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Synthesis of 8-D-Xyl-(I—2)-8-D-Man-(1—4)-«-D-Glc-OMe (1), a tr- Received 8 August 2017
isaccharide oligomer of the Hyriopsis schlegelii glycosphingolipid Revised 1 September 2017
is described. The synthesis involves a key B-mannosylation via Accepted 6 October 2017
cesium carbonate-mediated anomeric O-alkylation for direct syn- KEYWORDS

thesis of partially protected disaccharide g-D-Man-(1—4)-a-D- B-mannosylation; lactol;
Glc-OMe (4) bearing a free C,—OH in the mannose moiety. In addi- anomeric O-alkylation;
tion, a silver triflate-promoted glycosylation of 4 with 2,3,4-tri-O- glycosylation
benzoyl-a-D-xylopyranosyl bromide (5) followed by deprotection

affords the desired trisaccharide component (1) of the Hyriopsis

schlegelii glycosphingolipid.
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Introduction

Stereoselective construction of biologically significant f-mannopyranosides has
been a long-standing synthetic challenge in carbohydrate chemistry, due to steric
effect of the axial C,-substituents as well as the absence of anomeric effect and
anchimeric assistance (also known as neighbouring group participation (NGP)).[!
Consequently, tremendous efforts have been devoted to solving this difficulty for
the synthesis complex carbohydrates bearing -mannosidic linkage. Thus far, typ-
ical efforts include: 1) direct f-mannosylation using non-participating protecting
group!?) for O, and insoluble silver salts for activation of mannosyl halides;!?*4!
2) inversion of the C, stereochemistry of B-glucosides®! or stereoselective reduc-
tionof B-2-ulosyl glycosides;*! 3) de novo synthesis of B-mannopyranosides via a-
selective quenching of C1-alkoxy radicals by suitable hydrogen atom donors;'®! 4)
synthesis of 8-mannopyranosides involving intramolecular aglycone delivery;[®7#!
5) use of 4,6-O-benzylidene,”! 4,6-O-arylboronate,['”! or 4,6-O-silylene!!!! pro-
tected o-mannopyranosyl triflates; 6) use of hydrogen-bond-mediated aglycone
(121 7) use of glycosyl-
acceptor-derived borinic ester'*! or boronic ester!'*! as catalysts for activation of

delivery mediated by a remote 3- and/or 6-O-picoloyl group;

1,2-anhydromannose donors; 8) use of mannosyl donors bearing 2,6-[*! or 3,6-
lactone moieties;['®! 9) B-selective anomeric O-alkylation of mannose-derived lac-
tols!'”) or 1,2-O-dibutylstannylenes.!®!

Early in 2016, we reported an efficient S-mannosylation method involving
cesium carbonate-mediated anomeric O-alkylation of D-mannose-derived 1,2-diols
with primary or secondary electrophiles.!'’? This -mannosylation was developed
based on our previous experiences in the stereoselective synthesis of 2-deoxy-f-
glycosides!*! or 2-deoxy-a-glycosides!?” via anomeric O-alkylation. In particu-
lar, this easily operable B-mannosylation directly affords the desired f-mannosides
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Scheme 1. Previous synthesis of 8-D-Xyl-(I—2)-B-D-Man-(1—4)-a-D-Glc-OMe (1) and our strategy.
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Figure 1. The structure of 8-D-Xyl-(I—2)-8-D-Man-(1— 4)-«-D-Glc-OMe (1), a trisaccharide oligomer
of the Hyriopsis schlegelii Glycosphingolipid.

with a free C,-OH at the mannose residue (cf. 4, Scheme 1). The free C,-alcohol
can be directly subjected to the next chemical transformation, such as acylation
and glycosylation, without the necessity of additional deprotection steps. Recently,
this B-mannosylation was successfully employed in a highly efficient formal syn-
thesis of potent calcium signal modulator acremomannolipin A,!'74] in which the
free C,-OH of corresponding mannose residue was directly subjected to acylation.
In this Communication, we would like to demonstrate its application to the synthe-
sis of B-D-Xyl-(1—-2)-B-D-Man-(1—4)-a-D-Glc-OMe (1, Figure 1), a trisaccha-
ride oligomer of the Hyriopsis schlegelii glycosphingolipid. In this synthesis the free
C,-OH at the mannose residue of the disaccharide 4 is directly subjected to another
glycosylation with protected xylosyl bromide donor 5 to furnish the corresponding
trisaccharide (cf. 14).

