Regioselective Functionalization of Purine Derivatives at Positions 8 and 6 Using Hindered TMP-Amide Bases of Zn and Mg

François Crestey,1 Silvia Zimdars, Paul Knochel*

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5–13, 81377 München, Germany Fax +49(89)218077680; E-mail: Paul.Knochel@cup.uni-muenchen.de

Received: 05.08.2013; Accepted: 09.08.2013

Abstract: A broad range of purine derivatives were efficiently metalated at positions 8 and 6 using TMP-amide bases. This provided polysubstituted purines in good to very good yields after subsequent trapping of the zinc or magnesium intermediates with various electrophiles.

Key words: purine derivatives, metalation, Negishi cross-coupling, magnesium, zinc

As a result of the large variety of biologically active compounds bearing a purine unit this scaffold became an important class of pharmacophores that has been extensively studied in the last decades.² Diverse combinatorial libraries of functionalized purines have been synthesized by direct C-H arylations³ or heterocylizations.⁴ Moreover, Pdand Fe-mediated reactions can allow access to several simple 6,8-disubstituted and 2,6,8-trisubstituted purines.⁵ In addition, the more challenging approach, that is, coupling of metalated purine derivatives with appropriate electrophiles, have been developed via magnesiation,⁶ zincation,7 or lithiation.8 Recently, our group has described for the first time the successive and selective generation of magnesium and zinc organometallic intermediates at positions 6, 8, and 2 to furnish a large collection of novel and highly designed purine derivatives.⁹ In the present work, we extend the study in the regioselective functionalization of purine scaffolds to the development of an efficient metalation protocol at positions 8 and 6 of a wide range of purine derivatives using hindered TMP-amide bases¹⁰ (TMP = 2,2,6,6-tetramethylpiperidide).

First, the starting materials **1** used in this study were bearing a protecting group (PG) such as a methoxymethyl (MOM), a benzyl (Bn), or a 2,2,3,3-tetrahydropyranyl (THP) group (see Figure 1). Thus, a selective deprotonation at position 8 using either zinc- or magnesium-amide bases generated a metalated species of type **2** as depicted in Scheme 1. For example, purines **1a**, **1i**, and **1k** were readily zincated by using TMPZnCl·LiCl¹¹ within 30 minutes at 25 °C. Subsequent trapping with iodine (1.2 equiv) provided the corresponding iodinated compounds **3a–c** in 60–98% yields (Table 1, entries 1–3). Notably, if organomagnesium reagent TMPMgCl·LiCl¹² was used at –60 °C the yield was only slightly affected (entry 2). Bromination

SYNTHESIS 2013, 45, 3029–3037 Advanced online publication: 02.09.2013 DOI: 10.1055/s-0033-1338524; Art ID: SS-2013-T0427-OP

© Georg Thieme Verlag Stuttgart · New York

of purine **1i** and **1j** with 1,2-dibromo-1,1,2,2-tetrachloroethane proceeded under Barbier reaction conditions¹³ at 0 °C using bisamide zinc base TMP₂Zn·2MgCl₂·2LiCl.¹⁴ The 8-brominated compounds **3d** and **3e** were obtained after 15 minutes in 82% and 75% yield, respectively (entries 4, 5). Remarkably, using the same conditions as described above compound **1f** was brominated to furnish the 2,6,8-trihalogenopurine **3f** bearing three different halogens in 87% yield (entry 6). Similarly, derivative **1i** reacted with *S*-phenyl benzenesulfonothioate under Barbier reaction conditions at 0 °C affording 8-phenylthiopurine **3g** in 60% yield (entry 7). Copper(I)-catalyzed allylation¹⁵ (10 mol% CuCN·2LiCl) of derivative **1f** with 3-bromocyclohexene (-65 °C to 25 °C, 2 h) led to the allylated purine **3h** in 84% yield (entry 8).

Scheme 1 General reaction scheme for the selective metalation of purine derivatives of type 1 at position 8 and subsequent reaction with an electrophile: *Reagents and conditions*: (i) TMP-amide base; (ii) electrophile, 60–98%. See Table 1 for more details.

As shown in Scheme 2, the 8-zincated intermediates of type 4 underwent Pd-catalyzed Negishi cross-coupling reactions¹⁶ with Pd(dba)₂ (2 mol%), (*o*-furyl)₃P (4 mol%), and various aryl iodides (1.2 equiv) within a few hours (2–14 h) to afford the 8-arylated purines of type 5 in 48–97% yields. For example, purine 1c was readily metalated by using TMPZnCl·LiCl within 30 minutes at 25 °C. The organometallic intermediate reacted with either ethyl 4-io-dobenzoate or 4-iodoanisole at 25 °C to provide the purine derivatives 5a and 5b in 97% and 61% yield, re-

 Table 1
 Synthesis and Yields of Purine Derivatives of Type 3

1	1a		CI I
		I ₂	
2	1i	I ₂	N = N = N = N = N = N = N = N = N = N =
3	1k	I ₂	
4	1i	(CCl ₂ Br) ₂	$3c (60)^{c}$ $\bigvee_{N} \bigvee_{N} \bigvee_{Bn}^{N} Br$ $3d (82)^{c}$
5	1j	(CCl ₂ Br) ₂	$rac{Cl}{N}$ $rac{N}{N}$ $rac{N}{Bn}$ $rac{Bn}{Bn}$
6	1f	(CCl ₂ Br) ₂	
7	1i	PhSO ₂ SPh	$3f (87)^{e}$ $\bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{Bn} SPh$ $3g (60)^{e}$
8	1f	Br	
			3h (84) ^f

ses.

