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a b s t r a c t

The conjugate addition of boronic acids to a,b-unsaturated ketones catalyzed by acylating reagents has
been explored. The results show that trifluoroacetic anhydride catalyzes the addition of vinylboronic
acids under experimentally simple and metal-free conditions for a variety of substrates with good yields.
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Scheme 1. Activation of boronic acids toward conjugate addition.
The formation of C–C bonds is pivotal in the building of complex
organic molecules. The development of new synthetic procedures
which enable the selective formation of this type of linkage under
mild reaction conditions is an area of active research. Among these
methods, the conjugate addition reaction of carbon nucleophiles to
electron-deficient alkenes has become one of the most important.1

In particular, the conjugate addition reaction of boronic acids to
a wide variety of electron-deficient systems under transition-metal
catalysis constitutes a useful synthetic method. Most boronic acids
are terminally stable compounds, resistant to air and humidity,
compatible with many functional groups readily attacked by con-
ventional organometallic reagents, and have low toxicity. In addi-
tion, a large number of them are nowadays commercially
available, and can also be prepared by various synthetic routes.2

However, the direct conjugate addition of boronic acids is pre-
cluded by their low nucleophilicity, and some kind of activation
is normally required. This can be achieved by transmetalation to
transition metals, mainly Rh and Pd, in catalytic cycles.3,4 Although
less developed, this type of reaction can also be promoted by or-
ganic molecules, either stoichiometrically5 or catalytically.6

In the search for new reagents that allow the activation of boro-
nic acids catalytically toward the conjugate addition to simple a,b-
unsaturated ketones under metal-free mild reaction conditions, we
have focussed our attention on acylation reagents. The interaction
of boronic acids with this type of reagents (Scheme 1) leads to the
ll rights reserved.
in situ formation of mono or diacylboronates A, where the Lewis
acidity of the boron atom is enhanced with respect to the starting
boronic acid.7 This may permit coordination of boron to the lone
electron-pair of the carbonyl oxygen, thus facilitating the transfer
of the nucleophilic carbon backbone in an intramolecular fashion.8

We began our research by exploring different acylation reagents
in the conjugate addition of chalcone 2a with 2-phenylvinylboron-
ic acid 1a. These results are gathered in Table 1.

We observed that reaction in the presence of Ac2O, either in cat-
alytic or stoichiometric amounts (Table 1, entries 1 and 2), led to
the formation of the conjugate addition product 3a in a low yield.
However, the use of Ac2O as the solvent at 60 �C permitted the syn-
thesis of 3a in a higher yield (Table 1, entry 3). When the reaction
was carried out using AcCl as the promoter, we observed again a
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Table 2
Trifluoroacetic anhydride—catalyzed conjugate addition of 2 with 1a
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Table 1
Conjugate addition of chalcone (2a) with 2-phenylvinylboronic acid (1a)a

O

PhPh

B(OH)2
Ph

2a

1a O

PhPh

Ph

3a

RCOX

Entry RCOX (equiv) T ( �C) 3ab (%)

1 Ac2O (0.2) 25 10
2 Ac2O (1.0) 25 25
3 Ac2Oc 60 40
4 AcCl (1.0) 25 40
5 AcClc 25 90
6 (CF3CO)2O (0.2) 25 95

a 1a (0.36 mmol), 2a (0.24 mmol), CH2Cl2 (0.4 mL), RCOX (72 lmol, 0.3 equiv),
18 h.

b Isolated yield.
c Reactions carried out with Ac2O or AcCl as solvent (1.0 mL/mmol).
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low yield under stoichiometric conditions (Table 1, entry 4), but
the conversion was high when AcCl was used as the solvent, even
at rt (Table 1, entry 5). Finally, the use of trifluoroacetic anhydride
in catalytic amounts at rt gave rise to the formation of 3a in good
yields (Table 1, entry 6).

These reaction conditions9 were extended to the conjugate
addition of 2a with other boronic acids 1 and to the reaction of sev-
eral representative simple a,b-unsaturated ketones 2 with 1a. The
results are given in Table 2.