The trisaccharide oligomer of the Hyriopsis schlegelii glycosphingolipid, B-
D-Xyl-(I->2)-8-D-Man-(1—4)-a-D-Glc-OMe  (1),2!)  has been previously
synthesized independently by two groups (Scheme 1). The first synthesis of 1
was reported by Lichtenthaler and co-workers in 1994.122) In their synthesis, ulosyl
bromide 2 reacted with acceptor 3 in the presence of excess silver aluminosilicate
promoter to afford the corresponsing -uloside (87% yield) which was subsequently
reduced by sodium borohydride to furnish f-mannoside 4 (81% yield overall for
two steps). This S-mannoside 4 was then subjected to glycosylation with xylosyl
bromide donor 523! followed by removal of the protecting group afforded desired
trisaccharide oligomer 1. A few years later, Crich and Dai disclosed the second
synthesis of trisaccharide 1 employing so-called “Crich B-mannosylation”?* As
shown in Scheme 1, 4,6-O-benzylidene-protected D-mannosyl sulfoxide donor 6
reacted with acceptor 3 in the presence of triflic anhydride/DTBMP to afford cor-
responding desired S-mannoside (8/a = 12/1, 87% yield) which was subjected to
a two-step de-allylation to give rise to the f-mannoside 7 (60% yield for two steps).
Similarly, glycosylation of f-mannoside 7 with xylosyl bromide donor 5 followed
by removal of the protecting group afforded desired trisaccharide oligomer 1. In
addition, Takeda and co-workers synthesized the protected form of 12°! and incor-
porated it into a more complex octasaccharide in the same glycosphingolipid.?!
Obviously, the Lichtenthaler approach required additional steps, i.e. oxidation of the
C,-alcohol of the glycosyl donor to the ketone (2-oxo) and reduction of the 2-oxo
to the C,-axial alcohol after glycosylation. It is worth noting that the sodium boro-
hydride reduction may result in lower diastereoselectivites.[?”! The Crich synthesis
required an additional two-step deprotection of the O-2 allyl protecting group in the
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Scheme 2. Concise Synthesis of B-D-Xyl-(I—2)-8-D-Man-(1—4)-a-D-Glc-OMe (1) involving
B-mannosylation via Cs,COs-mediated anomeric O-alkylation.

mannose moiety to free the C,-alcohol (¢f. 7) for subsequent glycosylation with
xylosyl bromide donor 5. In this report, we will describe the synthesis of trisac-
charide oligomer of the Hyriopsis schlegelii glycosphingolipid, 8-D-Xyl-(1—2)-8-
D-Man-(1—4)-a-D-Glc-OMe (1) in which the key intermediate f-mannoside 4
bearing a free C,~OH at the mannose moiety is directly prepared from known D-
mannose-derived lactol 8/2%) and methyl «-D-galactoside-derived axial Cy-triflate
9 via cesium carbonate-mediated anomeric O-alkylation (Scheme 1).

Results and Discussion

Our preparation of the known methyl «-D-galactoside-derived C,-axial tri-
flate 91%°) commenced with the 4,6-O-benzylidenation of commercially available
methyl «-D-galactoside 10. As depicted in Scheme 2, standard acid-catalyzed
4,6-O-benzylidenation of methyl «-D-galactoside 10 using benzaldehyde dimethyl
acetal in DMF afforded methyl 4,6-O-benzylidene-«a-D-galactoside 11 (65% yield)
and subsequently the 2,3-diol of 11 underwent double benzylation to furnish methyl
2,3-di-O-benzyl-4,6-O-benzylidene-a-D-galactoside 12 (82% yield). Regioselective
reductive opening of the 4,6-O-benzylidene of 12 using sodium cyanoborohydride
in the presence of acid provided methyl 2,3,6-tri-O-benzyl-«-D-galactoside 13
(81% vyield) bearing an axial free C4-alcohol. Next, this C4-alcohol in 13 under-
went standard triflation to give rise to axial C4-triflate 9 in 80% yield. Under our
previously reported optimal condition, cesium carbonate-mediated stereoselective
anomeric O-alkylation of known D-mannose-derived lactol 8 with Cy-triflate 9
afforded desired key intermediate B-mannoside 4 in 85% yield (B only) which
contains a free C,-alcohol ready for next glycosylation with xylosyl bromide
donor 5.
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Previously, Lichtenthaler and co-workers described that treatment of -
mannoside 4 (1 eq.) with xylosyl bromide donor 5 (1.5 eq.) in the presence of silver
triflate (ca. 2.0 eq.) in the absence of base at —40 °C for 30 minutes gave desired
trisaccharide 14 in 71% yield (experimental section).?2) However, in our hands
applying the exactly same reaction condition reported by Lichtenthaler et al??! to
B-mannoside 4 and xylosyl bromide donor 5 only afforded desired trisaccharide
14 in low conversion. We then turned our attention to the experimental proce-
dure reported by Crich et al for glycosylation of a similar substrate f-mannoside
7 with xylosyl bromide donor 5 in which a general bulky base 2,6-di-tert-butyl-
4-methylpyridine (DTBMP) was used./?**) Indeed, under the exactly same condi-
tion reported by Crich et al (4 (1 eq.), 5 (1.15 eq.), AgOTf (2.1 eq.), DTBMP (3.25
eq.), 4A molecular sieves), desired trisaccharide 14 was obtained in 43% yield (84%
based on recovered disaccharide 4). After extensive studies, finally we found out
that treatment of S-mannoside 4 (1 eq.) with xylosyl bromide donor 5 (3.5 eq.) in
the presence of silver triflate (4.0 eq.), DTBMP (5.0 eq.), and 4A molecular sieves
from -40 to 0°C gave desired trisaccharide 14 in 84% yield. Next, standard global
de-benzoylation of 14 followed by Pd/C-catalyzed global hydrogenolysis of remain-
ing benzyl groups produced the g-D-Xyl-(1—2)-8-D-Man-(1—4)-a-D-Glc-OMe
(1) in 81% yield over two steps.(??!

