327 (SO₂), 1150 (SO₂); ¹H NMR (200 MHz, DMSO-*d*₆): δ 2.44 (s, 3H, CH₃), 7.29-7.37 (m, 2H, Ar-H), 7.51-7.71 (m, 8H, Ar-H), 7.82-7.86 (m, 2H, Ar-H), 8.05 (s, 1H, CH=C), 8.11-8.16 (m, 1H, indole H-4), 13.09 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO- d_6): δ 20.74, 104.10, 106.48, 112.58, 115.28, 121.65, 121.93, 123.91, 124.32, 127.03, 128.78, 128.95, 129.82, 130.04, 130.11, 136.17, 136.89, 144.67, 146.14, 149.95; Anal. Calcd for C₂₄H₁₈N₂O₂S: C, 72.34; H, 4.55; N, 7.03; S, 8.05; Found: C, 72.39; H, 4.68; N, 7.02; S, 7.84.

4.1.1.28. 3-[(2-Phenyl-1H-indol-3-yl)methylene]pentane-2,4-dione (50) [29].

4.1.1.29. (3*E*)-3-(*Methylsulfonyl*)-4-(2-*phenyl*-1*H*-*indol*-3-*yl*)*but*-3-*en*-2-*one* (**5***p*). Orange solid; Yield: 48%; mp: 229-230 °C; IR (KBr, v_{max} cm⁻¹): 3248 (NH), 1666 (CO), 1579 (C=C), 1346 (SO₂), 1131 (SO₂); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.17 (s, 3H, CH₃), 3.25 (s, 3H, CH₃), 7.12-7.32 (m, 4H, Ar-H), 7.51-7.63 (m, 5H, Ar-H), 8.01 (s, 1H, CH=C), 12.58 (br s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 30.85, 44.21, 105.70, 112.63, 118.96, 121.55, 123.31, 126.18, 129.01, 129.01, 129.49, 129.49, 129.59, 130.13, 135.19, 136.77, 139.24, 144.12, 198.87; ³*J*_{C,H} = 9.9 Hz (CO); Anal. Calcd for C₁₉H₁₇NO₃S: C, 67.24; H, 5.05; N, 4.13; S, 9.45; Found: C, 67.34; H, 5.24; N, 3.77; S, 9.10.

4.1.1.30. (3*E*)-4-(2-Phenyl-1*H*-indol-3-yl)-3-(phenylsulfonyl)but-3-en-2-one (**5***q*). Yellow solid; Yield: 4%; mp: 172-173 °C; IR (KBr, v_{max} cm⁻¹): 3257 (NH), 1672 (CO), 1568 (C=C), 1347 (SO₂), 1137 (SO₂); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.13 (s, 3H, CH₃), 7.07-7.18 (m, 2H, Ar-H), 7.24-7.29 (m, 1H, Ar-H), 7.53-7.74 (m, 9H, Ar-H), 7.89-7.92 (m, 2H, Ar-H), 8.23 (s, 1H, CH=C), 12.61 (br s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 30.86, 106.19, 112.66, 118.98, 121.64, 123.35, 125.99, 127.46, 127.46, 129.02, 129.02, 129.22, 129.22, 129.59, 129.59, 129.67, 130.10, 133.19, 134.71, 136.83, 139.97, 141.49, 144.74, 197.38; ³*J*_{C,H} = 9.6 Hz (CO); Anal. Calcd for C₂₄H₁₉NO₃S: C, 71.80; H, 4.77; N, 3.49; S, 7.99; Found: C, 71.76; H, 4.48; N, 3.49; S, 7.63.

4.1.1.31. (*E*)-3-(4-Chlorophenyl)sulfonyl-4-(2-phenyl-1H-indol-3-yl)but-3-en-2-one (**5***r*). Yellow solid; Yield: 12%; mp: 173-174 °C; IR (KBr, v_{max} cm⁻¹): 3261 (NH), 1666 (CO), 1576 (C=C), 1346 (SO₂), 1133 (SO₂); ¹H NMR (200 MHz, DMSO-*d*₆): δ 2.14 (s, 3H, CH₃), 7.09-7.32 (m, 3H, Ar-H), 7.53-7.72 (m, 8H, Ar-H), 7.71-7.94 (m, 2H, Ar-H), 8.25 (s, 1H, CH=C), 12.69 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO-*d*₆): δ 30.53, 105.85, 112.39, 118.60, 121.44, 123.12, 125.65, 128.71, 129.04, 129.18, 129.33, 129.44, 129.68, 133.65, 136.50, 137.89, 140.10, 140.23, 144.74, 197.15; Anal. Calcd for C₂₄H₁₈ClNO₃S: C, 66.13; H, 4.16; N, 3.21; S, 7.36; Found: C, 66.06; H, 4.23; N, 3.18; S, 7.52.

4.1.1.32. (2Z)-1-Phenyl-2-[(2-phenyl-1H-indol-3-yl)methylene]butane-1,3-dione (5s) [29].

4.1.1.33. 1,3-Diphenyl-2-[(2-phenyl-1H-indol-3-yl)methylene]propane-1,3-dione (5t) [30]. Yellow solid; Yield: 14%; mp: 223-224 °C; IR (KBr, v_{max} cm⁻¹): 3228 (NH), 1661 (CO), 1563 (C=C); ¹H NMR (200 MHz, DMSO-d₆): δ 6.88-6.96 (m, 1H, Ar-H), 7,10-7.24 (m, 2H, Ar-H), 7.38-7.50 (m, 12H, Ar-H), 7.76-7.78 (m, 3H, Ar-H), 7.92-7.96 (m, 2H, Ar-H and CH=C), 12.32 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO-d₆): δ 107.75, 111.72, 120.29, 120.37, 122.50, 124.91, 128.11, 128.28, 128.42, 128.48, 128.81, 129.09, 130.12, 131.52, 132.94, 133.25, 136.33, 137.06, 137.79, 141.11, 143.82, 194.88, 196.63; Anal. Calcd for C₃₀H₂₁NO₂: C, 84.29; H, 4.95; N, 3.28; Found: C, 84.01; H, 5.02; N, 3.20.

4.1.1.34. Ethyl (2E)-2-benzoyl-3-(2-phenyl-1H-indol-3-yl)acrylate (5u) [29].

4.1.1.35. (2*E*)-1-Phenyl-3-(2-phenyl-1H-indol-3-yl)-2-(phenylsulfonyl)prop-2-en-1-one (5v). Yellow solid; Yield: 17%; mp: 212-214 °C; IR (KBr, v_{max} cm⁻¹): 3325 (NH), 1655 (CO), 1575 (C=C), 1360 (SO₂), 1138 (SO₂); ¹H NMR (300 MHz, CDCl₃): δ 6.95-7.27 (m, 6H, Ar-H), 7.38-7.71 (m, 11H, Ar-H), 7.98-8.01 (m, 2H, Ar-H), 8.53 (s, 1H, CH=C), 8.59 (br s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 106.37, 112.11, 119.55, 120.95, 123.00, 125.55, 127.64, 127.64, 128.39, 128.39, 128.88, 128.88, 129.04, 129.04, 129.22, 129.22, 129.58, 129.58, 130.10, 131.51, 133.25, 133.76, 136.43, 136.43, 136.94, 139.45, 141.44, 144.47, 192.89; ³J_{C,H} = 9.8 Hz (CO); Anal. Calcd for C₂₉H₂₁NO₃S: C, 75.14; H, 4.57; N, 3.02; S, 6.92; Found: C, 74.82; H, 4.98; N, 2.93; S, 6.60.