- ^d 1) TMPMgCl·LiCl (1.1 equiv), -60 °C, 15 min; 2) I₂ (1.2 equiv), -60 °C, 2.5 h.
- ° 1) Electrophile (1 equiv), 0 °C, 5 min; 2) TMP₂Zn·2MgCl₂·2LiCl (1.2 equiv), 0 °C to 25 °C, 15 min.
- ^f 1) ZnCl₂ (1 equiv), 25 °C, 5 min; 2) TMPMgCl·LiCl (1.13 equiv), -65 °C, 30 min; 3) CuCN·2LiCl (0.1 equiv), 3-bromocyclohexene (1.4 equiv), -65 °C to 25 °C, 2 h.

spectively (Table 2, entries 1, 2). Similarly, compound 1a furnished the 8-arylated 6-chloropurines 5c and 5d in 91% and 95% yield, respectively (entries 3, 4). Noticeably, derivative 5e was only detected in traces due to the deprotection of the THP group during the cross-coupling reaction. The unprotected arylated product was isolated instead in 75% yield (entry 5). Remarkably, functional groups like thioether and TMS are tolerated in position 2 during both the deprotonation and the Negishi cross-coupling reaction (entries 9–12). In the case of purine 1e, the cross-coupling reaction was performed at 45 °C for 14 hours leading to the trisubstituted purine 51 in 91% (entry 12). The same reaction was performed on 20 and 30 mmol scales furnishing the expected product 51 in 70% and 85% yield, respectively. Unfortunately attempts with aryl bromides or heteroaryl halides as electrophiles for the Negishi cross-coupling reaction failed.

Table 2 Synthesis and Yields of Purine Derivatives of Type 5

^{° 1)} TMPZnCl·LiCl (1.1 equiv), 25 °C, 30 min; 2) I₂ (1.2 equiv), 25 °C, 1 h.

^a Starting material.

^b Yield (%) of isolated analytically pure product is given in parentheses.

^c Obtained by palladium-catalyzed cross-coupling reaction using $Pd(dba)_2$ (2 mol%) and (*o*-furyl)₃P (4 mol%) at 25 °C for 2–14 h. ^d The deprotected product was obtained instead in 75% yield.

^e Obtained by palladium-catalyzed cross-coupling reaction using $Pd(dba)_2$ (2 mol%) and (*o*-furyl)₃P (4 mol%) at 45 °C for 14 h.

Scheme 2 General reaction scheme for the selective zincation of purine derivatives of type 1 at position 8 and subsequent Negishi crosscoupling reaction with an aryl iodide. *Reagents and conditions*: (i) TMPZnCl·LiCl (1.1 equiv), anhyd THF, 30 min, 25 °C; (ii) ArI (1.2 equiv), 48–97%. LiCl in 4 is omitted for clarity. See Table 2 for more details.

The deprotonation at position 6 of the purine scaffold was achieved with TMPMgCl·LiCl within 60 minutes at -20 °C leading to organomagnesium intermediates of type **6** as illustrated in Scheme 3. Thus, after subsequent iodolysis purine derivatives **5a** and **5b** furnished the corresponding 6-iodopurines **7a** and **7b** in 70% and 60% yield, respectively (Table 3, entries 1, 2). Negishi cross-

coupling reactions of compound **5a** and **5b** with iodobenzene and ethyl 4-iodobenzoate in the presence of Pd(dba)₂ (2 mol%) and (*o*-furyl)₃P (4 mol%) gave the 6,8-bisarylated products **7c** and **7d** in 55% and 63% yield, respectively (entries 3, 4). Particularly, starting from derivative **5i** and using the same conditions described above a trisubstituted purine **7e** was obtained in 53% yield.

Table 3	Synthesis and	Yields o	of Purine	Derivatives	of Type 7
I able o	Synthesis and	i icius (Ji i uime	Derryatives	or rype /

^a Starting material.

^b Yield (%) of isolated analytically pure product is given in parentheses.

 $^{\rm c}$ Transmetalation with ZnCl₂ (1.3 equiv) then palladium-catalyzed cross-coupling reaction using Pd(dba)₂ (2 mol%) and (*o*-furyl)₃P (4 mol%) at 25 $^{\circ}$ C for 3–14 h.

In conclusion, a regioselective functionalization of a broad range of protected purine derivatives has been achieved successfully at positions 8 and 6 via zinc and magnesium intermediates providing a large variety of polysubstituted purines after subsequent trapping with

Scheme 3 General reaction scheme for the selective magnesiation of purine derivatives of type 5 at position 6 and subsequent reaction with an electrophile. *Reagents and conditions*: (i) TMPMgCl·LiCl (1.2 equiv), anhyd THF, 1 h, -20 °C; (ii) electrophile, 53–70%. LiCl in 6 is omitted for clarity. See Table 3 for more details.

various electrophiles. This study completes our previous work⁹ by extending the scope of the purine scaffold and allows access now to a wide library of highly substituted compounds. Further studies concerning construction of new substituted derivatives are currently in progress.

All reactions were carried out under an argon atmosphere in flamedried glassware. Syringes, which were used to transfer anhydrous solvents or reagents, were purged with argon prior to use. THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under N2. 2,2,6,6-Tetramethylpiperidine (TMPH) was distilled prior to use. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H NMR spectroscopy (25 °C) and capillary GC. NMR spectra were recorded on Bruker ARX-200, AC-300, or WH-400 using CDCl3 as solvent. Standard abbreviations are used to indicate spin multiplicities. GC analyses were performed with instruments of type Hewlett-Packard 6890 or 5890 series II using a column of type HP 5. Column chromatography was performed using SiO₂ (0.040-0.063 mm, 230-400 mesh ASTM) from Merck. Melting points were measured using a Büchi B-540 apparatus and are uncorrected. Mass spectra and high-resolution mass spectra (HRMS) were recorded on Finnigan MAT 95Q or Finnigan MAT 90 instrument using electron impact (EI); where otherwise noted electrospray ionization (ESI) was used. TMPZnCl·LiCl,¹¹ TMPMgCl·LiCl,¹² TMP₂Zn·2MgCl,·2LiCl,¹⁴ CuCN·2LiCl,¹⁷ ZnCl₂,¹⁷ MOMCl solution in toluene¹⁸ as well as purines 1a, ¹⁹ 1e, ⁹ 1i, ²⁰ 1j, ²¹ and $1k^{22}$ were prepared according to literature procedures. The freshly prepared TMP-amide bases were titrated prior to use at 25 °C with benzoic acid using 4-(phenylazo)diphenylamine as indicator.

