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Abstract A simple and efficient one-pot synthesis

of heteroaryl-substituted dihydropyrano(c)chromenes and

pyrano[2,3-d]pyrimidines has been developed. Reaction

proceeds via initial Knoevenagel, subsequent Michael and

final heterocyclization reactions of heteroaryl aldehyde,

malononitrile, and barbituric acid/dimedone. Triethylam-

monium acetate acts as a green catalyst as well as reusable

solvents for this reaction. Short reaction time, environment

friendly procedure, reusability, and excellent yields are the

main advantages of this procedure. All synthesized com-

pounds have shown good antibacterial activity against

different microbial stains but not active against cancer cell

lines.
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Introduction

Multi-component reactions (MCRs) have attracted consid-

erable interest because of their exceptional synthetic and

practical efficiency (Dömling, 2000). MCRs involve three or

more starting materials reacting in a single flask to form a

new product, where basically all the atoms contribute to the

newly formed product. Chromenes, pyridines, and pyri-

midinones, etc., are some examples of multi-component

synthesis (Sharanin and Klokol, 1984; Jin et al., 2005). Pyran

derivatives are of considerable interest as they possess a

wide range of biological properties such as spasmolytic,

diuretic, antiallergic, anticoagulant, anticancer, and anti-

anaphylactic activity, etc. (Zhang et al., 1982; Atwal et al.,

1992; Hiroshi et al., 1993). Polyfuctionalized pyran deriva-

tives are common structural subunits in variety of important

natural products (Katritzky et al., 1984; Bonsignore et al.,

1993). In addition, they can be used as cognitive enhancers,

for the treatment of neurodegenerative diseases (Riley and

Rankin, 1976). A number of 2-amino-2H pyrans are useful as

photoactive substances also (Armesto et al., 1989).

There are some methods reported in the literature for the

synthesis of polyfuctionalized pyran derivatives (Wang

et al., 2003; Singh et al., 1996). Unfortunately, many of

these processes suffer from limitations such as long reaction

times, hazardous by-products, microwave irradiations, use

of stoichiometric, or even excess amount of base, and use of

metal triflates (Abd El-Rahman et al., 2007; Mobinikhaledi

et al., 2010; Balalaie et al., 2009). The search for a non-

volatile and recyclable alternative is thus holding a key role

in this field of research. The development of cleaner tech-

nologies is a major emphasis in green chemistry. Among the

several aspects of green chemistry, the reduction/replace-

ment of volatile organic solvents from the reaction medium

is of utmost importance. So we tried to explore the new

catalyst that has certain properties such as good thermal and

mechanical stabilities of supported reagents, easy to handle,

of low toxicity, non-corrosive, easy to separate from reac-

tion mixture through filtration, and feasible for reuse.

Ionic liquids as new reaction media and catalyst have

been experimentally and theoretically recognized and

accepted (Holbrey et al., 2000). A great deal of attention

has been given to imidazolium ionic liquid in the past

several years (Martyn and Kenneth, 2000; Louie and

Meade, 1999). However, industrial application of these
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ionic liquids is limiting because of the high price imi-

dazolium ionic liquids and also due to low reusability

(Namboodiri and Varma, 2002). Triethylammonium ace-

tate (TEAA) is an inexpensive and easily synthesized ionic

liquid that can be used in laboratory without special pre-

cautions, and it has not been used much in heterocyclic

synthesis, only a few reports are there in the literature

(Wang et al., 2006; Balaskar et al., 2010; Sandhu, 2009;

Da-Zhen et al., 2010). Therefore, in this article, we wish to

report triethylammonium ionic liquid-mediated one-pot

synthesis of heteroaryl-substituted pyran derivatives. The

antibacterial and anticancer activities were also tested.

Experimental

Melting points were determined by open capillary method

and are uncorrected. 1H NMR and 13C NMR analysis were

carried out on a Bruker AM-400 spectrometer in CDCl3/

DMSO-d6. Chemical shift values are reported as d values

(in ppm) relative to tetramethylsilane (TMS) as an internal

standard. IR spectra were recorded on a Perkin-Elmer 298

spectrophotometer. Reactions were monitored by thin layer

chromatography on 0.2 mm silica gel F-252 (Merck)

plates. All chemicals were obtained from Aldrich Chemical

Co. and CDH Chemical Co. and were used without further

purification. Antibacterial activity was tested by the disk

diffusion assay and anticancer activity by using sulforho-

damine B assay against human breast cancer, prostate

cancer, and ovarian cancer cell lines (Grivsky et al., 1980;

Midolo et al., 1995; Drew et al., 1972; Monks et al., 1990).