4.1.1.36. Ethyl (E)-2-(4-chlorobenzoyl)-3-(2-phenyl-1H-indol-3-yl)prop-2-enoate (5w). Yellow solid; Yield: 47%; mp: 154-156 °C; IR (KBr, v_{max} cm⁻¹): 3299 (NH), 1659 (CO), 1569 (C=C); ¹H NMR (200 MHz, DMSO-*d*₆): δ 1.07 (s, 3H, CH₃), 4.01-4.21 (m, 2H, CH₂), 6.87-6.95 (m, 1H, Ar-H), 7.05-7.17 (m, 2H, Ar-H), 7.37-7.70 (m, 8H, Ar-H), 7.85-7.90 (m, 2H, Ar-H), 8.08 (s, 1H, CH=C), 12.32 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO-*d*₆): δ 13.59, 60.20, 107.09, 111.76, 120.09, 120.29, 122.44, 123.81, 124.76, 128.49, 128.56, 128.92, 129.33, 130.20, 130.27, 135.82, 136.21, 136.55, 137.90, 138.64, 143.91, 165.25, 194.11; Anal. Calcd for C₂₆H₂₀ClNO₃: C, 72.64; H, 4.69; N, 3.26; Found: C, 72.43; H, 4.62; N, 3.27.

4.1.1.37. Ethyl (2E)-2-(4-nitrobenzoyl)-3-(2-phenyl-1H-indol-3-yl)acrylate (**5x**). Red solid; Yield: 22%; mp: 175-177 °C; IR (KBr, v_{max} cm⁻¹): 3298 (NH), 1678 (COOEt), 1656 (COAr), 1570 (C=C), 1523 (NO₂), 1346 (NO₂), 1238 and 1221 (COOEt); ¹H NMR (300 MHz, DMSO- d_6): δ 0.99 (t, J = 7.0 Hz, 3H, CH₃), 4.07 (q, J = 7.0 Hz, 2H, CH₂), 6.93-7.17 (m, 3H, Ar-H) 7.39 (d, J = 6.0 Hz. 1H, Ar-H), 7.53-7.59 (m, 5H, Ar-H), 7.97-8.03 (m, 3H, 2 Ar-H + CH=C), 8.24 (d, J = 8.6 Hz, 2H, Ar-H), 12.40 (br s, 1H, NH); Anal. Calcd for C₂₆H₂₀N₂O₅: C, 70.90; H, 4.58; N, 6.36; Found: C, 70.86; H, 4.91; N, 5.96.

4.1.1.38. (2*E*)-4,4,4-Trifluoro-1-(2-furyl)-2-[(2-phenyl-1*H*-indol-3-yl)methylene]butane-1,3-dione (**5**y). Yellow Solid; Yield: 10%; mp: 192-194°C; IR (KBr, v_{max} cm⁻¹): 3370 (NH), 1671 (COCF₃), 1633 cm⁻¹ (CO), 1556 (C=C); ¹H NMR (200 MHz, DMSO-*d*₆): δ 6.54-6.57 (m, 1H, furan H-4), 7.03-7.72 (m, 10H, Ar-H), 7.95 (s, 1H, furan H-5) 8.13 (s, 1H, CH=C), 12.87 (br s, 1H, NH); ¹³C NMR (50.3 MHz, DMSO-*d*₆): δ 40.95, 58.07, 110.50, 112.46, 115.45, 118.70, 122.12, 122.90, 126.98, 128.57, 128.92, 129.58, 130.72, 130.74, 132.58, 139.48, 147.17, 149.70, 150.55, 180.65, 180.80; Anal. Calcd for C₂₃H₁₄F₃NO₃: C, 67.48; H, 3.45; N, 3.42; Found: C, 67.18; H, 3.78; N, 3.49.

4.1.1.39. *Methyl* (2*E*)-2-(*methylsulfonyl*)-3-(2-*phenyl*-1*H*-*indol*-3-*yl*)*acrylate* (5*z*). Yellow solid; Yield: 43%; mp: 201-202 °C; IR (KBr, v_{max} cm⁻¹): 3247 (NH), 1693 (CO), 1578 (C=C), 1348 (SO₂), 1291 and 1248 (COOMe), 1138 (SO₂); ¹H NMR (300 MHz, DMSO-*d*₆): δ 3.29 (s, 3H, CH₃), 3.62 (s, 3H, CH₃) 7.18-7.23 (m, 3H, Ar-H), 7.48-7.58 (m, 6H, Ar-H), 7.95 (s, 1H, CH=C), 12.50 (br s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 43.58, 52.25, 106.09, 112.47, 119.61, 121.36, 123.15, 125.62, 126.58, 128.99, 128.99, 129.45,129.45, 129.57, 130.18, 136.73, 140.53, 145.04, 164.47; ³*J*_{C,H} = 11.0 Hz (CO); Anal. Calcd for C₁₉H₁₇NO₄S: C, 64.21; H, 4.82; N, 3.94; S, 9.02; Found: C, 64.15; H, 4.89; N, 3.89; S, 8.80.

4.1.1.40. Methyl (2E)-3-(2-phenyl-1H-indol-3-yl)-2-(phenylsulfonyl)acrylate (5aa) [29].

4.1.1.41. Ethyl (2Z)-2-acetyl-3-(2-phenyl-1H-indol-3-yl)acrylate (5ab) [29].

4.1.1.42. Diethyl [(2-phenyl-1H-indol-3-yl)methylene]malonate (5ac) [31]. Yellow solid; Yield: 13%; mp: 148-150 °C; IR (KBr, v_{max} cm⁻¹): 3262 (NH), 2980 (CH₂CH₃), 1722 (COOEt), 1599 (C=C), 1262 and 1242 (COOEt); ¹H NMR (300 MHz, DMSO- d_6): δ 1.09 (t, J = 7.0 Hz, 3H, CH₃), 1.23 (t, J = 7.0 Hz, 3H, CH₃), 4.09-4.24 (m, 4H, 2CH₂), 7.12-7.27 (m, 3H, Ar-H), 7.39-7.64 (m, 6H, Ar-H), 7.84 (s, 1H, CH=C), 12.32 (br s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO- d_6): δ 13.63, 14.05, 60.67, 60.72, 107.29, 112.17, 119.64, 120.43, 122.87, 125.65, 128.90, 129.17, 129.36, 130.70, 136.54, 138.40, 143.33, 164.85, 166.60; Anal. Calcd for C₂₂H₂₁NO₄: C, 72.71; H, 5.82; N, 3.85; Found: C, 72.79; H, 6.18; N, 3.90.

4.1.1.43. {[2-(4-Methoxyphenyl)-1H-indol-3-yl]methylene]malononitrile (6a) [29].

4.1.1.44. (2E)-3-[2-(4-Methoxyphenyl)-1H-indol-3-yl]-2-(phenylsulfonyl)acrylonitrile (6b) [29].

4.1.1.45. [(5-Methoxy-2-phenyl-1H-indol-3-yl)methylene]malononitrile (7a) [29].

4.1.1.46. (2E)-3-[(5-Methoxy-2-phenyl-1H-indol-3-yl)-2-(phenylsulfonyl)acrylonitrile (7b) [29].

4.1.1.47. {[5-Methoxy-2-(4-methoxyphenyl)-1H-indol-3-yl]methylene}malononitrile (8a) [29].

4.1.1.48. (2E)-3-[5-Methoxy-2-(4-methoxyphenyl)-1H-indol-3-yl]-2-(phenylsulfonyl)acrylonitrile (8b) [29].