In conclusion, we have described a concise synthesis of §-D-Xyl-(1—2)-8-D-
Man-(1—4)-a-D-Glc-OMe (1), a trisaccharide oligomer of the Hyriopsis schlegelii
glycosphingolipid. The synthesis involves a key stereoselective f-mannosylation
via cesium carbonate-mediated anomeric O-alkylation for the preparation of par-
tially protected disaccharide f-D-Man-(1—4)-a-D-Glc-OMe (4). Application of
this Cs,CO3-mediated B-mannosylation to the synthesis of other biologically sig-
nificant oligosaccharides and glycoconjugates is in progress.

Experimental

Materials and methods

Proton and carbon nuclear magnetic resonance spectra (‘H NMR and '*C NMR)
were recorded on either Bruker 600 (‘H NMR-600 MHz; 1*C NMR 150) or INOVA
600 (‘"H NMR-600 MHz; *C NMR-150 MHz) at ambient temperature with CDCl;
as the solvent unless otherwise stated. Chemical shifts are reported in parts per mil-
lion relative to residual protic solvent internal standard CDCI3: 'H NMR at § 7.26,
13C NMR at § 77.36. Data for 'H NMR are reported as follows: chemical shift, inte-
gration, multiplicity (app = apparent, par obsc = partially obscure, ovrlp = overlap-
ping, s = singlet, d = doublet, dd = doublet of doublet, t = triplet, = quartet, m =
multiplet) and coupling constants in Hertz. All > C NMR spectra were recorded with
complete proton decoupling. Low resolution mass spectra (LRMS) were acquired
on a Waters Acuity Premiere XE TOF LC-MS by electrospray ionization. Optical
rotations were measured with Autopol-IV digital polarimeter; concentrations are
expressed as g/100 mL.



Downloaded by [Gothenburg University Library] at 11:56 17 November 2017

6 (&) B.R.BHETUWALETAL.

All reagents and chemicals were purchased from Acros Organics, Sigma Aldrich,
Fisher Scientific, Alfa Aesar, and Strem Chemicals and used without further purifi-
cation. THE methylene chloride, toluene, and diethyl ether were purified by passing
through two packed columns of neutral alumina (Innovative Technology). Anhy-
drous DMF and benzene were purchased from Acros Organics and Sigma-Aldrich
and used without further drying. All reactions were carried out in oven-dried glass-
ware under an argon atmosphere unless otherwise noted. Analytical thin layer chro-
matography was performed using 0.25 mm silica gel 60-F plates. Flash column chro-
matography was performed using 200-400 mesh silica gel (Scientific Absorbents,
Inc.). Yields refer to chromatographically and spectroscopically pure materials,
unless otherwise stated.

