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ABSTRACT
Synthesis of β-D-Xyl-(l→2)-β-D-Man-(1→4)-α-D-Glc-OMe (1), a tr-
isaccharide oligomer of the Hyriopsis schlegelii glycosphingolipid
is described. The synthesis involves a key β-mannosylation via
cesium carbonate-mediated anomericO-alkylation for direct syn-
thesis of partially protected disaccharide β-D-Man-(1→4)-α-D-
Glc-OMe (4) bearing a free C2–OH in themannosemoiety. In addi-
tion, a silver triflate-promoted glycosylation of 4 with 2,3,4-tri-O-
benzoyl-α-D-xylopyranosyl bromide (5) followedby deprotection
affords the desired trisaccharide component (1) of the Hyriopsis
schlegelii glycosphingolipid.
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2 B. R. BHETUWAL ET AL.

Introduction

Stereoselective construction of biologically significant β-mannopyranosides has
been a long-standing synthetic challenge in carbohydrate chemistry, due to steric
effect of the axial C2-substituents as well as the absence of anomeric effect and
anchimeric assistance (also known as neighbouring group participation (NGP)).[1]

Consequently, tremendous efforts have been devoted to solving this difficulty for
the synthesis complex carbohydrates bearing β-mannosidic linkage. Thus far, typ-
ical efforts include: 1) direct β-mannosylation using non-participating protecting
group[2] for O2 and insoluble silver salts for activation of mannosyl halides;[2a-d]

2) inversion of the C2 stereochemistry of β-glucosides[3] or stereoselective reduc-
tionof β-2-ulosyl glycosides;[4] 3) de novo synthesis of β-mannopyranosides via α-
selective quenching of C1-alkoxy radicals by suitable hydrogen atom donors;[5] 4)
synthesis of β-mannopyranosides involving intramolecular aglycone delivery;[6,7,8]

5) use of 4,6-O-benzylidene,[9] 4,6-O-arylboronate,[10] or 4,6-O-silylene[11] pro-
tected α-mannopyranosyl triflates; 6) use of hydrogen-bond-mediated aglycone
delivery mediated by a remote 3- and/or 6-O-picoloyl group;[12] 7) use of glycosyl-
acceptor-derived borinic ester[13] or boronic ester[14] as catalysts for activation of
1,2-anhydromannose donors; 8) use of mannosyl donors bearing 2,6-[15] or 3,6-
lactone moieties;[16] 9) β-selective anomeric O-alkylation of mannose-derived lac-
tols[17] or 1,2-O-dibutylstannylenes.[18]

Early in 2016, we reported an efficient β-mannosylation method involving
cesium carbonate-mediated anomericO-alkylation ofD-mannose-derived 1,2-diols
with primary or secondary electrophiles.[17c] This β-mannosylation was developed
based on our previous experiences in the stereoselective synthesis of 2-deoxy-β-
glycosides[19] or 2-deoxy-α-glycosides[20] via anomeric O-alkylation. In particu-
lar, this easily operable β-mannosylation directly affords the desired β-mannosides

Scheme . Previous synthesis of β-D-Xyl-(l→)-β-D-Man-(→)-α-D-Glc-OMe (1) and our strategy.
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JOURNAL OF CARBOHYDRATE CHEMISTRY 3

Figure . The structure of β-D-Xyl-(l→)-β-D-Man-(→)-α-D-Glc-OMe (1), a trisaccharide oligomer
of the Hyriopsis schlegelii Glycosphingolipid.

with a free C2–OH at the mannose residue (cf. 4, Scheme 1). The free C2-alcohol
can be directly subjected to the next chemical transformation, such as acylation
and glycosylation, without the necessity of additional deprotection steps. Recently,
this β-mannosylation was successfully employed in a highly efficient formal syn-
thesis of potent calcium signal modulator acremomannolipin A,[17d] in which the
free C2–OH of corresponding mannose residue was directly subjected to acylation.
In this Communication, we would like to demonstrate its application to the synthe-
sis of β-D-Xyl-(l→2)-β-D-Man-(1→4)-α-D-Glc-OMe (1, Figure 1), a trisaccha-
ride oligomer of the Hyriopsis schlegelii glycosphingolipid. In this synthesis the free
C2–OH at themannose residue of the disaccharide 4 is directly subjected to another
glycosylation with protected xylosyl bromide donor 5 to furnish the corresponding
trisaccharide (cf. 14).