4.1.2. General procedure for the preparation of *N*-alkylindoles 9 and 10.

A solution of **2d** (0.771, 2.5 mmol) or **2e** (0.798 g, 2.5 mmol) in dry DMF (5 mL) was added dropwise to a stirred suspension of sodium hydride (60% dispersion in mineral oil, 0.110 g, 2.75 mmol) in dry DMF (5 mL) at 0°C. After stirring at 0°C for 10 min and at rt for 20 min, the reaction mixture was cooled again to 0°C and a solution of the suitable ω -bromoacetophenone (2.5 mL) in dry DMF (2 mL) was added dropwise. After stirring at rt for 18 h, a saturated aqueous NH₄Cl solution (15 mL) was added. For **9a** and **9b**, the mixture was extracted with CH₂Cl₂ (3×20 mL); the combined extracts were washed with water (5×20 mL) and dried over anhydrous Na₂SO₄; after evaporation of the solvent, the crude product was purified by crystallization from ethanol. For **10a**, the precipitate obtained was filtered off, dried and crystallized from ethyl acetate.

4.1.2.1. (2*E*)-3-{1-[2-(3-Methoxyphenyl)-2-oxoethyl]-1*H*-indol-3-yl]-2-(phenylsulfonyl)acrylonitrile (**9***a*). Yellow solid; Yield: 34%; mp: 212-213 °C; IR (KBr, v_{max} cm⁻¹): 2206 (CN), 1688 (CO), 1571 (C=C), 1324 (SO₂), 1152 (SO₂); ¹H NMR (200 MHz, CDCl₃): δ 3.85 (s, 3H, OCH₃), 6.21 (s, 2H, CH₂), 7.33-7.37 (m, 3H, Ar-H), 7.55-7.85 (m, 7H, Ar-H), 8.03-8.08 (m, 3H, Ar-H), 8.63 (s, 1H, CH=C); ¹³C NMR (50.3 MHz, DMSO-*d*₆): δ 53.28, 55.10, 102.73, 108.33, 111.44, 112.47, 114.80, 118.68, 119.63, 120.28, 122.42, 123.63, 126.57, 127.09, 129.55, 129.72, 133.87, 135.35, 136.83, 137.11, 139.22, 144.07, 159.11, 192.41; Anal. Calcd for C₂₆H₂₀N₂O₄S: C, 68.41; H, 4.42; N, 6.14; S, 7.02; Found: C, 68.20; H, 4.65; N, 6.20; S, 6.89.

4.1.2.2. *Ethyl* (2*E*)-2-*Benzoyl-3-{1-[2-(3-methoxyphenyl)-2-oxoethyl]-1H-indol-3-yl}acrylate* (**9b**). Yellow solid; Yield: 22%; mp: 123-125 °C; IR (KBr, v_{max} cm⁻¹): 1700 (COOEt), 1692 (COAr), 1669 (COPh), 1582 (C=C); ¹H NMR (300 MHz, CDCl₃): δ 1.10 (t, *J* = 7.1 Hz, 3H, CH₃), 3.83 (s, 3H, OCH₃), 4.16 (q, *J* = 7.1 Hz, 2H, CH₂), 5.92 (s, 2H, NCH₂), 7.19-7.66 (m, 11H, Ar-H), 7.81-7.92 (m, 3H, Ar-H), 8.21 (s, 1H, CH=C); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 13.97,

52.95, 55.40, 60.45, 108.63, 110.96, 112.73, 118.16, 119.82, 120.50, 121.16, 122.75, 123.99, 127.38, 128.66, 128.87, 129.95, 133.00, 133.36, 133.76, 135.80, 136.12, 159.41, 164.95, 193.33, 196.05; Anal. Calcd for $C_{29}H_{25}NO_5$: C, 75.50; H, 5.39; N, 3.00; Found: C, 75.41; H, 5.71; N, 3.11.

4.1.2.3. (2*E*)-3-{1-[2-(1,1'-Biphenyl-4-yl)-2-oxoethyl]-1*H*-indol-3-yl}-2-(phenylsulfonyl)acrylonitrile (**10a**). Yellow solid; Yield: 32%; mp: 222-223 °C; IR (KBr, v_{max} cm⁻¹): 2212 (CN), 1701 (CO), 1574 (C=C), 1350 (SO₂), 1156 (SO₂); ¹H NMR (300 MHz, CDCl₃): δ 6.24 (s, 2H, CH₂), 7.31-7.82 and 7.92-8.18 (m, 19H, Ar-H), 8.62 (s, 1H, CH=C); ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ 53.55, 60.23, 103.01, 108.69, 111.84, 114.13, 115.16, 119.05, 122.79, 124.00, 126.93, 126.97, 127.03, 127.43, 128.57, 128.94, 129.12, 129.91, 133.19, 134.23, 137.52, 138.68, 139.60, 145.34, 192.45; Anal. Calcd for C₃₁H₂₂N₂O₃S: C, 74.08; H, 4.41; N, 5.57; S, 6.38; Found: C, 74.17; H, 4.62; N, 5.56; S, 6.01.

4.2. Biological studies

4.2.1 Cytotoxicity assays (MTT method).

Compounds were dissolved in DMSO at 100 mM and then diluted in culture medium. Cell lines were purchased from American Type Culture Collection (ATCC). Haematological tumour-derived cells were grown in RPMI-1640 medium supplemented with 10% fetal calf serum (FCS), 100 units/mL penicillin G and 100 µg/mL streptomycin. Solid tumourderived cells were grown in their specific media supplemented with 10% FCS and antibiotics. Cell cultures were incubated at 37 °C in a humidified 5% CO₂ atmosphere. The absence of mycoplasma contamination was checked periodically by the Hoechst staining method. Exponentially growing cells derived from human haematological tumours $[CD4^+$ human T-cells containing an integrated HTLV-1 genome (MT-4)] were seeded at an initial density of 1×10^5 cells/mL in 96 well plates in RPMI-1640 medium supplemented with 10% FCS, 100 units/mL penicillin G and 100 µg/mL streptomycin. Cell cultures were then incubated at 37 °C in a humidified 5% CO₂ atmosphere in the absence or presence of serial dilutions of test compounds. Cell viability was determined after 96 hrs at 37 °C by the by the 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method [37]. The compound concentrations resulting in 50% cell growth inhibition in comparison with untreated controls and expressed as EC_{50} values were determined by linear regression analysis. The most cytotoxic derivatives were also evaluated against a panel of cell lines derived from human haematological [CD4⁺ acute T-lymphoblastic leukaemia (CCRF-CEM); splenic B-lymphoblastoid cells (WIL-2NS) and acute B-lymphoblastic (CCRF-SB) and human solid tumours [skin melanoma (SKMEL-28); lung squamous carcinoma (SK-MES-1); prostate carcinoma (DU-145); hepatocellular carcinoma (Hep-G2) and breast adenocarcinoma (MCF-7)] and against normal tissues [lung fibroblasts (MRC-5) and foreskin fibroblasts (CRL-7065)]. Cell viability was determined after 96 hrs at 37 °C by the MTT method.

4.2.2. Evaluation of anticancer activity at NCI

The NCI high-flux anticancer drug screen [39-41] utilized a panel of 60 human tumor cell lines in culture derived from nine cancer types (lung, colon, CNS, ovarian, renal, prostate and breast cancer, leukemia and melanoma). The compound were tested at 10-fold dilutions of five concentrations ranging from 10^{-4} to 10^{-8} M. According to the NCI protocol, cell lines were exposed to test agents in 96-well plates for the last 48 of a 72 h incubation and a sulforhodamine B (SRB) protein assay was used to estimate cell viability or growth. For each compound, the drug concentration required to produce 50% (GI₅₀) and total (TGI) growth inhibition, and 50% cytocidal effect (LC₅₀) were

obtained for up to 60 cell lines. Values were calculated for each of these parameters if the level activity was reached; if the effect was not reached or was exceeded, the value is expressed as greater or lesser than the maximum or minimum concentration tested.