Procedure of triethylammonium ionic liquid TEAA

synthesis (Wang et al., 2006; Weng et al., 2006): The

synthesis of ionic liquid was carried out in a 250-mL

round-bottomed flask, which was immersed in a water-bath

and fitted with a reflux condenser. Acetic acid (1.5 mol,

90.1 g, and 86.03 mL) was dropped into 101.2 g triethyl-

amine (1 mol, 139.4 mL) at 70 �C within 1 h. After the

addition, the reaction mixture was stirred for 2 h at 80 �C

to ensure that the reaction had proceeded to completion.

The reaction mixture was then dried at 80 �C in high

vacuum (5 mmHg) until the weight of the residue remained

constant. The yield of TEAA was 98 %. 1H NMR (DMSO-

d6): d = 1.18 (t, 9H, CH3), 2.10 (s, 3H, CH3), 3.10 (m, 6H,

CH2), 9.0 (s, 1H, NH) ppm.

General procedure for the synthesis of heteroaryl-

substituted pyrano(c)chromene/pyrano[2,3-d] pyrimidine:

5-Memberd heteroaryl aldehyde (2 mmol), malononitrile

(2 mmol), 5,50-dimethyl-cyclohexane-1,3-dione/barbituric

acid (2 mmol), and TEAA (5 mL) were added to a round

bottom flask. The reaction mixture was stirred at room

temperature for appropriate time (Scheme 1; Table 1). The

completion of the reaction was monitored by TLC. After

completion of the reaction, water (5–10 mL) was added in

reaction mixture, precipitation of product is occurred. The

pure product (6/7) was obtained by recrystallization from

ethanol:water (9:1). Products (6/7) thus obtained were in

high yields.

Antimicrobial activity measurements

All test micro organisms were obtained from Microbiology

Department, Lokmanya Tilak College Ujjain and were as

follows: Citrobactor freundii, Klebsiella pneumoniae,

Bacillus megaterium, Escherichia coli, Pseudomonas aeru-

ginosa, and Salmonella typhi. Antibacterial activity of the

prepared compounds 6a–6f and 7a–7f was tested by the disk

diffusion method. Whatman No. 1 filter paper disks were

sterilized by autoclaving for 1 h at 140 �C. All the synthe-

sized compounds were dissolved in DMSO for dilution to

prepare stock solutions of 20 mg/mL for antimicrobial assay.

Agar plates were uniformly surface inoculated with fresh

broth culture of C. freundii, K. pneumoniae, B. megaterium,

E. coli, P. aeruginosa, and S. typhi. The impregnated disks

were placed on the medium suitably spaced apart and the

plates were incubated at 30 �C for 1 h to permit good dif-

fusion and were then transferred to an incubator at 37 ± 2 �C

for 24 h. The zones of inhibition were measured on mm

scale. Streptomycin was used as standard antimicrobial

drug. Dimethylsulphoxide was used as solvent control.

Anticancer activity measurement

All test cancer cell lines were obtained from NCI, USA and

were as follows: human breast cancer cell line MDA-MB-435,

human prostate cancer cell line PC3, and human ovarian
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Scheme 1 TEAA promoted synthesis of pyrano(c)chromene and pyrano[2,3-d]pyrimidine
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cancer cell line Ovkar-3. DMSO was used as vehicle for

anticancer activity and adriamycin (ADR) as a positive

control drug. GI50, TGI, and LC50 parameters were

studied using sulforhodamine B assay method.

Spectroscopic data

2-Amino-7,7-dimethyl-4-(furan-2-yl)-5-oxo-5,6,7,8-

tetrahydro-4H-chromene-3-carbonitrile (6a)

White solid, m.p. 216–218 �C (lit. m.p. 217–219 �C, Bho-

sale et al., 2003). IR (KBr): 3355, 3208 (NH2), 2941 (C–H),

2202 (CN), 1680 (C=O), 1652 (C=C) cm-1; 1H NMR

(300 MHz, DMSO-d6), d 0.99 (s, 3H, CH3), 1.05 (s, 3H,

CH3), 2.17 (m, 2H, CH2), 2.48 (m, 2H, CH2), 4.33 (s, 1H,

CH), 6.05 (s, 1H), 6.32 (s, 1H), 7.07 (s, 2H), 7.48 (s, 1H)

ppm; EI-MS (m/z): 284 (M?). C16H16N2O3: % calcd. C,

67.59; H, 5.67; N, 9.85. Found: C, 67.88; H, 5.56; N, 9.63.