The trisaccharide oligomer of the Hyriopsis schlegelii glycosphingolipid, β-
D-Xyl-(l→2)-β-D-Man-(1→4)-α-D-Glc-OMe (1),[21] has been previously
synthesized independently by two groups (Scheme 1). The first synthesis of 1
was reported by Lichtenthaler and co-workers in 1994.[22] In their synthesis, ulosyl
bromide 2 reacted with acceptor 3 in the presence of excess silver aluminosilicate
promoter to afford the corresponsing β-uloside (87% yield) whichwas subsequently
reduced by sodium borohydride to furnish β-mannoside 4 (81% yield overall for
two steps). This β-mannoside 4 was then subjected to glycosylation with xylosyl
bromide donor 5[23] followed by removal of the protecting group afforded desired
trisaccharide oligomer 1. A few years later, Crich and Dai disclosed the second
synthesis of trisaccharide 1 employing so-called “Crich β-mannosylation”.[24] As
shown in Scheme 1, 4,6-O-benzylidene-protected D-mannosyl sulfoxide donor 6
reacted with acceptor 3 in the presence of triflic anhydride/DTBMP to afford cor-
responding desired β-mannoside (β/α = 12/1, 87% yield) which was subjected to
a two-step de-allylation to give rise to the β-mannoside 7 (60% yield for two steps).
Similarly, glycosylation of β-mannoside 7 with xylosyl bromide donor 5 followed
by removal of the protecting group afforded desired trisaccharide oligomer 1. In
addition, Takeda and co-workers synthesized the protected form of 1[25] and incor-
porated it into a more complex octasaccharide in the same glycosphingolipid.[26]

Obviously, the Lichtenthaler approach required additional steps, i.e. oxidation of the
C2-alcohol of the glycosyl donor to the ketone (2-oxo) and reduction of the 2-oxo
to the C2-axial alcohol after glycosylation. It is worth noting that the sodium boro-
hydride reduction may result in lower diastereoselectivites.[27] The Crich synthesis
required an additional two-step deprotection of theO-2 allyl protecting group in the
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4 B. R. BHETUWAL ET AL.

Scheme . Concise Synthesis of β-D-Xyl-(l→)-β-D-Man-(→)-α-D-Glc-OMe (1) involving
β-mannosylation via CsCO-mediated anomeric O-alkylation.

mannose moiety to free the C2-alcohol (cf. 7) for subsequent glycosylation with
xylosyl bromide donor 5. In this report, we will describe the synthesis of trisac-
charide oligomer of the Hyriopsis schlegelii glycosphingolipid, β-D-Xyl-(l→2)-β-
D-Man-(1→4)-α-D-Glc-OMe (1) in which the key intermediate β-mannoside 4
bearing a free C2–OH at the mannose moiety is directly prepared from known D-
mannose-derived lactol 8[28] and methyl α-D-galactoside-derived axial C4-triflate
9 via cesium carbonate-mediated anomeric O-alkylation (Scheme 1).

Results and Discussion

Our preparation of the known methyl α-D-galactoside-derived C4-axial tri-
flate 9[29] commenced with the 4,6-O-benzylidenation of commercially available
methyl α-D-galactoside 10. As depicted in Scheme 2, standard acid-catalyzed
4,6-O-benzylidenation of methyl α-D-galactoside 10 using benzaldehyde dimethyl
acetal in DMF afforded methyl 4,6-O-benzylidene-α-D-galactoside 11 (65% yield)
and subsequently the 2,3-diol of 11 underwent double benzylation to furnishmethyl
2,3-di-O-benzyl-4,6-O-benzylidene-α-D-galactoside 12 (82% yield). Regioselective
reductive opening of the 4,6-O-benzylidene of 12 using sodium cyanoborohydride
in the presence of acid provided methyl 2,3,6-tri-O-benzyl-α-D-galactoside 13
(81% yield) bearing an axial free C4-alcohol. Next, this C4-alcohol in 13 under-
went standard triflation to give rise to axial C4-triflate 9 in 80% yield. Under our
previously reported optimal condition, cesium carbonate-mediated stereoselective
anomeric O-alkylation of known D-mannose-derived lactol 8 with C4-triflate 9
afforded desired key intermediate β-mannoside 4 in 85% yield (β only) which
contains a free C2-alcohol ready for next glycosylation with xylosyl bromide
donor 5.
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JOURNAL OF CARBOHYDRATE CHEMISTRY 5