4.2.3. Evaluation of antiproliferative activity in HL-60, K562 and MCF-7 cells (Alamar blue method).

Antiproliferative of HL-60, K562 and MCF-7 was determined [cells from European Cell Culture Collection (Salisbury, UK). grown in RPMI 1640 (HL-60, K562) or DMEM (MCF-7) containing 10% foetal calf serum (FCS), 100 UI/mL penicillin G and 100 μ g/mL streptomycin]. Briefly, 200 μ L of 4x10⁴ (HL-60, K562) or 2x10⁴ (MCF-7) cells were added to each well of flat-bottomed microtiter trays and serial dilutions of test compounds. After a 3 day incubation at 3 7°C the number of viable cells was determined by the Alamar blue method. Alamar blue ($20 \,\mu$ L) was added to each well and plates were incubated at 37°C in the dark for 3 h. Plates were then read on a fluorescent plate reader (SpectraMax Gemini, Molecular Devices) with excitement and emission wavelengths of 544 nm and 590 nm respectively. The compound concentrations resulting in 50% cell growth inhibition in comparison with untreated controls and expressed as IC₅₀ values were determined by linear regression analysis.

4.2.4. Flow cytometry.

Following treatment with the desired compound/s, cells were harvested by centrifugation and resuspended in 100µL ice-cold phosphate buffered saline (PBS) and fixed in ice-cold 70% ethanol (1 mL) at 4°C. Samples were then centrifuged at 800xg for 10 mins and resuspended in 200 µL PBS containing 10µg/mL RNase A and 100 µg/mL propidium iodide. Samples were incubated for 30 min at 37 °C in the dark. Following sample preparation, cell cycle analysis was performed at 488 nm using a Becton Dickinson fluorescent activated cell sorting analysis (FACS) Calibur flow cytometer (Becton Dickinson, California, U.S). The Macintosh-based application CellQuest was then used to analyze the data of 10,000 gated cells once cell debris had been excluded. The data was stored as frequency histograms.

4.2.5. Immunofluorescence.

MCF-7 cells were grown and treated on chamber well slides. Cells were then fixed in 100% ice-cold methanol, washed in PBS-T (0.1% (v/v) Triton X-100 in PBS) and blocked for 30 min in 5% (w/v) BSA in PBS-T. Cells were then incubated with a mouse anti-tubulin antibody for 1 h, washed 3 times with PBS-T and incubated for a further 1 h in the secondary antibody Alexa 488. Cells were again washed 3 times in PBS-T, after which the DNA was stained with 0.2 μ g/mL propidium iodide in blocking buffer for 2 min. Slides were mounted with phenylene diamine (2 μ L/mL) in 50:50 PBS/glycerol. Projected images from a z-series of images were captured using the OLYMPUS 1X81 microscope coupled with Olympus Fluoview Ver 1.5 software. All images were collected on the same day using identical parameters.

4.2.6. Electrophoretic mobility assay.

The compound to be tested was dissolved in MetOH and incubated with a commercial double strand plasmid DNA vector (pQE-30, Qiagen) for 10 min at 37 °C. Gel loading buffer (0.04% bromophenol blue, 0.04% xylene cyanol, 10% sucrose) was added and the samples were run onto a 0.7% Agarose gel to separate the closed circular (CC) and supercolied (SC) forms. The gel was stained with EtBr to visualize the corresponding DNA bands.

Acknowledgments

ACCEPTED MANUSCRIPT

This work was financially supported by the University of Genova (PRA 2013) and MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca, PRIN # 20105YY2HL_004). The authors thank Mr. O. Gagliardo for the microanalyses, Mr. F. Tuberoni, Dr. M. Anzaldi and Dr. R. Raggio for the IR and NMR spectra. University of Genova is gratefully acknowledged for financially supporting C.C.

References and notes

- F.R. De Sá Alves, E.J. Barreiro, C.A. Fraga, From nature to drug discovery: the indole scaffold as a 'privileged structure', Mini Rev. Med. Chem. 9 (2009) 782-793.
- [2] S. Lal, T. J. Snape, 2-Arylindoles: a privileged molecular scaffold with potent, broad-ranging pharmacological activity, Curr. Med. Chem. 19 (2012) 4828-4837.
- [3] M.J. Thompson, V. Borsenberger, J.C. Louth, K.E. Judd, B. Chen, Design, synthesis, and structure–activity relationship of indole-3-glyoxylamide libraries possessing highly potent activity in a cell line model of prion disease, J. Med. Chem. 52 (2009) 7503-7511.
- B. López-Iglesias, C. Pérez, J.A. Morales-García, S. Alonso-Gil, A. Pérez-Castillo, A. Romero, M.G. López,
 M. Villarroya, S. Conde, M.I. Rodríguez-Franco, New melatonin-N,N-dibenzyl(N-methyl)amine hybrids: potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer's disease, J. Med. Chem. 57 (2014) 3773-3785.
- [5] L.C. Klein Jr., C.S. Passos, A.P. Moraes, V.G. Wakui, E.L. Konrath, A. Nurisso, P.A. Carrupt, C.M. de Oliveira, L. Kato, A.T. Henriques, Indole alkaloids and semisynthetic indole derivatives as multifunctional scaffolds aiming the inhibition of enzymes related to neurodegenerative diseases--a focus on Psychotria L. Genus, Curr. Top Med. Chem. 14 (2014) 1056-1075.
- [6] R. Chakrabarty, J. Rao, A. Anand, A.D. Roy, R. Roy, G. Shankar, P.R. Dua, A.K. Saxena, Rational design, synthesis and evaluation of (6aR*,11bS*)-1-(4-fluorophenyl)-4-{7-[4-(4-fluorophenyl)-4-oxobutyl]1,2,3,4,6,6a,7,11b,12,12a(RS)-decahydropyrazino[2',1':6,1]pyrido[3,4-b]indol-2-yl}-butan-1-one as a potential neuroleptic agent, Bioorg. Med. Chem. 15 (2007) 7361-7367.
- [7] M. Amir, K. Somakala, S. Ali, p38 MAP kinase inhibitors as anti inflammatory agents, Mini Rev. Med. Chem. 13 (2013) 2082-2096.
- [8] A.S. Guerra, D.J. Malta, L.P. Laranjeira, M.B. Maia, N.C. Colaço, M. do C. de Lima, S.L. Galdino, I. da R. Pitta, T. Gonçalves-Silva, Anti-inflammatory and antinociceptive activities of indole-imidazolidine derivatives, Int. Immunopharmacol. 11 (2011) 1816-1822.
- [9] M.-Z. Zhang, Q. Chen, G.-F. Yang, A review on recent developments of indole-containing antiviral agents, Eur. J. Med. Chem. 89 (2015) 421-441.
- [10] C. Karaaslan, H. Kadri, T. Coban, S. Suzen, A.D. Westwell, Synthesis and antioxidant properties of substituted 2-phenyl-1*H*-indoles, Bioorg. Med. Chem. Lett. 23 (2013) 2671-2674.
- [11] C. Passemar, M. Saléry, P.N. Soh, M.-D. Linas, A. Ahond, C. Poupat, F. Benoit-Vical, Indole and aminoimidazole moieties appear as key structural units in antiplasmodial molecules, Phytomedicine 18 (2011) 1118-1125.
- [12] Shaveta, P. Singh, Structural optimization of indole based compounds for highly promising anti-cancer activities: Structure activity relationship studies and identification of lead molecules, Eur. J. Med. Chem. 74 (2014) 440-450.
- [13] S.-H. Zhuang, Y.-C. Lin, L.-C. Chou, M.-H. Hsu, H.-Y. Lin, C.-H. Huang, J.-C. Lien, S.-C. Kuo, L.-J. Huang, Synthesis and anticancer activity of 2,4-disubstituted furo[3,2-b]indole derivatives, Eur. J. Med. Chem. 66 (2013) 466-479.
- [14] A.E. Shchekotikhin, V.A. Glazunova, L.G. Dezhenkova, Y.N. Luzikov, V.N. Buyanov, H.M. Treshalina, N.A. Lesnaya, V.I. Romanenko, D.N. Kaluzhny, J. Balzarini, K. Agama, Y. Pommier, A.A. Shtil, M.N.