2-Chloro-9-(methoxymethyl)-9H-purine (1b)

A solution of MOMCl (30.0 mL, 2 M in toluene, 60 mmol, 2.3 equiv) was added dropwise to a solution of 2-chloro-9*H*-purine (4.0 g, 26 mmol, 1.0 equiv) and Et₃N (7.2 mL, 52 mmol, 2 equiv) in DME (300 mL) at 25 °C. The mixture was stirred at this temperature for 3 h, and then quenched with K_2CO_3 (ca. 10 g) and H_2O (200 mL). The aqueous layer was extracted with EtOAc (2 × 150 mL), then the combined organic layers were washed with H_2O (200 mL) and brine (300 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using CH₂Cl₂–EtOH (20:1) as eluent to lead to purine **1b**; yield: 3.0 g (58%); white solid; mp 113–115 °C.

¹H NMR (CDCl₃): δ = 9.01 (s, 1 H), 8.24 (s, 1 H), 5.61 (s, 2 H), 3.41 (s, 3 H).

¹³C NMR (CDCl₃): δ = 155.0, 153.5, 150.4, 145.9, 132.9, 74.1, 57.5.

MS (70 eV): *m/z* (%) = 200 (7), 198 (20), 170 (24), 169 (15), 168 (84), 167 (36), 52 (5), 45 (100).

HRMS: *m/z* calcd for C₇H₇ClN₄O: 198.0308; found: 198.0309.

9-(Methoxymethyl)-9H-purine (1c)

t-BuONO (0.50 mL, 4 mmol, 2 equiv) was added to a solution of 9-(methoxymethyl)-9*H*-purin-6-amine (0.56 g, 2 mmol, 1 equiv) in anhydrous THF (10 mL) at 25 °C. The mixture was heated under re-

Synthesis 2013, 45, 3029-3037

flux conditions for 3 h, then *t*-BuONO (0.50 mL, 4 mmol, 2 equiv) was added again, and the mixture stirred for further 3 h. After cooling to 25 °C, the solvents were removed in vacuo, and the crude material was purified by column chromatography using a gradient elution (CH₂Cl₂–MeOH, 100:0, then 100:1 to 30:1) to provide purine **1c**; yield: 0.23 g (70%); pale yellow solid; mp 87–88 °C.

¹H NMR (CDCl₃): δ = 9.17 (s, 1 H), 9.01 (s, 1 H), 8.24 (s, 1 H), 5.64 (s, 2 H), 3.38 (s, 3 H).

¹³C NMR (CDCl₃): δ = 153.1, 148.8, 145.2, 133.8, 73.9, 57.3.

MS (70 eV): *m*/*z* (%) = 164 (8), 135 (11), 134 (100), 133 (38), 78 (5), 45 (86).

HRMS: *m/z* calcd for C₇H₈N₄O: 164.0698; found: 164.0697.

2,6-Dichloro-9-(methoxymethyl)-9H-purine (1d)²³

A solution of MOMCl (7.50 mL, 2 M in toluene, 15 mmol, 1.5 equiv) was added dropwise to a solution of 2,6-dichloro-9*H*-purine (1.89 g, 10 mmol, 1.0 equiv) and K₂CO₃ (6.20 g, 45 mmol, 4.5 equiv) in DMF (20 mL) at 25 °C. The mixture was stirred at this temperature for 3 h, and then quenched with H₂O (20 mL). The aqueous layer was extracted with EtOAc (2×40 mL), then the combined organic layers were washed with H₂O (60 mL) and brine (60 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using a gradient elution (CH₂Cl₂–EtOH, 100:0 then 500:1 to 100:1) to provide purine **1d**; yield: 0.86 g (37%); white solid; mp 126–127 °C.

¹H NMR (CDCl₃): δ = 8.27 (s, 1 H), 5.61 (s, 2 H), 3.41 (s, 3 H).

¹³C NMR (CDCl₃): δ = 153.6, 152.1, 145.7, 130.6, 74.7, 57.6.

MS (70 eV): *m*/*z* (%) = 232 (9), 212 (9), 211 (12), 204 (40), 203 (20), 202 (62), 201 (21), 196 (12), 45 (100).

HRMS: m/z calcd for C₇H₆Cl₂N₄O: 231.9919; found: 231.9919.

6-Chloro-2-iodo-9-(methoxymethyl)-9H-purine (1f)

A solution of I_2 (0.95 g, 3.75 mmol, 1.5 equiv) in anhydrous THF (4 mL) was added dropwise to a solution of 6-chloro-9-(methoxymethyl)-2-(tributylstannyl)-9*H*-purine (1.22 g, 2.5 mmol, 1.0 equiv) in anhydrous THF (12 mL) at 25 °C. The mixture was stirred for 1 h, and then quenched with sat. aq Na₂S₂O₃ (10 mL). The aqueous layer was extracted with EtOAc (2 × 20 mL), then the combined organic layers were washed with H₂O (40 mL) and brine (60 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using pentane as eluent to furnish purine **1f**; yield: 0.73 g (90%); pale yellow solid; mp 128–130 °C.

¹H NMR (CDCl₃): $\delta = 8.17$ (s, 1 H), 5.60 (s, 2 H), 3.42 (s, 3 H).