Previously, Lichtenthaler and co-workers described that treatment of β-
mannoside 4 (1 eq.) with xylosyl bromide donor 5 (1.5 eq.) in the presence of silver
triflate (ca. 2.0 eq.) in the absence of base at −40 °C for 30 minutes gave desired
trisaccharide 14 in 71% yield (experimental section).[22] However, in our hands
applying the exactly same reaction condition reported by Lichtenthaler et al[22] to
β-mannoside 4 and xylosyl bromide donor 5 only afforded desired trisaccharide
14 in low conversion. We then turned our attention to the experimental proce-
dure reported by Crich et al for glycosylation of a similar substrate β-mannoside
7 with xylosyl bromide donor 5 in which a general bulky base 2,6-di-tert-butyl-
4-methylpyridine (DTBMP) was used.[24b] Indeed, under the exactly same condi-
tion reported by Crich et al (4 (1 eq.), 5 (1.15 eq.), AgOTf (2.1 eq.), DTBMP (3.25
eq.), 4Å molecular sieves), desired trisaccharide 14 was obtained in 43% yield (84%
based on recovered disaccharide 4). After extensive studies, finally we found out
that treatment of β-mannoside 4 (1 eq.) with xylosyl bromide donor 5 (3.5 eq.) in
the presence of silver triflate (4.0 eq.), DTBMP (5.0 eq.), and 4Å molecular sieves
from –40 to 0°C gave desired trisaccharide 14 in 84% yield. Next, standard global
de-benzoylation of 14 followed by Pd/C-catalyzed global hydrogenolysis of remain-
ing benzyl groups produced the β-D-Xyl-(l→2)-β-D-Man-(1→4)-α-D-Glc-OMe
(1) in 81% yield over two steps.[22]

In conclusion, we have described a concise synthesis of β-D-Xyl-(l→2)-β-D-
Man-(1→4)-α-D-Glc-OMe (1), a trisaccharide oligomer of the Hyriopsis schlegelii
glycosphingolipid. The synthesis involves a key stereoselective β-mannosylation
via cesium carbonate-mediated anomeric O-alkylation for the preparation of par-
tially protected disaccharide β-D-Man-(1→4)-α-D-Glc-OMe (4). Application of
this Cs2CO3-mediated β-mannosylation to the synthesis of other biologically sig-
nificant oligosaccharides and glycoconjugates is in progress.

Experimental

Materials andmethods

Proton and carbon nuclear magnetic resonance spectra (1H NMR and 13C NMR)
were recorded on either Bruker 600 (1HNMR-600 MHz; 13CNMR 150) or INOVA
600 (1H NMR-600 MHz; 13C NMR-150 MHz) at ambient temperature with CDCl3
as the solvent unless otherwise stated. Chemical shifts are reported in parts per mil-
lion relative to residual protic solvent internal standard CDCl3: 1H NMR at δ 7.26,
13C NMR at δ 77.36. Data for 1HNMR are reported as follows: chemical shift, inte-
gration, multiplicity (app= apparent, par obsc= partially obscure, ovrlp= overlap-
ping, s= singlet, d= doublet, dd= doublet of doublet, t= triplet, q= quartet, m=
multiplet) and coupling constants inHertz. All 13CNMR spectrawere recordedwith
complete proton decoupling. Low resolution mass spectra (LRMS) were acquired
on a Waters Acuity Premiere XE TOF LC-MS by electrospray ionization. Optical
rotations were measured with Autopol-IV digital polarimeter; concentrations are
expressed as g/100 mL.
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6 B. R. BHETUWAL ET AL.

All reagents and chemicals were purchased from Acros Organics, Sigma Aldrich,
Fisher Scientific, Alfa Aesar, and Strem Chemicals and used without further purifi-
cation. THF,methylene chloride, toluene, and diethyl ether were purified by passing
through two packed columns of neutral alumina (Innovative Technology). Anhy-
drous DMF and benzene were purchased from Acros Organics and Sigma-Aldrich
and used without further drying. All reactions were carried out in oven-dried glass-
ware under an argon atmosphere unless otherwise noted. Analytical thin layer chro-
matographywas performed using 0.25mm silica gel 60-F plates. Flash column chro-
matography was performed using 200–400 mesh silica gel (Scientific Absorbents,
Inc.). Yields refer to chromatographically and spectroscopically pure materials,
unless otherwise stated.