2-Amino-7,7-dimethyl-4-(5-methyl-furan-2-yl)-5-oxo-

5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (6b)

Yellow solid, m.p. 205–207 (lit. m.p. 204–205 �C, Shest-

opalov et al., 2003). IR (KBr) cm-1 3396, 3210 (NH2),

2966 (C–H), 2196 (CN), 1680 (C=O), 1660 (C=C) cm-1;
1H NMR (DMSO-d6), 2.17 (s, 3H, CH3), 6.32–6.33 (dd,

1H, Ar–H), 6.05 (d, 1H, Ar–H), 7.08 (s, 2H, NH2), 4.33

(s, 1H), 2.50 (s, 2H, CH2), 2.30 (d, 1H, CH2), 2.15 (d, 1H),

1.04 (s, 3H, CH3), 0.99 (s, 3H, CH3) ppm; EI-MS (m/z):

298 (M?) C17H18N2O3 (298.34): % calcd. C, 68.44; H,

6.08; N, 9.39. Found: C, 68.40; H, 6.10; N, 9.41.

2-Amino-7,7-dimethyl-5-oxo-4-(1H-pyrrol-2-yl)-5,6,7,8-

tetrahydro-4H-chromene-3-carbonitrile (6c)

White solid, m.p. 178–180 �C. IR (KBr): 3355, 3208

(NH2), 2941 (C–H), 2212 (CN), 1675 (C=O), 1658 (C=C)

cm-1; 1H NMR (DMSO-d6), d 0.99 (s, 3H, CH3), 1.08

(s, 3H, CH3), 2.22 (m, 2H), 2.42 (m, 2H), 4.31 (s, 1H), 5.21

(s, 1H, NH), 6.05 (s, 1H, Ar–H), 5.91 (s, Ar–H), 6.32

(s, Ar–H), 7.07 (s, 2H, NH2); EI-MS (m/z): 283 (M?)

C16H17N3O2 (283.33): calcd. C, 67.83; H, 6.05; N, 14.83.

Found: C, 67.88; H, 5.99; N, 14.84.

2-Amino-7,7-dimethyl-4-(thiophen-2-yl)-5-oxo-5,6,7,8-

tetrahydro-4H-chromene-3-carbonitrile (6d)

Yellow solid, m.p. 208–210 �C (lit. m.p. 209–211 �C, Tu

et al., 2002). IR (KBr) 3402, 3212 (NH2), 2977 (C–H),

2206 (CN), 1678 (C=O), 1662 (C=C) cm-1; 1H NMR

(DMSO-d6), d 6.32–6.33 (dd, 1H, Ar–H), 6.15 (d, 1H,

Ar–H), 6.05 (d, 1H, Ar–H), 7.08 (s, 2H, NH2), 4.33 (s, 1H,

CH), 2.50 (m, 2H, CH2), 2.30 (m, 2H, CH2), 1.04 (s, 3H,

CH3), 0.99 (s, 3H, CH3); EI-MS (m/z): 300 (M?)

C16H16N2O2S (300.09): calcd. C, 63.98; H, 5.37; N, 9.33.

Found: C, 63.92; H, 5.34; N, 9.42.

2-Amino-7,7-dimethyl-4-(3-methyl-thiophen-2-yl)-5-oxo-

5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (6e)

Light yellow, m.p. 214–215 �C. IR (KBr) 3396, 3209

(NH2), 2966 (C–H), 2196 (CN), 1680 (C=O), 1660

(C=C) cm-1; 1H NMR (DMSO-d6), d 2.29 (s, 3H, CH3),

6.32–6.33 (dd, 1H, Ar–H), 6.05 (d, 1H, Ar–H), 7.08 (s, 2H,

NH2), 4.33 (s, 1H, CH), 2.50 (s, 2H, CH2), 2.35 (s, 2H,

CH2), 1.04 (s, 3H, CH3), 0.99 (s, 3H, CH3); EI-MS (m/z):

314 (M?) C17H18N2O2S (314.11): calcd. C, 64.94; H, 5.77;

N, 8.91. Found: C, 64.98; H, 5.73; N, 8.89.