¹³C NMR (CDCl₃): δ = 152.9, 150.8, 145.0, 131.5, 117.2, 74.8, 57.7.

MS (70 eV): *m*/*z* (%) = 325 (9), 324 (28), 296 (33), 294 (100), 197 (7), 45 (16).

HRMS: *m/z* calcd for C₇H₆ClIN₄O: 323.9275; found: 323.9252.

9-(Methoxymethyl)-2-(trimethylsilyl)-9H-purine (1g)

Pd/C (0.25 g, 40 wt%) and ammonium formate (1.25 g, 19.8 mmol, 7.9 equiv) were successively added to a solution of purine 1e (0.68 g, 2.5 mmol, 1.0 equiv) in MeOH (5 mL) at 45 °C. When the reaction started proceeding (intensive bubbling), the mixture was stirred for further 30 min until the starting material was completely converted as monitored on TLC (EtOAc). The solution was filtered through a pad of Celite. The pad was washed several times with EtOH and the combined filtrates were concentrated in vacuo. The crude material was dissolved in CH₂Cl₂ (100 mL) and the remaining ammonium formate was filtered off. The solvent was removed in vacuo and the resulting crude material was purified by column chromatography using EtOAc as eluent to afford purine 1g; yield: 0.55 g (90%); pale yellow oil.

¹H NMR (CDCl₃): δ = 9.12 (s, 1 H), 8.14 (s, 1 H), 5.58 (s, 2 H), 3.32 (s, 3 H), 0.30 (s, 9 H).

¹³C NMR (CDCl₃): δ = 174.6, 150.9, 147.1, 144.7, 132.3, 73.6, 57.5, -1.9.

HRMS (ESI): m/z calcd for $C_{10}H_{16}N_4OSi + H^+$: 237.1166; found: 237.1166.

9-(Methoxymethyl)-2-[(4-methoxyphenyl)thio]-9H-purine (1h) 4-Methoxythiophenol (168 mg, 1.2 mmol, 1.2 equiv) was added to a solution of *t*-BuOK (224 mg, 2.0 mmol, 2 equiv) in NMP (2 mL) at 25 °C. The mixture was stirred for 5 min at 110 °C, then purine **1b** (193 mg, 1.0 mmol, 1.0 equiv) was added, and the resulting mixture was heated for 1 h at this temperature. After cooling to 25 °C, EtOAc (30 mL) was added and the organic layer was washed with H₂O (3 × 15 mL) and brine (15 mL). The organic layer was dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using pentane–EtOAc (1:2) as eluent to afford purine **1h**; yield: 160 mg (53%); yellow oil.

¹H NMR (CDCl₃): δ = 8.87 (s, 1 H), 8.03 (s, 1 H), 7.55–7.50 (m, 2 H), 6.95–6.90 (m, 2 H), 5.37 (s, 2 H), 3.82 (s, 3 H), 3.23 (s, 3 H).

¹³C NMR (CDCl₃): δ = 167.2, 160.6, 152.8, 149.1, 144.2, 137.2, 131.1, 120.7, 114.6, 73.7, 57.7, 55.4.

MS (70 eV): *m/z* (%) = 304 (5), 303 (17), 302 (100), 301 (88), 272 (6), 271 (19), 259 (7), 257 (23), 139 (7), 45 (27).

HRMS: *m/z* calcd for C₁₄H₁₄N₄O₂S: 302.0837; found: 302.0829.

6-Chloro-8-iodo-9-(methoxymethyl)-9H-purine (3a)

Freshly prepared TMPZnCl·LiCl (0.92 mL, 1.2 M in THF, 1.1 mmol, 1.1 equiv) was added dropwise within 2 min to a solution of purine **1a** (199 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF (1.5 mL) at 25 °C. The mixture was stirred for 30 min, then a solution of I₂ (305 mg, 1.2 mmol, 1.2 equiv) in anhydrous THF (4 mL) was added dropwise. The mixture was stirred for 1 h, and then quenched with sat. aq Na₂S₂O₃ (10 mL). The aqueous layer was extracted with Et₂O ($2 \times 30 \text{ mL}$), then the combined organic layers were washed with H₂O (40 mL) and brine (40 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using pentane–EtOAc (1:2) as eluent to furnish purine **3a**; yield: 317 mg (98%); beige solid; mp 125–127 °C.

¹H NMR (CDCl₃): δ = 8.71 (s, 1 H), 5.61 (s, 2 H), 3.42 (s, 3 H).

 13 C NMR (CDCl₃): $\delta = 153.5, 152.3, 149.6, 133.7, 107.4, 76.0, 57.6.$

MS (70 eV): *m/z* (%) = 323 (20), 296 (28), 295 (9), 294 (94), 292 (8), 197 (7), 169 (29), 168 (9), 167 (100), 77 (7), 45 (66).

HRMS: *m/z* calcd for C₇H₆ClIN₄O: 323.9275; found: 323.9266.

9-Benzyl-8-iodo-9*H*-purine (3b)²⁴

Method A: Freshly prepared TMPZnCl·LiCl (0.92 mL, 1.2 M in THF, 1.1 mmol, 1.1 equiv) was added dropwise within 2 min to a solution of purine **1i** (210 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF (1.5 mL) at 25 °C. The mixture was stirred for 30 min, then a solution of I₂ (305 mg, 1.2 mmol, 1.2 equiv) in anhydrous THF (4 mL) was added dropwise. The mixture was stirred for 1 h, and then quenched with sat. aq Na₂S₂O₃ (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL), then the combined organic layers were washed with H₂O (40 mL) and brine (40 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using pentane–Et₂O (1:9) as eluent to furnish purine **3b**; yield: 270 mg (80%); white solid; mp 211–213 °C.