Preobrazhenskaya, Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho[2,3f]indole-5,10-diones, Eur. J. Med. Chem. 86 (2014) 797-805.

- [15] J.-P. Liou, N. Mahindroo, C.-W. Chang, F.-M. Guo, S.W.-H. Lee, U.-K. Tan, T.-K. Yeh, C.-C. Kuo, Y.-W. Chang, P.-H. Lu, Y.-S. Tung, K.-T. Lin, J.-Y. Chang, H.-P. Hsieh, Structure-activity relationship studies of 3-aroylindoles as potent antimitotic agents, ChemMedChem. 1 (2006) 1106-1118.
- [16] G. La Regina, M.C. Edler, A. Brancale, S. Kandil, A. Coluccia, F. Piscitelli, E. Hamel, G. De Martino, R. Matesanz, J.F. Díaz, A.I. Scovassi, E. Prosperi, A. Lavecchia, E. Novellino, M. Artico, R. Silvestri, Arylthioindole inhibitors of tubulin polymerization. 3. Biological evaluation, structure-activity relationships and molecular modeling studies, J. Med. Chem. 50 (2007) 2865-2874.
- [17] S.N. Baytas, N. Inceler, A. Yilmaz, A. Olgac, S. Menevse, E. Banoglu, E. Hamel, R. Bortolozzi, G. Viola, Synthesis, biological evaluation and molecular docking studies of trans-indole-3-acrylamide derivatives, a new class of tubulin polymerization inhibitors, Bioorg. Med. Chem. 22 (2014) 3096-3104.
- [18] M.-J. Lai, H.-L. Huang, S.-L. Pan, Y.-M. Liu, C.-Y. Peng, H.-Y. Lee, T.-K. Yeh, P.-H. Huang, C.-M. Teng, C.-S. Chen, H.-Y. Chuang, J.-P. Liou, Synthesis and biological evaluation of 1-Arylsulfonyl-5-(*N*hydroxyacrylamide)indoles as potent histone deacetylase inhibitors with antitumor activity in vivo, J. Med. Chem. 55 (2012) 3777-3791.
- [19] A. Brancale, R. Silvestri, Indole, a core nucleus for potent inhibitors of tubulin polymerization, Med. Res. Rev. 27 (2006) 209-238.
- [20] S.A. Patil, R. Patil, D.D. Miller, Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents, Future Med. Chem. 16 (2012) 2085-2115.
- [21] W.A. Maltese, J.H. Overmeyer, Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments, Am. J. Pathol. 184 (2014) 1630-1642.
- [22] Y. Lv, Y. Guo, J. Xu, S. Shao, Simple indole-based colorimetric sensors with electron-withdrawing chromophores: Tuning selectivity in anion sensing, J. Fluorine Chem. 132 (2011) 973-977 and references therein.
- [23] A. Gazit, H. App, G. McMahon, J. Chen, A. Levitzki, F.D. Bohmer, Tyrphostins. 5. Potent inhibitors of Platelet-Derived Growth Factor Receptor tyrosine kinase: structure–activity relationships in quinoxalines, quinolines, and indole tyrphostins, J. Med. Chem. 39 (1996), 2170-2177.
- [24] (a) M. Matsuoka, M. Takao, T. Kitao, T. Fujiwara, K. Nakatsu, Cyanovinylheteroaromatics for organic nonlinear optics, Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 182 (1990) 71-79; (b) L. Zhengdong, W. Kechen, S. Genbo, H. Youping, Nonlinear optical properties of some derivatives of stilbene and vinyl cyanide, Opt. Mater. 20 (2002) 295-299.
- [25] T.A., Hill, C.P. Gordon, A.B. McGeachie, B. Venn-Brown, L.R. Odell, N. Chau, A. Quan, A. Mariana, J.A. Sakoff, M. Chircop, P.J. Robinson, A. McCluskey, Inhibition of Dynamin Mediated Endocytosis by the *Dynoles*—Synthesis and Functional Activity of a Family of Indoles, J. Med. Chem. 52 (2009) 3762–3773.
- [26] M. Pojarová, D. Kaufmann, R. Gastpar, T. Nishino, P. Reszka, P.J. Bednarski, E. von Angerer, [(2-Phenylindol-3-yl)methylene]propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in G₂/M phase and apoptosis, Bioorg. Med. Chem. 15 (2007) 7368-7379.
- [27] (a) B. Hansen, T. Hansen, S. Tullin, M. Colding-Jorgensen, Chemical uncouplers for the treatment of obesity, US Pat. Appl. (2004) US20040138301 A1. (b) L.B. Christiansen, T.K. Hansen, P.H. Olesen, T.M. Tagmose, Indole derivatives for use as chemical uncoupler, Int. Pat. Appl. (2005) WO2005051908 A1.