Methyl 3,4,6-tri-O-benzyl-B-D-mannopyranosyl-(1— 4)-2,3,6-tri-O-benzyl-«-D-glu-
copyranoside (4)

To a mixture of 3,4,6-tri-O-benzyl-D-mannopyranose 8 (45 mg, 0.1 mmol), D-
galactose-derived Cy-triflate 9 (119 mg, 0.2 mmol), and cesium carbonate (81.5 mg,
0.25 mmol), was added 1,2-dichloroethane (1.0 mL). The reaction mixture was
stirred at 40°C for 12 hours. The crude reaction mixture was diluted with
dichloromethane and purified by preparative thin layer chromatography (hexanes:
EtOAc: methanol = 2:1:1%) to furnish 77 mg (85% yield) of f-mannose 4. The §-
configuration of the mannosidic linkage in 4 was assigned by measuring the Jc n)
of anomeric carbon of the mannose moiety (159 Hz). [a]p?! = + 14.3° (c = 1.0,
CHCl;). 'THNMR (600 MHz, CDCl;) § 2.62 (br, s, 1 H), 3.27 - 3.31 (m, 2 H), 3.34 -
3.37 (m, 1 H), 3.40 - 3.42 (m, 5 H), 3.55 (dd, J = 9.4, 3.6 Hz, 2 H), 3.61 (d, ] = 4.6 Hz,
1 H), 3.63 (d, ] = 4.6 Hz, 1 H), 3.65 - 3.66 (m, 1 H), 3.67 - 3.69 (m, 1 H), 3.69 - 3.71
(m, 1H),3.79 (d, J = 3.3 Hz, 1 H), 3.80 - 3.84 (m, 2 H), 3.88 (t, = 9.5 Hz, 2 H), 3.96
~4.00 (m, 3 H), 4.04 (t, ] = 9.3 Hz, 2 H), 4.48 (s, 1 H) 4.49 - 4.51 (m, 5 H), 4.53 (d,
J = 6.1 Hz, 2 H), 4.55 (s, 1 H), 4.59 (d, ] = 11.9 Hz, 2 H), 4.62 — 4.65 (m, 4 H), 4.65
~ 468 (m, 2 H), 4.81 (d, ] = 12.1 Hz, 2 H), 4.88 (d, ] = 10.8 Hz, 1 H), 4.94 (d, ] =
11.0Hz,2H),5.02 (d,J=11.0 Hz,2 H), 7.21 - 7.24 (m, 3 H), 7.25 - 7.31 (m, 14 H),
7.31 - 7.37 (m, 30 H), 7.41 (d, ] = 7.3 Hz, 3 H). *C NMR (150 MHz, CDCl;):
& 55.27, 67.87, 68.73, 69.00, 69.57, 71.09, 73.44, 73.55, 73.95, 75.18, 75.59, 75.65,
75.77, 76.91, 77.12, 77.33, 79.55, 80.74, 81.57, 98.19, 99.98, 127.47, 127.67, 127.73,
127.77,127.79,127.82,127.89,127.96, 128.09, 128.14, 128.21, 128.30, 128.38, 128.46,
128.49, 128.52, 128.57, 137.86, 137.96, 138.12, 138.34, 138.42, 139.00. FT-IR (thin
flim): 3468, 3035, 2880, 1728, 1501, 1456, 1053, 751,695 cm™~'. ESILRMS [M+Na]*+
calculated Cs5HgyO;;Na 919.40, found 919.50.

Methyl 2,3,4-tri-O-benzoyl-B-D-xylopyranosyl-(1— 2)-3,4,6-tri-O-benzyl--D-mann-
opyranosyl-(1— 4)-2,3,6-tri-O-benzyl-a-D-glucopyranoside (14)