Method B: Freshly prepared TMPMgCl·LiCl (0.92 mL, 1.2 M in THF, 1.1 mmol, 1.1 equiv) was slowly added dropwise within 5 min to a solution of purine **1i** (210 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF (4 mL) at -60 °C. The mixture was stirred for 15 min, then a solution of I₂ (305 mg, 1.2 mmol, 1.2 equiv) in anhydrous THF (3 mL) was added dropwise. The mixture was stirred for 2.5 h, and then quenched with sat. aq Na₂S₂O₃ (10 mL). After workup and purification as described above, purine **3b** was obtained as a white solid; yield: 284 mg (84%).

¹H NMR (CDCl₃): δ = 9.08 (s, 1 H), 8.95 (s, 1 H), 7.35–7.31 (m, 5 H), 5.48 (s, 2 H).

 13 C NMR (CDCl₃): δ = 152.8, 147.1, 136.4, 134.7, 128.9, 128.5, 127.9, 108.3, 49.0.

MS (70 eV): *m/z* (%) = 337 (5), 336 (41), 335 (18), 210 (16), 209 (100), 208 (9), 104 (6), 92 (7), 91 (84), 65 (16).

HRMS: *m*/*z* calcd for C₁₂H₉IN₄: 335.9872; found: 335.9859.

6-Chloro-8-iodo-9-(tetrahydro-2*H*-pyran-2-yl)-9*H*-purine $(3c)^{25}$

Freshly prepared TMPZnCl·LiCl (1.0 mL, 1.1 M in THF, 1.1 mmol, 1.1 equiv) was added dropwise within 2 min to a solution of purine **1k** (239 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF (1.5 mL) at 25 °C. The mixture was stirred for 30 min, then a solution of I₂ (305 mg, 1.2 mmol, 1.2 equiv) in anhydrous THF (2 mL) was added dropwise. The mixture was stirred for 1 h, and then quenched with sat. aq Na₂S₂O₃ (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL), then the combined organic layers were washed with H₂O (40 mL) and brine (40 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using CH₂Cl₂ as eluent to afford purine **3c**; yield: 220 mg (60%); white solid; mp 143–145 °C.

¹H NMR (CDCl₃): δ = 8.68 (s, 1 H), 5.67 (dd, *J* = 11.4, 2.4 Hz, 1 H), 4.25–4.19 (m, 1 H), 3.79–3.71 (m, 1 H), 3.20–3.07 (m, 1 H), 2.20–2.13 (m, 1 H), 1.94–3.63 (m, 4 H).

¹³C NMR (CDCl₃): δ = 152.5, 151.6, 149.5, 134.3, 106.6, 87.4, 69.3, 28.8, 24.6, 23.3.

MS (70 eV): *m/z* (%) = 282 (27), 281 (6), 280 (100), 245 (27), 127 (6), 118 (7), 99 (7), 91 (6), 85 (6).

HRMS: *m*/*z* calcd for C₁₀H₁₀ClIN₄O: 363.9588; found: 363.9580.

Metalation at Position 8 of Purines Using

TMP₂Zn·2MgCl₂·2LiCl as Base and Subsequent Quench with Electrophile; General Procedure 1 (GP1)

Freshly prepared TMP₂Zn·2MgCl₂·2LiCl (1.2 equiv) was added dropwise within 2 min to a solution of the desired purine (1.0 equiv) and the desired electrophile (1.0 equiv) in anhydrous THF (c = ca.0.5 M) at 0 °C. The mixture was allowed to warm up to 25 °C over 15 min, and then quenched with sat. aq NH₄Cl (10 mL). The aqueous layer was extracted with Et₂O (3 × 20 mL), then the combined organic layers were washed with H₂O (30 mL) and brine (30 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography.

9-Benzyl-8-bromo-9H-purine (3d)²⁶

Starting from purine **1i** (210 mg, 1.0 mmol), following GP1 and using 1,2-dibromo-1,1,2,2-tetrachloroethane as electrophile, the desired purine **3d** was obtained after purification by column chromatography using a gradient elution (CH₂Cl₂–MeOH, 200:0, then 200:1 to 100:1); yield: 238 mg (82%); white solid; mp 130–131 °C.

 ^1H NMR (CDCl_3): δ = 9.05 (s, 1 H), 8.99 (s, 1 H), 7.37–7.31 (m, 5 H), 5.49 (s, 2 H).

¹³C NMR (CDCl₃): δ = 152.9, 152.5, 147.2, 134.5, 134.3, 134.2, 129.0, 128.5, 127.9, 47.6.

MS (70 eV): *m/z* (%) = 290 (36), 289 (20), 288 (37), 287 (16), 209 (100), 92 (13), 91 (87), 65 (28).

HRMS: *m/z* calcd for C₁₂H₉BrN₄: 288.0011; found: 287.9994.

9-Benzyl-8-bromo-6-chloro-9H-purine (3e)²⁷

Starting from purine **1j** (245 mg, 1.0 mmol), following GP1 and using 1,2-dibromo-1,1,2,2-tetrachloroethane as electrophile, the desired purine **3e** was obtained after purification by column chromatography using a gradient elution (CH₂Cl₂-pentane, 5:1 to 7:1); yield: 240 mg (75%); white solid; mp 87–88 °C.

¹H NMR (CDCl₃): δ = 8.75 (s, 1 H), 7.36–7.31 (m, 5 H), 5.49 (s, 2 H).

¹³C NMR (CDCl₃): δ = 152.2, 152.1, 149.5, 134.5, 134.1, 134.0, 129.0, 128.7, 128.0, 48.3.

MS (70 eV): *m/z* (%) = 324 (15), 323 (7), 322 (11), 245 (14), 244 (6), 243 (45), 92 (6), 91 (100), 65 (9).

HRMS: *m/z* calcd for C₁₂H₈BrClN₄: 321.9621; found: 321.9617.