2-Amino-7,7-dimethyl-4-(5-methyl-thiophen-2-yl)-5-oxo-

5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (6f)

Yellow solid, m.p. 217–219 �C. IR (KBr) 3386, 3219

(NH2), 2976 (C–H), 2189 (CN), 1679 (C=O), 1661 (C=C)

Table 1 TEAA promoted

synthesis of pyrano(c)chromene

and pyrano[2,3-d]pyrimidine

AMC active methylene

compound
a Isolated yields

Entry Aldehyde

(2 mmol)

AMC (2 mmol) Time

(min)

Product Yielda

(%)

M.P. (�C)

1 1a Dimedone 40 6a 90 216–218 [217–219]

2 1b Dimedone 40 6b 94 205–207 [204–205]

3 1c Dimedone 50 6c 84 178–180

4 1d Dimedone 40 6d 95 208–210 [209–211]

5 1e Dimedone 50 6e 95 214–215

6 1f Dimedone 40 6f 97 217–219

7 1a Barbituric acid 30 7a 92 280–282

8 1b Barbituric acid 30 7b 94 284–286

9 1c Barbituric acid 50 7c 86 191–193

10 1d Barbituric acid 40 7d 95 274–275

11 1e Barbituric acid 50 7e 96 289–291

12 1f Barbituric acid 50 7f 97 [320
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cm-1; 1H NMR (DMSO-d6), d 2.19 (s, 3H, CH3),

6.32–6.33 (dd, Ar–H), 6.05 (d, Ar–H), 7.08 (s, 2H, NH2),

4.33 (s, CH), 2.50 (s, 2H, CH2), 2.30 (d, 2H, CH2), 1.04

(s, 3H, CH3), 0.99 (s, 3H, CH3); EI-MS (m/z): 314 (M?)

C17H18N2O2S (314.11): calcd. C, 64.94; H, 5.77; N, 8.91.

Found: C, 64.92; H, 5.75; N, 8.86.

7-Amino-5-furan-2-yl-2,4-dioxo-1,3,4,5-tetrahydro-2H-

pyrano[2,3-d]pyrimidine-6-carbonitrile (7a)

Dark yellow solid, m.p. 280–282 �C. IR (KBr): 3391, 3302

(NH2), 3188 (NH), 3072 (C–H), 2197 (CN), 1718 (C=O),

1665 (C=C) cm-1; 1H NMR (DMSO-d6) dH: 4.26 (s, CH),

7.20 (br s, 2H, NH2), 7.22 (1H, d, H–Ar), 6.59 (1H, m,

H–Ar), 6.51 (1H, d, H–Ar), 11.12 (1H, br s, NH), 12.14

(1H, br s, NH); EI-MS (m/z): 272 (M?); C12H8N4O4

(272.22): calcd. C, 52.95; H, 2.96; N, 20.58. Found: C,

52.94; H, 2.93; N, 20.47.

7-Amino-5-(5-methyl-furan-2-yl)-2,4-dioxo-1,3,4,5-

tetrahydro-2H-pyrano[2,3-d] pyrimidine-6-

carbonitrile (7b)

Dark yellow solid, m.p. 284–286 �C. IR (KBr): 3402, 3299

(NH2), 3178 (NH), 2989 (C–H), 2202 (CN), 1715 (C=O),

1460 (C=C) cm-1; 1H NMR (DMSO-d6) dH: 4.12 (1H, s,

CH), 7.16 (2H, br s, NH2), 2.15 (3H, s, CH3), 6.59 (1H, m,

H–Ar), 6.51 (1H, d, H–Ar), 11.12 (1H, br s, NH), 12.14

(1H, br s, NH); EI-MS (m/z): 286 (M?) C13H10N4O4

(286.24): calcd. C, 54.55; H, 3.52; N, 19.57. Found:

C, 54.46; H, 3.56; N, 19.59.

7-Amino-2,4-dioxo-5-(1H-pyrrol-2-yl)-1,3,4,5-tetrahydro-

2H-pyrano[2,3-d]pyrimidine-6-carbonitrile (7c)

Pale-yellow solid, m.p. 191–193 �C. IR (KBr): 3402, 3299

(NH2), 3168 (NH), 2989 (C–H), 2202 (CN), 1708 (C=O),

1460 (C=C) cm-1; 1H NMR (DMSO-d6) dH: 4.19 (1H, s,

CH), 7.10 (2H, br s, NH2), 6.97 (1H, d, H–Ar), 6.59 (1H,

m, H–Ar), 6.51 (1H, d, H–Ar), 11.12 (1H, br s, NH), 12.14

(1H, br s, NH); EI-MS (m/z): 271 (M?) C12H9N5O3

(271.23): calcd. C, 53.14; H, 3.34; N, 25.82. Found:

C, 53.07; H, 3.28; N, 25.89.