To B-mannoside acceptor 4 (90 mg, 0.1 mmol) in dry CH,Cl, (5 mL) were added
powdered molecular sieves (100 mg) and DTBMP (102 mg, 0.5 mmol). The reac-
tion mixture was cooled to -40°C and stirred for 0.5 h under argon. A solution of
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xylosyl bromide donor 5 (183 mg, 0.35 mmol) in CH,Cl, (2.3 mL) was added fol-
lowed by dropwise addition of AgOTf (103 mg, 0.4 mmol) in toluene (1.6 mL). The
reaction mixture was stirred at -40°C for 0.5 h and then warmed up to 0°C and
stirred for another 1 h before being filtered through a pad of celite. The combined
organic solutions were washed with 10% aq. Na,SO3 and brine, dried over anhy-
drous sodium sulfate, filtered, and concentrated. The residue was purified by silica
gel column chromatography (Toluene: EtOAc = 15:1) to afford 113 mg (84%) of
trisaccharide 14. [a]p?*' = —41.6" (c = 1.0, CHCl;). "H NMR (600 MHz, CDCl;) §
3.25-3.31 (m, 3H),3.32 (d, ] = 2.9 Hz, 1 H), 3.42 - 3.47 (m, 1 H), 3.54 - 3.58 (m,
1 H), 3.59 - 3.68 (m, 4 H), 3.70 - 3.76 (m, 2 H), 3.87 (t, J= 9.5 Hz, 1 H), 4.00 (t,
=9.3Hz,1H),4.11(d,J=29Hz,1H),4.15(d, = 12.1 Hz, 1 H), 4.36 — 4.42 (m,
3 H), 4.42 — 4.46 (m, 2 H), 4.54 - 4.60 (m, 3 H), 4.63 (d, ] = 12.1 Hz, 1 H), 4.70 -
4.74 (m, 2 H), 4.75 (d, ] = 2.8 Hz, 1 H), 4.81 (dd, ] = 13.0, 2.6 Hz, 1 H), 4.84 (s, 1 H),
5.14(d,J = 11.4 Hz, 1 H), 5.19 (q, ] = 3.1 Hz, 1 H), 5.43 (d, ] = 2.2 Hz, 1 H), 5.49 -
5.51 (m,1H),5.56 (t,]=4.0Hz,1H),7.12-7.16 (m, 3 H),7.18 (dd, ] = 7.3, 1.8 Hz,
2 H),7.19 - 7.22 (m, 2 H), 7.23 - 7.27 (m, 10 H), 7.29 - 7.30 (m, 4 H), 7.31 - 7.35
(m,10H),7.37 - 7.41 (m,5H), 7.48 - 7.52 (m, 2 H), 7.57 - 7.61 (m, 1 H), 7.98 - 8.01
(m, 2 H), 8.05 - 8.10 (m, 4 H). 3C NMR (151 MHz, CDCl;) § 55.28, 71.69, 73.34,
73.66, 74.98, 75.13, 75.27, 76.83, 77.05, 77.26, 80.01, 98.56, 126.81, 127.22, 127.56,
127.58,127.62,127.68,127.71,127.82,127.92,128.14,128.19, 128.22,128.33, 128.37,
128.39, 128.49, 128.57, 130.02, 130.08, 133.29, 133.31, 138.04, 138.74. FT-IR (thin
flim): 3056, 2915, 1721, 1452, 1252, 1093, 700 cm~!. ESILRMS [M+Na]™* calcu-
lated Cg;HgyO13Na, 1363.52 observed 1363.80.

Methyl B-D-xylopyranosyl-(1— 2)-3-D-mannopyranosyl-(1— 4)-a-D-glucopyrano-
side (1)

To trisaccharide 14 (17 mg, 0.012 mmol) in methanol (0.26 mL) was added a small
drop of sodium methoxide solution (ca. 3 nL, 5.4 M in methanol). The resulting
mixture was stirred at room temperature overnight and then neutralized by acidic
ion exchange resin (Dowex H* resin). The mixture was filtered and the filtrate was
concentrated. The residue was purified by silica gel column chromatography with
CH,Cl,: MeOH (20:1) to afford a syrup (11.1 mg) which was directly subjected to
hydrogenolysis over Pd/C (1 mg) in methanol (1 mL) for 24 h. Filtration and removal
of the solvent furnished 1 as a white solid (5 mg, 81% for two steps). [e]p?! =+ 19.3°
(c=0.15,H,0). '"HNMR (600 MHz, D,0) § ppm 3.14 (s, 1 H), 3.23 - 3.29 (m, 2 H),
3.30 (s, 3 H), 3.32 (d, ] = 9.2 Hz, 2 H), 3.46 (s, 1 H), 3.47 — 3.50 (m, 2H), 3.50 — 3.55
(m, 3 H), 3.66 (s, 3 H), 3.71 (s, 1 H), 3.74 (s, 1 H), 3.82 (s, 1 H), 4.13 (d, ] = 3.3 Hz,
1 H), 4.38 (d, ] = 7.7 Hz, 1 H), 4.69 (br, s, 1 H). *C NMR (151 MHz, D,0) § ppm
54.96, 55.09, 60.09, 60.42, 64.98, 66.80, 69.19, 70.05, 70.84, 71.56, 71.74, 73.17, 75.30,
76.36, 77.75, 78.73, 98.93, 100.11, 104.01, 128.49, 129.25, 189.71, 195.62, 204.99,
208.78, 210.50, 211.63. FT-IR (thin flim): 3227, 29256, 1728, 1382, 1156, 1038,
525 cm™!. ESILRMS [M + Na]*t Cs55HgO1;Na_Calculated 511.16, found 511.10.
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