8-Bromo-6-chloro-2-iodo-9-(methoxymethyl)-9H-purine (3f)

Starting from purine 1f(325 mg, 1.0 mmol), following GP1 and using 1,2-dibromo-1,1,2,2-tetrachloroethane as electrophile, the desired purine 3f was obtained after purification by column chromatography using a gradient elution (EtOAc-pentane, 1:3 to 1:2); yield: 348 mg (87%); white solid; mp 144–146 °C.

¹H NMR (CDCl₃): δ = 5.60 (s, 2 H), 3.44 (s, 3 H).

¹³C NMR (CDCl₃): δ = 153.8, 149.0, 134.3, 131.6, 117.1, 74.9, 57.8.

MS (70 eV): *m/z* (%) = 404 (16), 402 (13), 376 (12), 374 (48), 372 (35), 323 (15), 295 (13), 293 (40), 45 (100).

HRMS: *m/z* calcd for C₇H₅BrClIN₄: 401.8380; found: 401.8376.

9-Benzyl-8-(phenylthio)-9H-purine (3g)

Starting from purine **1i** (420 mg, 2.0 mmol), following GP1 (the base was added dropwise within 1.5 h) and using PhSO₂SPh as electrophile, the desired purine **3g** was obtained after purification by column chromatography using a gradient elution (CH₂Cl₂–MeOH, 400:1 to 100:1); yield: 380 mg (60%); white solid; mp 134–135 °C.

¹H NMR (CDCl₃): δ = 8.94 (s, 1 H), 8.93 (s, 1 H), 7.61–7.57 (m, 2 H), 7.46–7.41 (m, 3 H), 7.40–7.31 (m, 5 H), 5.50 (s, 2 H).

¹³C NMR (CDCl₃): δ = 155.6, 153.5, 151.7, 145.7, 134.9, 134.3, 134.2, 129.9, 129.8, 129.0, 128.4, 128.0, 127.2, 46.5.

MS (70 eV): *m/z* (%) = 319 (17), 318 (83), 317 (54), 227 (7), 209 (30), 167 (39), 92 (7), 91 (100), 65 (12).

HRMS: *m*/*z* calcd for C₁₈H₁₄N₄S: 318.0939; found: 318.0935.

6-Chloro-8-(cyclohex-2-en-1-yl)-2-iodo-9-(methoxymethyl)-9H-purine (3h)

A solution of ZnCl₂ (1.0 mL, 1 M in THF, 1.0 mmol, 1.0 equiv) was added to a solution of purine **1f** (325 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF (1 mL) at 25 °C. The mixture was stirred for 5 min, then cooled to -65 °C prior to add freshly prepared TMPMgCl·LiCl (1.0 mL, 1.13 M in THF, 1.13 mmol, 1.13 equiv) dropwise within 2 min. The mixture was stirred for 30 min, then a solution of CuCN·2LiCl (0.1 mL, 1 M in THF, 0.1 mmol, 0.1 equiv) and 3-bromocyclohexene (225 mg, 1.4 mmol, 1.4 equiv) were successively added. The mixture was allowed to warm up to 25 °C over 2 h, and then quenched with sat. aq NH₄Cl (10 mL). The aqueous layer was extracted with Et_2O (3 × 20 mL), then the combined organic layers were washed with H_2O (30 mL) and brine (30 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using pentane–Et₂O (3:1) as eluent to furnish purine **3h**; yield: 340 mg (84%); white solid; 102–104 °C.

 ^1H NMR (CDCl₃): δ = 6.06–5.99 (m, 1 H), 5.79–5.73 (m, 1 H), 5.60 (s, 2 H), 3.97–3.88 (m, 1 H), 3.40 (s, 3 H), 2.24–2.10 (m, 3 H), 2.08–1.94 (m, 2 H), 1.79–1.64 (m, 1 H).

¹³C NMR (CDCl₃): δ = 161.8, 154.5, 149.0, 130.8, 130.8, 124.3, 115.7, 73.2, 57.4, 35.5, 28.1, 24.5, 21.2.

MS (70 eV): *m*/*z* (%) = 406 (13), 404 (39), 375 (13), 374 (28), 373 (19), 361 (28), 359 (23), 345 (14), 308 (15), 81 (14), 79 (14), 45 (100).

HRMS: *m/z* calcd for C₁₃H₁₄ClIN₄O: 403.9901; found: 403.9892.

Negishi Cross-Coupling Reactions; General Procedure 2 (GP2) Freshly prepared TMPZnCl·LiCl (1.1 M in THF, 1.1 equiv) was added dropwise within 2 min to a solution of desired purine deriva**Negishi Cross-Coupling Reactions; General Procedure 3 (GP3)** The reaction was carried out as described above in GP2 except that the cross-coupling reaction was performed at 45 °C for 14 h.

tive (1 equiv) in anhydrous THF (c = ca. 0.7 M) at 25 °C. The reac-

Ethyl 4-[9-(Methoxymethyl)-9H-purin-8-yl]benzoate (5a)

Starting from purine **1c** (0.82 g, 5.0 mmol), following GP2 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine **5a** was obtained after purification by column chromatography using EtOAc as eluent; yield: 1.51 g (97%); white solid; mp 117–119 °C.

¹H NMR (CDCl₃): δ = 9.34 (s, 1 H), 9.18 (s, 1 H), 8.24–8.19 (m, 4 H), 5.66 (s, 2 H), 4.43 (q, *J* = 7.2 Hz, 2 H), 3.60 (s, 3 H), 1.43 (t, *J* = 7.2 Hz, 3 H).

¹³C NMR (CDCl₃): δ = 165.7, 156.8, 154.4, 152.8, 147.7, 133.3, 133.1, 132.0, 130.1, 129.8, 73.5, 61.5, 57.9, 14.3.