- [28] A. Ranise, S. Cesarini, A. Spallarossa, F. Sancassan, F. Bondavalli, O. Bruno, S. Schenone, G. Menozzi, P. Fossa, L. Mosti, Unprecedented one-pot stereoselective synthesis of Knoevenagel-type derivatives via in situ condensation of *N*-Methyleniminium Salts of Ethylenethiourea and Ethyleneurea with active methylene reagents, Synthesis 16 (2007) 2495-2502.
- [29] A. Ranise, F. Lucchesini, M. Caviglia, S. Alfei, A. Spallarossa, C. Caneva, Unconventional stereoselective one-pot synthesis of Knoevenagel-type indoles via in situ condensation of iminium salts with active methylene reagents, Tetrahedron 69 (2013) 10858-10868.
- [30] J. Liu, X. Wang, H. Guo, X. Shi, X. Ren, G. Huang, A novel NH₄OAc and CuBr(PPh₃)₃-induced intermolecular Pummerer-type reaction between free (NH)-indoles and dimethylsulfoxide: facile synthesis of 3-methylthiomethyl substituted indoles, Tetrahedron 68 (2012) 1560-1565.
- [31] C.H. Oh, H.S. Park, N. Park, S.Y. Kim, L. Piao, Scandium-Catalyzed Intramolecular Friedel-Crafts reactions of 2-[(2-Alkyl-1*H*-indol-3-yl)methylene]malonates, Synlett 25 (2014) 579-585.
- [32] Z. Shiokawa, K. Hashimoto, B. Saito, Y. Oguro, H. Sumi, M. Yabuki, M. Yoshimatsu, Y. Kosugi, Y. Debori, N. Morishita, D.R. Dougan, G.P. Snell, S. Yoshida, T. Ishikawa, Design, synthesis, and biological activities of novel hexahydropyrazino[1,2-*a*]indole derivatives as potent inhibitors of apoptosis (IAP) proteins antagonists with improved membrane permeability across MDR1 expressing cells, Bioorg. Med. Chem. 21 (2013) 7938-7954.
- [33] E. Pasquier, M. Kavallaris, Microtubules: a dynamic target in cancer therapy, IUBMB Life 60 (2008) 165-170.
- [34] Greene, L. M.; Campiani, G.; Lawler, M.; Williams, D. C.; Zisterer, D. M.; BubR1 is required for a sustained mitotic spindle checkpoint arrest in human cancer cells treated with tubulin-targeting pyrrolo-1,5benzoxazepines. Mol. Pharmacol. 73 (2008) 419-430
- [35] J.M. Mulligan, L.M. Greene, S. Cloonan, M.M. Mc Gee, V. Onnis, G. Campiani, C. Fattorusso, M. Lawler, D.C. Williams, D.M. Zisterer, Identification of tubulin as the molecular target of proapoptotic pyrrolo-1,5benzoxazepines, Mol. Pharmacol. 70 (2006) 60-70
- [36] McElligott, A. M.; Maginn, E. N.; Greene, L. M.; McGuckin, S.; Hayat, A.; Browne, P. V.; Butini, S.; Campiani, G.; Catherwood, M. A.; Vandenberghe, E.; Williams, D. C.; Zisterer, D. M.; Lawler, M.; The novel tubulin-targeting agent pyrrolo-1,5-benzoxazepine-15 induces apoptosis in poor prognostic subgroups of chronic lymphocytic leukemia. Cancer Res. 69 (2009) 8366-8375.
- [37] S, Mahboobi, E. Eichhorn, M. Winkler, A. Sellmer, U. Möllmann, Antibacterial activity of a novel series of 3bromo-4-(1*H*-3-indoly1)-2,5-dihydro-1*H*-2,5-pyrroledione derivatives - An extended structure–activity relationship study, Eur. J. Med. Chem. 43 (2008) 633-656.
- [38] R. Pauwels, J. Balzarini, M. Baba, R. Snoeck, D. Schols, P. Herdewijn, J. Desmyter, E. De Clercq, Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds, J. Virol. Methods 20 (1988) 309-321.
- [39] A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, M. Boyd, Feasibility of a High-Flux anticancer drug screen using a diverse panel of cultured human tumor cell lines, J. Natl. Cancer Inst. 83 (1991) 757-766.
- [40] M.R. Grever, S.A. Shepartz, B.A. Chabner, The National Cancer Institute: cancer drug discovery and development program, Semin. Oncol. 19 (1992) 622-638.
- [41] J.N. Weinstein, T.G. Myers, P.M. O'Connor, S.H. Friend, A. J. Fornace Jr., K.W. Kohn, T. Fojo, S.E. Bates,L.V. Rubinstein, N.L. Anderson, J.K. Buolamwini, W.W. van Osdol, A.P. Monks, D.A. Scudiero, E.A.

Sausville, D.W. Zaharevitz, B. Bunow, V.N. Viswanadhan, G.S. Johnson, R.E. Wittes, K.D. Paull, An Information-Intensive Approach to the Molecular Pharmacology of Cancer, Science 275 (1997) 343-349.

Highlights

- Synthesis of Knoevenagel-type indoles via one-pot procedure
- Selected compounds showed antiproliferative activities in cell-based assays
- Some derivatives caused apoptosis and partially depolymerised tubulin

Supplementary data

Unconventional Knoevenagel-type Indoles: Synthesis and Cell-based Studies for the Identification of Pro-apoptotic Agents

Andrea Spallarossa,^{*,a} Chiara Caneva,^a Matteo Caviglia,^a Silvana Alfei,^a Stefania Butini,^b Giuseppe Campiani,^b Sandra Gemma,^b Margherita Brindisi,^b Daniela M. Zisterer,^c Sandra A. Bright,^c Clive D. Williams,^c Emmanuele Crespan,^d Giovanni Maga,^d Giuseppina Sanna,^e Ilenia Delogu,^e Gabriella Collu,^e Roberta Loddo.^e

^aDipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy

^bEuropean Research Centre for Drug Discovery & Development, Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy

^cSchool of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland ^dInstitute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, 27100 Pavia (Italy).

^eDipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Cagliari, Cittadella Universitaria, s.p. 8, Km 0.700, I-09042 Monserrato (Cagliari), Italy

**Corresponding author:* Dr. Andrea Spallarossa Dipartimento di Farmacia Sezione di Chimica del Farmaco e del Prodotto Cosmetico Università degli Studi di Genova Viale Benedetto XV, 3 16132 - Genova, Italy phone: +39 010 353 8364; fax: +39 010 353 8358; e-mail: andrea.spallarossa@unige.it

Table of Contents

¹ H NMR (300 MHz, DMSO) of compound 2f	S3
¹ H NMR (300 MHz, DMSO) of compound 5 c	S3
¹ H NMR (200 MHz, DMSO) of compound 5d	S4
¹ H NMR (200 MHz, DMSO) of compound 5e	S4
¹ H NMR (200 MHz, DMSO) of compound 5 g	
¹ H NMR (200 MHz, DMSO) of compound 5n	
¹ H NMR (300 MHz, DMSO) of compound 5p	S6
¹ H NMR (300 MHz, DMSO) of compound 5q	
¹ H NMR (200 MHz, DMSO) of compound 5r	
¹ H NMR (200 MHz, DMSO) of compound 5t	
¹ H NMR (300 MHz, DMSO) of compound 5 v	
¹ H NMR (200 MHz, DMSO) of compound 5 w	
¹ H NMR (300 MHz, DMSO) of compound 5 x	
¹ H NMR (200 MHz, DMSO) of compound 5 y	
¹ H NMR (300 MHz, DMSO) of compound 5z	
¹ H NMR (300 MHz, DMSO) of compound 5ac	
¹ H NMR (200 MHz, DMSO) of compound 9a	
¹ H NMR (300 MHz, DMSO) of compound 9b	
¹ H NMR (300 MHz, DMSO) of compound 10a	
Table S1	
Figure S1	

¹H NMR (300 MHz, DMSO) of compound 2f.

¹H NMR (200 MHz, DMSO) of compound 5d.

S4

¹H NMR (300 MHz, DMSO) of compound 5p.

¹H NMR (200 MHz, DMSO) of compound 5r.

S7

¹H NMR (300 MHz, DMSO) of compound 5x.

¹H NMR (300 MHz, DMSO) of compound 5z.

S10

¹H NMR (200 MHz, DMSO) of compound 9a.

¹H NMR (300 MHz, DMSO) of compound 10a.

Table. S1 Raw flow cytometry data of a representative cell line, HL-60. **5e** (1577), **5l** (1575), **5p** (1578), **6a** (1579), **6b** (1576); Gates: M5 (Pre-G1), M6 (G1), M7 (S), M8 (G2/M), M10 (Polyploidy cells).