7-Amino-5-(thiophen-2-yl)-2,4-dioxo-1,3,4,5-tetrahydro-

2H-pyrano[2,3-d]pyrimidine-6-carbonitrile (7d)

Dark yellow solid, m.p. 274–275 �C. IR (KBr): 3390, 3306

(NH2), 3188 (NH), 3072 (C–H), 2197 (CN), 1708 (C=O),

1459 (C=C) cm-1; 1H NMR (DMSO-d6) dH: 4.21 (1H, s),

7.38 (2H, br s, NH2), 7.02 (1H, d, H–Ar), 6.57 (1H, m,

H–Ar), 6.49 (1H, d, H–Ar), 11.42 (1H, br s, NH), 12.09

(1H, br s, NH); EI-MS (m/z): 288 (M?) C12H8N4O3S

(288.28): calcd. C, 50.00; H, 2.80; N, 19.43. Found:

C, 49.89; H, 2.84; N, 19.46.

7-Amino-5-(3-methyl-thiophen-2-yl)-2,4-dioxo-1,3,4,5-

tetrahydro-2H-pyrano[2,3-d] pyrimidine-6-

carbonitrile (7e)

m.p. 289–291 �C. IR (KBr): 3399, 3281 (NH2), 3174 (NH),

2981 (C–H), 2200 (CN), 1707 (C=O), 1463 (C=C) cm-1;
1H NMR (DMSO-d6) dH: 3.99 (1H, s, CH), 7.26 (2H, br s,

NH2), 2.20 (3H, s, CH3), 6.62 (1H, m, H–Ar), 6.48 (1H, d,

H–Ar), 11.02 (1H, br s, NH), 12.04 (1H, br s, NH); EI-MS

(m/z): 302 (M?) C13H10N4O3S (302.5): calcd. C, 51.65;

H, 3.33; N, 18.53. Found: C, 51.62; H, 3.36; N, 18.57.

7-Amino-5-(5-methyl-thiophen-2-yl)-2,4-dioxo-1,3,4,5-

tetrahydro-2H-pyrano[2,3-d] pyrimidine-6-

carbonitrile (7f)

m.p. [320 �C. IR (KBr): 3402, 3299 (NH2), 3178 (NH),

2989 (C–H), 2202 (CN), 1715 (C=O), 1460 (C=C) cm-1;
1H NMR (DMSO-d6) dH: 4.02 (1H, s, CH), 7.16 (2H, br s,

NH2), 2.26 (3H, s, CH3), 6.59 (1H, m, H–Ar), 6.51 (1H, d,

H–Ar), 11.12 (1H, br s, NH), 12.14 (1H, br s, NH); EI-MS

(m/z): 302 (M?) C13H10N4O3S (302.05): calcd. C, 51.65;

H, 3.33; N, 18.53. Found: C, 51.62; H, 3.38; N, 18.51.

Results and discussion

We found TEAA as an efficient organic catalyst as well as

reaction medium for one-pot multi-component synthesis

with high yields. TEAA is air and water stable ionic liquid

which is easy to synthesize by just neutralizing triethyl-

amine and acetic acid, which are relatively inexpensive. It is

needless to say that the synthesis of this unconventional

triethylammonium ionic liquid is direct, simple, and eco-

friendly. This method offers an alternative route for the

synthesis of dihydropyrano(c)chromenes and pyrano[2,3-d]

pyrimidines in reasonable yields. Structures of the products

6 and 7 have been deduced from their spectral data and

melting points. It is expected that the synthesis of 6/7 fol-

lows initial arylidinemalonontrile formation followed by

Michael addition of 4/5–3 which on heterocyclization with

4/5 gives intermediate 8. Intermediate 8 on tautomerization

(proton transfer) gives 6 or 7 (Scheme 2). This mechanism

has been supported by synthesizing 3 in separate single step.