Methyl ,,-tri-O-benzyl-β-D-mannopyranosyl-(→)-,,-tri-O-benzyl-α-D-glu-
copyranoside ()
To a mixture of 3,4,6-tri-O-benzyl-D-mannopyranose 8 (45 mg, 0.1 mmol), D-
galactose-derived C4-triflate 9 (119 mg, 0.2 mmol), and cesium carbonate (81.5 mg,
0.25 mmol), was added 1,2-dichloroethane (1.0 mL). The reaction mixture was
stirred at 40˚C for 12 hours. The crude reaction mixture was diluted with
dichloromethane and purified by preparative thin layer chromatography (hexanes:
EtOAc: methanol = 2:1:1%) to furnish 77 mg (85% yield) of β-mannose 4. The β-
configuration of the mannosidic linkage in 4 was assigned by measuring the J(C, H)
of anomeric carbon of the mannose moiety (159 Hz). [α]D21 = + 14.3˚ (c = 1.0,
CHCl3). 1HNMR (600MHz, CDCl3) δ 2.62 (br, s, 1 H), 3.27 – 3.31 (m, 2 H), 3.34 –
3.37 (m, 1H), 3.40 – 3.42 (m, 5H), 3.55 (dd, J= 9.4, 3.6 Hz, 2 H), 3.61 (d, J= 4.6 Hz,
1 H), 3.63 (d, J= 4.6 Hz, 1 H), 3.65 – 3.66 (m, 1 H), 3.67 – 3.69 (m, 1 H), 3.69 – 3.71
(m, 1 H), 3.79 (d, J= 3.3 Hz, 1 H), 3.80 – 3.84 (m, 2 H), 3.88 (t, J= 9.5 Hz, 2 H), 3.96
– 4.00 (m, 3 H), 4.04 (t, J = 9.3 Hz, 2 H), 4.48 (s, 1 H) 4.49 – 4.51 (m, 5 H), 4.53 (d,
J = 6.1 Hz, 2 H), 4.55 (s, 1 H), 4.59 (d, J = 11.9 Hz, 2 H), 4.62 – 4.65 (m, 4 H), 4.65
– 4.68 (m, 2 H), 4.81 (d, J = 12.1 Hz, 2 H), 4.88 (d, J = 10.8 Hz, 1 H), 4.94 (d, J =
11.0 Hz, 2 H), 5.02 (d, J= 11.0 Hz, 2 H), 7.21 – 7.24 (m, 3 H), 7.25 – 7.31 (m, 14 H),
7.31 – 7.37 (m, 30 H), 7.41 (d, J = 7.3 Hz, 3 H). 13C NMR (150 MHz, CDCl3):
δ 55.27, 67.87, 68.73, 69.00, 69.57, 71.09, 73.44, 73.55, 73.95, 75.18, 75.59, 75.65,
75.77, 76.91, 77.12, 77.33, 79.55, 80.74, 81.57, 98.19, 99.98, 127.47, 127.67, 127.73,
127.77, 127.79, 127.82, 127.89, 127.96, 128.09, 128.14, 128.21, 128.30, 128.38, 128.46,
128.49, 128.52, 128.57, 137.86, 137.96, 138.12, 138.34, 138.42, 139.00. FT-IR (thin
flim): 3468, 3035, 2880, 1728, 1501, 1456, 1053, 751, 695 cm−1.ESILRMS [M+Na]+

calculated C55H60O11Na 919.40, found 919.50.

Methyl ,,-tri-O-benzoyl-β-D-xylopyranosyl-(→)-,,-tri-O-benzyl-β-D-mann-
opyranosyl-(→)-,,-tri-O-benzyl-α-D-glucopyranoside ()
To β-mannoside acceptor 4 (90 mg, 0.1 mmol) in dry CH2Cl2 (5 mL) were added
powdered molecular sieves (100 mg) and DTBMP (102 mg, 0.5 mmol). The reac-
tion mixture was cooled to -40˚C and stirred for 0.5 h under argon. A solution of
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JOURNAL OF CARBOHYDRATE CHEMISTRY 7

xylosyl bromide donor 5 (183 mg, 0.35 mmol) in CH2Cl2 (2.3 mL) was added fol-
lowed by dropwise addition of AgOTf (103 mg, 0.4 mmol) in toluene (1.6 mL). The
reaction mixture was stirred at -40˚C for 0.5 h and then warmed up to 0˚C and
stirred for another 1 h before being filtered through a pad of celite. The combined
organic solutions were washed with 10% aq. Na2SO3 and brine, dried over anhy-
drous sodium sulfate, filtered, and concentrated. The residue was purified by silica
gel column chromatography (Toluene: EtOAc = 15:1) to afford 113 mg (84%) of
trisaccharide 14. [α]D21 = −41.6˚ (c= 1.0, CHCl3). 1HNMR (600MHz, CDCl3) δ