MS (70 eV): *m/z* (%) = 312 (18), 283 (13), 282 (64), 281 (77), 267 (17), 253 (13), 209 (17), 133 (11), 45 (100).

HRMS: m/z calcd for C₁₆H₁₆N₄O₃: 312.1222; found: 312.1216.

9-(Methoxymethyl)-8-(4-methoxyphenyl)-9*H*-purine (5b)

Starting from purine **1c** (164 mg, 1.0 mmol), following GP2 and using 4-iodoanisole as aryl iodide, the desired purine **5b** was obtained after purification by column chromatography using Et₂O as eluent; yield: 165 mg (61%); white solid; mp 164–166 °C.

 1H NMR (CDCl₃): δ = 9.10 (s, 1 H), 8.97 (s, 1 H), 8.09–8.04 (m, 2 H), 7.09–7.04 (m, 2 H), 5.62 (s, 2 H), 3.89 (s, 3 H), 3.59 (s, 3 H).

¹³C NMR (CDCl₃): δ = 162.1, 156.8, 154.1, 152.3, 147.2, 133.6, 131.4, 120.9, 114.5, 73.2, 57.6, 55.5.

MS (70 eV): *m*/*z* (%) = 270 (100), 240 (61), 239 (94), 227 (18), 226 (11), 225 (25), 209 (10), 134 (11), 133 (12), 45 (81).

HRMS: m/z calcd for C₁₄H₁₄N₄O₂: 270.1117; found: 270.1109.

Ethyl 4-[6-Chloro-9-(methoxymethyl)-9*H*-purin-8-yl]benzoate (5c)

Starting from purine **1a** (199 mg, 1.0 mmol), following GP2 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine **5c** was obtained after purification by column chromatography using pentane–EtOAc (5:1) as eluent; yield: 317 mg (91%); white solid; mp 142–144 °C.

¹H NMR (CDCl₃): δ = 8.77 (s, 1 H), 8.21–8.18 (m, 4 H), 5.63 (s, 2 H), 4.42 (q, *J* = 7.3 Hz, 2 H), 3.58 (s, 3 H), 1.42 (t, *J* = 7.3 Hz, 3 H).

¹³C NMR (CDCl₃): δ = 165.7, 155.7, 154.2, 152.2, 150.6, 132.9, 132.0, 131.1, 130.0, 129.8, 73.9, 61.5, 57.8, 14.3.

MS (70 eV): *m/z* (%) = 348 (15), 346 (39), 317 (34), 316 (50), 315 (92), 314 (97), 300 (20), 286 (10), 271 (12), 243 (14), 45 (100).

HRMS: *m*/*z* calcd for C₁₆H₁₅ClN₄O₃: 346.0833; found 346.0823.

6-Chloro-9-(methoxymethyl)-8-(4-methoxyphenyl)-9*H*-purine (5d)

Starting from purine **1a** (1.19 g, 6.0 mmol), following GP2 and using 4-iodoanisole as aryl iodide, the desired purine **5d** was obtained after purification by column chromatography using a gradient elution (EtOAc-pentane, 1:1 to 2:1); yield: 1.74 g (95%); white solid; mp 157–159 °C.

¹H NMR (CDCl₃): $\delta = 8.74$ (s, 1 H), 8.10 (d, J = 8.6 Hz, 2 H), 7.07 (d, J = 9.1 Hz, 2 H), 5.63 (s, 2 H), 3.91 (s, 3 H), 3.59 (s, 3 H).

¹³C NMR (CDCl₃): δ = 162.3, 157.0, 154.4, 151.5, 149.6, 131.6, 131.1, 120.3, 114.5, 73.9, 57.7, 55.5.

MS (70 eV): *m/z* (%) = 306 (29), 305 (16), 304 (100), 276 (11), 275 (16), 274 (35), 273 (39), 261 (13), 259 (12), 45 (65).

HRMS: *m/z* calcd for C₁₄H₁₃ClN₄O₂: 304.0727; found: 304.0721.

Ethyl 4-[2-Chloro-9-(methoxymethyl)-9*H*-purin-8-yl]benzoate (5f)

Starting from purine **1b** (199 mg, 1.0 mmol), following GP2 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine **5f** was obtained after purification by column chromatography using pentane–EtOAc (4:1) as eluent; yield: 200 mg (58%); white solid; mp 142–143 °C.

¹H NMR (CDCl₃): δ = 9.02 (s, 1 H), 8.25–8.23 (m, 2 H), 8.20–8.18 (m, 2 H), 5.62 (s, 2 H), 4.44 (q, *J* = 7.2 Hz, 2 H), 3.61 (s, 3 H), 1.44 (t, *J* = 7.2 Hz, 3 H).

¹³C NMR (CDCl₃): δ = 165.7, 156.4, 155.6, 154.7, 149.8, 133.1, 132.4, 132.0, 130.2, 129.7, 73.4, 61.5, 57.8, 14.3.

MS (70 eV): *m/z* (%) = 348 (17), 346 (48), 318 (24), 317 (41), 316 (59), 315 (79), 301 (16), 287 (13), 271 (14), 243 (21), 45 (100).

HRMS: *m/z* calcd for C₁₆H₁₅ClN₄O₃: 346.0833; found: 346.0824.

Ethyl 4-[2,6-Dichloro-9-(methoxymethyl)-9*H*-purin-8-yl]benzoate (5g)

Starting from purine **1d** (1.4 g, 6.0 mmol), following GP2 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine **5g** was obtained after purification by column chromatography using pentane–EtOAc (2:1) as eluent; yield: 1.4 g (62%); beige solid; mp 149–151 °C.

¹H NMR (CDCl₃): δ = 8.25–8.18 (m, 4 H), 5.61 (s, 2 H), 4.44 (q, J = 7.2 Hz, 2 H), 3.61 (s, 3 H), 1.44 (t, J = 7.2 Hz, 3 H).