These results put forward that trifluoroacetic anhydride also
catalyzed the conjugate addition reaction of chalcone 2a with
2-arylvinylboronic acids substituted by electron-withdrawing
groups on the aryl moiety (Table 2, entries 2–4). However, exten-
sive protodeborylation of the starting material was observed in
the presence of an electron-donating group as aryl substituent of
1 (Table 2, entry 5). The reaction did not take place at rt when a
2-alkylvinylboronic acid was used. However, a good yield of the
corresponding conjugate addition product was observed when
the temperature was increased to 60 �C (Table 2, entries 6 and
H
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Entry 1 2 T (�C) 3b (%)
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Table 2 (continued)

Entry 1 2 T (�C) 3b (%) Entry 1 2 T (�C) 3b (%)

8d 1g 2a 60

O

PhPh

Ph
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17 1a 2i 25

Ph

O
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OH
HO

3o (80) 
syn : anti = 50 : 50
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O

PhPh
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Ph

O

BzO
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Ph
3p (80) 

syn : anti = 20 : 80

a 1 (1.25 equiv), 2 (1.0 equiv), (CF3CO)2O (0.3 equiv), CH2Cl2 (1.6 mL/mmol), 18 h.
b Isolated yield.
c See Table 1 (entry 6).
d Reaction carried out with 1.0 equiv of (CF3CO)2O.
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Conjugate addition of 2 with 1 in the presence of AcCla
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a 1 (1.25 equiv), 2 (1.0 equiv), AcCl (1.6 mL/mmol), 18 h.
b Isolated yield.
c See Table 1 (entry 5).
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7). On the other hand, no reaction of 2a with phenylboronic acid 1f
was observed even at 60 �C when a catalytic amount of trifluoro-
acetic anhydride was used as the promoter. However, it was possi-
ble to promote the addition of 1f using a stoichiometric amount of
the promoter at 60 �C (Table 1, entry 8).

Whereas arylketone 2b reacted with 1a at rt in the presence of
catalytic amounts of trifluoroacetic anhydride similarly to chalcone
2a (Table 2, entry 9), no reaction was observed with the 4-aryl-a,b-
unsaturated alkylketone 2c (Table 2, entry 10). However, the reac-
tion took place at 60 �C (Table 2, entry 11). Thus, the comparison
between 2a, 2b, and 2c in their reactions with 1a (Table 2, entries
1 and 9–11) showed that arylketones are better substrates than
alkylketones in this type of transformation. Consequently, the reac-
tions between 1a and ketones 2d, 2e took place only at 60 �C (Ta-
ble 2, entries 12 and 13). The addition to dienylketone 2f occurred
exclusively in 1,4-fashion in moderate yield (Table 2, entry 14).10

Compounds 2g and 2h represent interesting substrates, as the
conjugate addition of alkenylboronic acids to b,b-disubstituted car-
bonyl compounds has no literature precedents.11 The addition of
1a to 2g took place with good yield under trifluoroacetic anhydride
catalysis at 60 �C (Table 2, entry 15). In a similar fashion, the reac-
tion with pulegone (2h) proceeded in good yield to afford a 70:30
diastereomeric mixture of the conjugate addition products 3h (Ta-
ble 2, entry 16). Finally, we have considered the stereoselective
conjugate addition to the optically pure linear c,d-oxygen-func-
tionalized a,b-unsaturated ketones 2i and 2j (Table 2, entries 17
and 18). We observed that although the reaction with the isopro-
pylidene derivative 2i afforded the corresponding deprotected
conjugate addition products 3o unselectively,12,13 the diastereose-
lectivity of the process could be improved by replacement of the
OH-protective groups by benzoyl in favor of the anti addition
product.

Despite we have centered most of our synthetic efforts in the
catalytic use of trifluoroacetic anhydride at rt, our initial results
using AcCl as the solvent deserve some further comments, as these
reaction conditions can be attractive for large-scale preparations
due to the simplicity of the experimental procedure.14 We ob-
served that chalcone 2a also reacted with the electron-deficient
2-arylalkenylboronic acid 1b under these reaction conditions,
while extensive decomposition was noticed with the electron-rich
1e (Table 3, entries 1–3). The reaction was also possible with the 2-
alkylalkenylboronic acid 1f at 60 �C, but the conjugate addition
product was contaminated with small amounts of 4a, formed by
HCl addition to 2a (Table 3, entry 4). The reactions of 1a with ke-
tones 2b-d took place with low yield, and in the case of 2c and
2d also contaminated with the corresponding HCl addition prod-
ucts 4b,c (Table 3, entries 5–7). On the other hand, a good yield
of the 1,4-addition product 3l was observed in the reaction of 1a
with dienylketone 2f (entry 8). Thus, the usefulness of the AcCl-
promoted conjugate addition seems limited to chalcone deriva-
tives and 2-arylvinylboronic acids.

In conclusion, the reaction of vinylboronic acids with a,b-unsat-
urated ketones catalyzed by trifluoroacetic anhydride constitutes a
useful method for conjugate addition under metal-free and exper-
imentally simple conditions.
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