3.25 – 3.31 (m, 3 H), 3.32 (d, J = 2.9 Hz, 1 H), 3.42 – 3.47 (m, 1 H), 3.54 – 3.58 (m,
1 H), 3.59 – 3.68 (m, 4 H), 3.70 – 3.76 (m, 2 H), 3.87 (t, J = 9.5 Hz, 1 H), 4.00 (t, J
= 9.3 Hz, 1 H), 4.11 (d, J = 2.9 Hz, 1 H), 4.15 (d, J = 12.1 Hz, 1 H), 4.36 – 4.42 (m,
3 H), 4.42 – 4.46 (m, 2 H), 4.54 – 4.60 (m, 3 H), 4.63 (d, J = 12.1 Hz, 1 H), 4.70 –
4.74 (m, 2 H), 4.75 (d, J= 2.8 Hz, 1 H), 4.81 (dd, J= 13.0, 2.6 Hz, 1 H), 4.84 (s, 1 H),
5.14 (d, J = 11.4 Hz, 1 H), 5.19 (q, J = 3.1 Hz, 1 H), 5.43 (d, J = 2.2 Hz, 1 H), 5.49 –
5.51 (m, 1 H), 5.56 (t, J= 4.0 Hz, 1 H), 7.12 – 7.16 (m, 3 H), 7.18 (dd, J= 7.3, 1.8 Hz,
2 H), 7.19 – 7.22 (m, 2 H), 7.23 – 7.27 (m, 10 H), 7.29 – 7.30 (m, 4 H), 7.31 – 7.35
(m, 10H), 7.37 – 7.41 (m, 5H), 7.48 – 7.52 (m, 2H), 7.57 – 7.61 (m, 1H), 7.98 – 8.01
(m, 2 H), 8.05 – 8.10 (m, 4 H). 13C NMR (151 MHz, CDCl3) δ 55.28, 71.69, 73.34,
73.66, 74.98, 75.13, 75.27, 76.83, 77.05, 77.26, 80.01, 98.56, 126.81, 127.22, 127.56,
127.58, 127.62, 127.68, 127.71, 127.82, 127.92, 128.14, 128.19, 128.22, 128.33, 128.37,
128.39, 128.49, 128.57, 130.02, 130.08, 133.29, 133.31, 138.04, 138.74. FT-IR (thin
flim): 3056, 2915, 1721, 1452, 1252, 1093, 700 cm−1. ESILRMS [M+Na]+ calcu-
lated C81H80O18Na, 1363.52 observed 1363.80.

Methyl β-D-xylopyranosyl-(→)-β-D-mannopyranosyl-(→)-α-D-glucopyrano-
side ()
To trisaccharide 14 (17 mg, 0.012 mmol) in methanol (0.26 mL) was added a small
drop of sodium methoxide solution (ca. 3 μL, 5.4 M in methanol). The resulting
mixture was stirred at room temperature overnight and then neutralized by acidic
ion exchange resin (Dowex H+ resin). The mixture was filtered and the filtrate was
concentrated. The residue was purified by silica gel column chromatography with
CH2Cl2: MeOH (20:1) to afford a syrup (11.1 mg) which was directly subjected to
hydrogenolysis over Pd/C (1mg) inmethanol (1mL) for 24 h. Filtration and removal
of the solvent furnished 1 as awhite solid (5mg, 81% for two steps). [α]D21 =+ 19.3˚
(c= 0.15, H2O). 1HNMR(600MHz,D2O) δ ppm3.14 (s, 1H), 3.23 – 3.29 (m, 2H),
3.30 (s, 3 H), 3.32 (d, J = 9.2 Hz, 2 H), 3.46 (s, 1 H), 3.47 – 3.50 (m, 2H), 3.50 – 3.55
(m, 3 H), 3.66 (s, 3 H), 3.71 (s, 1 H), 3.74 (s, 1 H), 3.82 (s, 1 H), 4.13 (d, J = 3.3 Hz,
1 H), 4.38 (d, J = 7.7 Hz, 1 H), 4.69 (br, s, 1 H). 13C NMR (151 MHz, D2O) δ ppm
54.96, 55.09, 60.09, 60.42, 64.98, 66.80, 69.19, 70.05, 70.84, 71.56, 71.74, 73.17, 75.30,
76.36, 77.75, 78.73, 98.93, 100.11, 104.01, 128.49, 129.25, 189.71, 195.62, 204.99,
208.78, 210.50, 211.63. FT-IR (thin flim): 3227, 29256, 1728, 1382, 1156, 1038,
525 cm−1. ESILRMS [M + Na]+ C55H60O11Na, Calculated 511.16, found 511.10.
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