We investigated the reusability of the ionic liquid TEAA

without any catalyst. For this purpose, after the completion

of the reaction TEAA was separated from the reaction

mixture, washed with water and dried at high vacuum. As

shown in Fig. 1 TEAA could be reused for six times

without apparent loss of catalytic activity.
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The IR spectrum of 2-amino-3-cyano-4-(furan-2-yl)-7,

7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo-[b]pyran has

a series of stretching absorption bands of the amino group

(3,355 and 3,208) and a bending band of this group

(1,675–1,650 cm-1). The high intensity of the absorption

band at 2,202 and 1,680 cm-1 confirm the presence of the

cyano and carbonyl group, respectively, and in 1H NMR

presence of new signal at d: 0.99 (s, 3H, H70), 1.05 (s, 3H,

H700), 2.17 (m, 2H, H6), 2.48 (m, 2H, H60), 4.33 (s, 1H, H5),

7.07 (s, 2H) confirms the structure 6a.

The IR spectrum of 7-amino-5-furan-2-yl-2,4-dioxo-

1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carbonitr

-ile has a series of stretching absorption bands of the –NH

at (3,188), amino group (3,391 and 3,302), and a bending

band of this group (1,675–1,650 cm-1). The high intensity

of the absorption band at 2,197 and 1,718 cm-1 confirm

the presence of the cyano and carbonyl group, respectively,

and in 1H NMR presence of new peak at d: 11.12 (1H, br s,

NH), 12.14 (1H, br s, NH, 4.26 (s, 1H, H5), 7.20 (s, 2H,

NH2) confirms the structure 7a.

The EI-MS gave M? at m/z 284 (100) for 6a, and at

m/z 272 (100) for 7a which were consistent with the

molecular formula to be C16H16N2O3 for 6a and

C12H8N4O4 for 7a requiring structure. C16H16N2O3 6a: %

calcd. C, 67.59; H, 5.67; N, 9.85. Found: C, 67.88; H, 5.56;

N, 9.63. C12H8N4O4 (272.22) 7a: calcd. C, 52.95; H, 2.96;

N, 20.58. Found: C, 52.94; H, 2.93; N, 20.47.

Antimicrobial activity measurements

Antimicrobial activity: the antimicrobial strains reveal

that the heteroaryl-substituted products (6 and 7) showed

differential activities (Fig. 1). The presence of heteroaryl

ring and cyano and amino groups on pyran ring make

these more basic which increases its penetrating power on

bacterial cell wall (protein) and the compounds becomes

more active. In these cases, heteroaryl part is associated

with the bacterial cell wall which makes them more active.

The comparative antibacterial activities of the products

are summarized in Tables 2 and 3.

X

O

X = O, NH, S
1

+
CN

CN

TEAA, RT

10-20 min.
X

CN

CN

A

A

O

O

B

BA= CH2 or NH
B= CH3 or B,B= O

2 3

X

A

A

NC
CN

O

O

B

B

X

A

A

NC C

O

O

B

B

N

:

X

A

A

NC
C

O

O

B

B

NH

H

4 or 5

8

A= CH2 or NH
B= CH3 or B,B= O

X

A

A

NC

O

O

B

B

NH2

H
H- Transfer

6 or 7

H

Scheme 2 A plausible

mechanism for the synthesis

of pyrano(c)chromene and

pyrano[2,3-d] pyrimidine

Fig. 1 Reusability of ionic liquid TEAA

O

CN

NH2

O

CH3

CH3

O

2

34

8

A

5
6
7

6'

6a
2

34

8

A

N
H

NH

O

CN

NH2

O
O

O

5

7a

Med Chem Res

123



The compounds 6e, 6f exhibit highest activity towards

K. pneumoniae, 6c–6f against E. coli, 6c, 6d against

S. typhi and compound 6c, 6d exhibit moderate activity

against K. pneumoniae, 6a, 6b against E. coli, 6c, 6e, 6f

against S. typhi, and rest of the compounds have least

activity towards all the rest of the bacteria. The compounds

7c–7f exhibit highest activity towards K. pneumoniae and

S. typhi and 7a, 7b exhibit moderate activity against

K. pneumoniae and S. typhi, 7c–7f and 7e, 7f against E. coli

and P. aeruginosa, respectively, and rest of the compounds

have least activity towards all the bacteria. All the syn-

thesized compounds may act as good pharmaceuticals

template in organic synthesis, as they possess good

biological activities. Compounds 6a and 7a were also

tested for anticancer activity test by using SRB assay

method. But, both the compounds did not give the satis-

factory results in between 10-7 and 10-4 molar concen-

trations in comparison with ADR (doxorubicin) as a

positive control drugs (Table 4).
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