M5 (0.0 / 368,760.0)	7.65%	M5 (0.0 / 357,583.0)	6.35%	M5 (0.0 / 363,147.0)	4.79%
M7 (365,536.0 / 510,627.0)	53.99%	M7 (357,501.0 / 598,126.0)	57.59%	M7 (362,827.0 / 556,486.0)	49.55%
M8 (508,479.0 / 688,797.0)	15.41%	M8 (599,335.0 / 811,252.0)	19.04%	M8 (553,312.0 / 764,141.0)	20.90%
M9 (688,798.0 / 949,604.0)	22.38%	M9 (811,089.0 / 1,079,378.0)	14.48%	M9 (760,833.0 / 1,013,875.0)	22.31%
M10 (942,917.0 / 1,156,912.0)	0.35%	M10 (1,072,504.0 / 1,285,544.0)	1.13%	M10 (1,010,064.0 / 1,285,544.0)	1.51%
A04 HL60 2h 2.5uM 1577 Gate: intersection of ((Cel e e e e e e e e e e e e e e e e e e	Is in P1), (A04 HL60 2h 2.5uM 1577 nd Gate: intersection of ((Cells g g g g g g g g g g g g g g g g g g	5,003	A04 HL60 2h 2.5uM 1577 n Gate: intersection of ((Cells Gate: intersection of (Cells 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o.3 in P1), (
Plot 4: A04 HL60 2h 2.5uM 1577: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: A04 HL60 2h 2.5uM 1577 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: A04 HL60 2h 2.5uM 1577 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot
This Plot	100.00%	This Plot	100.00%	This Plot	100.00%
M5 (0.0 / 368,760.0)	4.68%	M5 (0.0 / 357,583.0)	5.45%	M5 (0.0 / 363,147.0)	7.02%
M7 (365,536.0 / 510,627.0)	54.38%	M7 (357,501.0 / 598,126.0)	56.17%	M7 (362,827.0 / 556,486.0)	53.68%
M8 (508,479.0 / 688,797.0)	15.91%	M8 (599,335.0 / 811,252.0)	18.59%	M8 (553,312.0 / 764,141.0)	20.46%
M9 (688,798.0 / 949,604.0)	23.51%	M9 (811,089.0 / 1,079,378.0)	16.84%	M9 (760,833.0 / 1,013,875.0)	18.69%
M10 (942,917.0 / 1,156,912.0)	1.00%	M10 (1,072,504.0 / 1,285,544.0)	1.27%	M10 (1,010,064.0 / 1,285,544.0)	0.51%
A05 HL60 2h 2.5uM 1578 Gate: intersection of ((Cel 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Is in P1), (A05 HL60 2h 2.5uM 1578 n Gate: intersection of ((Cells 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	o.2 in P1), (A05 HL60 2h 2.5uM 1578 Gate: intersection of ((Cell 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	no.3 Is in P1), (
Plot 4: A05 HL60 2h 2.5uM 1578: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: A05 HL60 2h 2.5uM 1578 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: A05 HL60 2h 2.5uM 1578 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot
This Plot	100.00%	This Plot	100.00%	This Plot	100.00%
M5 (0.0 / 368,760.0)	5.90%	M5 (0.0 / 357,583.0)	3.37%	M5 (0.0 / 363,147.0)	5.71%
M7 (365,536.0 / 510,627.0)	60.08%	M7 (357,501.0 / 598,126.0)	56.06%	M7 (362,827.0 / 556,486.0)	53.20%
M8 (508,479.0 / 688,797.0)	14.66%	M8 (599,335.0 / 811,252.0)	18.99%	M8 (553,312.0 / 764,141.0)	19.59%
M9 (688,798.0 / 949,604.0)	17.59%	M9 (811,089.0 / 1,079,378.0)	18.37%	M9 (760,833.0 / 1,013,875.0)	18.22%
M10 (942,917.0 / 1,156,912.0)	1.22%	M10 (1,072,504.0 / 1,285,544.0)	1.87%	M10 (1,010,064.0 / 1,285,544.0)	2.01%
A06 HL60 2h 2.5uM 1579 Gate: intersection of ((Cel 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ls in P1), (,123,475	A06 HL60 2h 2.5uM 1579 n Gate: intersection of ((Cells 68 - 13.5% _ 5000618.7p617% 6 - 5000618.7p617% 6 - 5000618.7p617% 6 - 500000 1,1	0.2 E in P1), (66,003	A06 HL60 2h 2.5uM 1579 Gate: intersection of ((Cell g g g g g g g g g g g g g g g g g g	no.3 Is in P1), (
Plot 4: A06 HL60 2h 2.5uM 1579: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: A06 HL60 2h 2.5uM 1579 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: A06 HL60 2h 2.5uM 1579 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot
This Plot	100.00%	This Plot	100.00%	This Plot	100.00%
M5 (0.0 / 368,760.0)	6.10%	M5 (0.0 / 357,583.0)	3.53%	M5 (0.0 / 363,147.0)	8.87%
M7 (365,536.0 / 510,627.0)	55.76%	M7 (357,501.0 / 598,126.0)	49.97%	M7 (362,827.0 / 556,486.0)	51.42%

M8 (508,479.0 / 688,797.0)	15.79%	M8 (599,335.0 / 811,252.0)	18.67%	M8 (553,312.0 / 764,141.0)	18.97%
M9 (688,798.0 / 949,604.0)	21.65%	M9 (811,089.0 / 1,079,378.0)	26.71%	M9 (760,833.0 / 1,013,875.0)	20.32%
M10 (942,917.0 / 1,156,912.0)	0.53%	M10 (1,072,504.0 / 1,285,544.0)	1.11%	M10 (1,010,064.0 / 1,285,544.0)	0.58%
B01 HL60 4h vehicle Gate: intersection of ((Cell B B B B B C B B C B B C B C B C B C B	s in P1), (B01 HL60 4h vehicle no.2 Gate: intersection of ((Cells	in P1), (is.003	B01 HL60 4h vehicle no.3 Gate: intersection of ((Cells i 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	n P1), (.197
Plot 4: B01 HL60 4h vehicle: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: B01 HL60 4h vehicle no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: B01 HL60 4h vehicle no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot
This Plot	100.00%	This Plot	100.00%	This Plot	100.00%
M5 (0.0 / 368,760.0)	4.42%	M5 (0.0 / 357,583.0)	5.93%	M5 (0.0 / 363,147.0)	5.41%
M7 (365,536.0 / 510,627.0)	53.46%	M7 (357,501.0 / 598,126.0)	50.48%	M7 (362,827.0 / 556,486.0)	43.03%
M8 (508,479.0 / 688,797.0)	15.68%	M8 (599,335.0 / 811,252.0)	22.46%	M8 (553,312.0 / 764,141.0)	22.02%
M9 (688,798.0 / 949,604.0)	23.89%	M9 (811,089.0 / 1,079,378.0)	16.15%	M9 (760,833.0 / 1,013,875.0)	22.04%
M10 (942,917.0 / 1,156,912.0)	1.73%	M10 (1,072,504.0 / 1,285,544.0)	2.74%	M10 (1,010,064.0 / 1,285,544.0)	3.92%
B02 HL60 4h 2.5uM 1575 Gate: intersection of ((Cel	ls in P1), (B02 HL60 4h 2.5uM 1575 n Gate: intersection of ((Cells	o.2 in P1), (B02 HL60 4h 2.5uM 1575 n Gate: intersection of ((Cells 8 9 10 9 9 14.6%	o.3 in P1), (-
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot	% of This Plot 100.00%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot	% of This Plot 100.00%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot	% of This Plot 100.00%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0)	% of This Plot 100.00% 5.35%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0)	% of This Plot 100.00% 3.96%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0)	% of This Plot 100.00% 4.64%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0)	% of This Plot 100.00% 5.35% 54.37%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0)	% of This Plot 100.00% 3.96% 47.72%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0)	% of This Plot 100.00% 4.64% 39.48%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0)	% of This Plot 100.00% 5.35% 54.37% 15.01%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0)	% of This Plot 100.00% 3.96% 47.72% 21.59%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0)	% of This Plot 100.00% 4.64% 39.48% 23.47%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0)	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0)	% of This Plot 100.00% 3.96% 47.72% 21.59% 22.25%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0)	% of This Plot 100.00% 4.64% 39.48% 23.47% 21.47%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0)	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0)	% of This Plot 100.00% 3.96% 47.72% 21.59% 22.25% 2.22%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0)	% of This Plot 100.00% 4.64% 39.48% 23.47% 21.47% 5.75%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell B03 HL60 4h 2.5uM 1576) Gate: intersection of ((Cell B03 HL60 4h 2.5uM 1576)) Gate: intersection of ((Cell B03 HL60 4h 2.5uM 1	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70% Is in P1), (Is in P1), (Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 n Gate: intersection of ((Cells Gate: intersection of ((Cells	% of This Plot 100.00% 3.96% 47.72% 21.59% 2.25% 2.22% 0.2 in P1), (Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g - 5.4% - 3.5%	% of This Plot 100.00% 4.64% 39.48% 23.47% 5.75% no.3 is in P1), (
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g - 5.5% - 1.5% - 1.5% - 5.5% - 5.5\% - 5.	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70% Is in P1), (Is in P1), (,123,475 % of This Plot	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 ni Gate: intersection of ((Cells Gate: intersection of ((Cells Gate: intersection of ((Cells in P1), (Singlets in (Cells in all)))	% of This Plot 100.00% 3.96% 47.72% 21.59% 22.25% 2.22% 0.2 in P1), (0.2 in P1), (55.003	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g - 5,4% - 3,4% -	% of This Plot 100.00% 4.64% 39.48% 23.47% 5.75% no.3 s in P1), (153,197 % of This Plot
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g - 5.5% - 1.5% - 1.5% - 5% - 1.5% - 5% - 1.5% - 5% - 1.5% - 1.5% - 5% - 1.5% - 5% - 1.5% - 5% - 5% - 5% - 5% - 5% - 5% - 5% -	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70% 1s in P1), (1s in P1), (123,475 % of This Plot 100.00%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 no Gate: intersection of ((Cells B03 HL60 4h 2.5uM 1576 no Gate: intersection of ((Cells B03 HL60 4h 2.5uM 1576 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot	% of This Plot 100.00% 3.96% 47.72% 21.59% 22.25% 2.22% 0.2 in P1), (0.2 in P1), (0.3 in P1), (0.3 in P1), (0.4 in P1), (0.	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0) E03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell 9 - 500,000 FL2-A 1 Plot 4: B03 HL60 4h 2.5uM 1576 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot	% of This Plot 100.00% 4.64% 39.48% 23.47% 5.75% no.3 s in P1), (153,197 % of This Plot 100.00%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0) M10 (942,917.0 / 1,156,912.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell Gate: intersection of ((Cell Gate: intersection of ((Cell B03 HL60 4h 2.5uM 1576: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0)	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70% Is in P1), (Is in P1), (.123,475 % of This Plot 100.00% 5.46%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0) M10 (1,072,504.0 / 1,285,544.0) g = B03 HL60 4h 2.5uM 1576 no.Gate: intersection of ((Cellsg =	% of This Plot 100.00% 3.96% 47.72% 21.59% 22.25% 2.22% 0.2 in P1), (0.2 in P1), (0.5,003 % of This Plot 100.00% 3.74%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g - 56,4% - 36,486,10) B03 HL60 4h 2.5uM 1576 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0)	% of This Plot 100.00% 4.64% 39.48% 23.47% 21.47% 5.75% no.3 s in P1), (153,197 % of This Plot 100.00% 5.44%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g =	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70% 1s in P1), (1s in P1), (1s in P1), (1s in P1), (100.00% 5.46% 5.3.65%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0) M10 (1,072,504.0 / 1,285,544.0) g = 0 g =	% of This Plot 100.00% 3.96% 47.72% 21.59% 2.22% 2.22% 0.2 in P1), (0.2 in P1), (0.3 in P1), (100.00% 3.74% 43.34%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g - 54.9% - 34.400 + 1576) Source - 556,486.0) Plot 4: B03 HL60 4h 2.5uM 1576 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0)	% of This Plot 100.00% 4.64% 39.48% 23.47% 5.75% 5.75% no.3 is in P1), (153,197 % of This Plot 100.00% 5.44% 39.26%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell Gate: intersection of ((Cell Gate: intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0)	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70% Is in P1), (Is in P1), (Is in P1), (Sin P1), (SinP	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 n. Gate: intersection of ((Cells B03 HL60 4h 2.5uM 1576 n. Gate: intersection of ((Cells B03 HL60 4h 2.5uM 1576 n. Eact intersection of ((Cells B03 HL60 4h 2.5uM 1576 n. Solo 000 1,15 Solo 000 1,15 Solo 000 1,15 Solo 000 1,15 Solo 000 1,15 M8 (599,335.0 / 811,252.0) M8 (599,335.0 / 811,252.0)	% of This Plot 100.00% 3.96% 47.72% 21.59% 22.25% 2.22% 0.2 in P1), (0.2 in P1), (0.3 in P1), (100.00% 3.74% 43.34% 22.45%	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g = 0 500,000 FL2-A Plot 4: B03 HL60 4h 2.5uM 1576 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0)	% of This Plot 100.00% 4.64% 39.48% 23.47% 5.75% 5.75% 10.3 s in P1), (101.00% 5.44% 39.26% 20.06%
Plot 4: B02 HL60 4h 2.5uM 1575: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0) M10 (942,917.0 / 1,156,912.0) B03 HL60 4h 2.5uM 1576: Gate: intersection of ((Cell B03 HL60 4h 2.5uM 1576: Gate: intersection of ((Cell B03 HL60 4h 2.5uM 1576: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 368,760.0) M7 (365,536.0 / 510,627.0) M8 (508,479.0 / 688,797.0) M9 (688,798.0 / 949,604.0)	% of This Plot 100.00% 5.35% 54.37% 15.01% 24.07% 0.70% 15 in P1), (15 in P1), (15 in P1), (100.00% 5.46% 53.65% 16.54% 24.06%	Plot 4: B02 HL60 4h 2.5uM 1575 no.2: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0) M10 (1,072,504.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 no Gate: intersection of ((Cells Gate: intersection of ((Cells in P1), (Singlets in (Cells in all)))) This Plot M5 (0.0 / 357,583.0) M7 (357,501.0 / 598,126.0) M8 (599,335.0 / 811,252.0) M9 (811,089.0 / 1,079,378.0)	% of This Plot 100.00% 3.96% 47.72% 21.59% 22.25% 2.22% 0.2 in P1), (0.2 in P1), (0.3 in P1), (0.4 in P1), (0.	Plot 4: B02 HL60 4h 2.5uM 1575 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0) M10 (1,010,064.0 / 1,285,544.0) B03 HL60 4h 2.5uM 1576 Gate: intersection of ((Cell g - 500,000 FL2-A Plot 4: B03 HL60 4h 2.5uM 1576 no.3: Gated on intersection of ((Cells in P1), (Singlets in (Cells in all))) This Plot M5 (0.0 / 363,147.0) M7 (362,827.0 / 556,486.0) M8 (553,312.0 / 764,141.0) M9 (760,833.0 / 1,013,875.0)	% of This Plot 100.00% 4.64% 39.48% 23.47% 21.47% 5.75% no.3 s in P1), (5.75% no.3 s in P1), (7 100.00% 5.44% 39.26% 20.06% 24.93%

S21

Figure S1. Increasing amounts of the inhibitor **51** were incubated with plasmid DNA (pQE-30) at reltive ratios (M/M) of inhibitor to plasmid of 1250/1 (lane 1), 12500 (lane 2) and 125000 (lane 3). Lane 4, control reaction in the absence of inhibitor. MWM, molecuar weight markers. CC, closed circular; SC, supercoiled.