¹³C NMR (CDCl₃): δ = 165.7, 156.4, 155.5, 153.1, 151.4, 133.3, 131.6, 130.3, 130.1, 129.9, 74.0, 61.5, 58.0, 14.3.

MS (70 eV): *m*/*z* (%) = 382 (13), 380 (19), 352 (13), 351 (20), 350 (21), 349 (26), 335 (6), 274 (5), 45 (100).

HRMS: *m/z* calcd for C₁₆H₁₄Cl₂N₄O₃: 380.0443; found: 380.0437.

2,6-Dichloro-9-(methoxymethyl)-8-(4-methoxyphenyl)-9H-purine $(\mathbf{5h})^{23}$

Starting from purine **1d** (2.33 g, 10.0 mmol), following GP2 and using 4-iodoanisole as aryl iodide, the desired purine **5h** was obtained after purification by column chromatography using CH_2Cl_2 as eluent; yield: 2.40 g (71%); white solid; mp 179–181 °C.

 ^1H NMR (CDCl₃): δ = 8.08–8.03 (m, 2 H), 7.06–7.02 (m, 2 H), 5.57 (s, 2 H), 3.89 (s, 3 H), 3.59 (s, 3 H).

¹³C NMR (CDCl₃): δ = 162.4, 157.6, 155.7, 152.2, 150.1, 131.6, 130.3, 120.0, 114.6, 74.0, 57.8, 55.5.

MS (70 eV): *m/z* (%) = 340 (22), 338 (34), 310 (11), 309 (10), 308 (17), 307 (12), 295 (6), 293 (6), 133 (11), 45 (100).

HRMS: *m/z* calcd for C₁₄H₁₂Cl₂N₄O₂: 338.0337; found: 338.0327.

9-(Methoxymethyl)-8-[3-(trifluoromethyl)phenyl]-2-(trimethylsilyl)-9*H*-purine (5i)

Starting from purine 1g (1.90 g, 8.0 mmol), following GP2 and using 1-iodo-3-(trifluoromethyl)benzene as aryl iodide, the desired purine 5i was obtained after purification by column chromatography using pentane–EtOAc (3:1) as eluent; yield: 1.45 g (48%); white solid; mp 135–136 °C.

¹H NMR (CDCl₃): δ = 9.27 (s, 1 H), 8.46 (br s, 1 H), 8.36–8.34 (m, 1 H), 7.85–7.83 (m, 1 H), 7.73–7.69 (m, 1 H), 5.69 (s, 2 H), 3.64 (s, 3 H), 0.44 (s, 9 H).

¹³C NMR (CDCl₃): δ = 174.7, 154.4, 153.0, 146.7, 132.8 (q, ³*J*_{C,F} = 1 Hz), 132.1, 131.7 (q, ²*J*_{C,F} = 33 Hz), 129.7, 129.6, 127.7 (q, ³*J*_{C,F} = 4 Hz), 126.7 (q, ³*J*_{C,F} = 4 Hz), 123.7 (q, ¹*J*_{C,F} = 272 Hz), 73.1, 57.9, -1.8.

HRMS (ESI): m/z calcd for $C_{17}H_{19}F_3N_4OSi + H^+$: 381.1353; found: 381.1350.

9-(Methoxymethyl)-8-(4-methoxyphenyl)-2-[(4-methoxyphenyl)thio]-9*H*-purine (5j)

Starting from purine **1** \hat{h} (302 mg, 1.0 mmol), following GP2 and using 4-iodoanisole as aryl iodide, the desired purine **5** \hat{j} was obtained after purification by column chromatography using a gradient elution (EtOAc-pentane, 1:1 to 8:1); yield: 345 mg (85%); orange solid; mp 150–152 °C.

¹H NMR (CDCl₃): δ = 8.86 (s, 1 H), 7.99 (d, *J* = 8.6 Hz, 2 H), 7.57 (d, *J* = 8.6 Hz, 2 H), 7.02 (d, *J* = 9.1 Hz, 2 H), 6.96 (d, *J* = 8.6 Hz, 2 H), 5.35 (s, 2 H), 3.86–3.85 (m, 6 H), 3.35 (s, 3 H).

 13 C NMR (CDCl₃): δ = 166.0, 161.8, 160.4, 155.5, 154.9, 147.5, 137.2, 131.1, 130.7, 121.0, 120.8, 114.5, 114.4, 73.2, 57.7, 55.3, 55.3.

MS (70 eV): *m/z* (%) = 409 (40), 408 (100), 407 (79), 363 (39), 69 (36), 57 (52), 55 (47), 44 (48), 43 (35), 41 (44).

HRMS: *m/z* calcd for C₂₁H₂₀N₄O₃S: 408.1256; found: 408.1252.

Ethyl 4-[9-(Methoxymethyl)-2-(trimethylsilyl)-9*H*-purin-8-yl]benzoate (5k)⁹

Starting from purine 1g (236 mg, 1.0 mmol), following GP2 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine 5k was obtained after purification by column chromatography using pentane–EtOAc (9:1) as eluent; yield: 200 mg (52%); white solid; mp 179–180 °C.

¹H NMR (CDCl₃): δ = 9.24 (s, 1 H), 8.20 (s, 4 H), 5.67 (s, 2 H), 4.40 (q, *J* = 7.2 Hz, 2 H), 3.60 (s, 3 H), 1.40 (t, *J* = 7.1 Hz, 3 H), 0.41 (s, 9 H).

¹³C NMR (CDCl₃): δ = 174.7, 165.8, 154.8, 153.0, 146.8, 132.9, 132.6, 132.2, 130.0, 129.6, 73.1, 61.4, 57.9, 14.3, -1.8.

MS (70 eV): *m*/*z* (%) = 384 (79), 383 (25), 369 (61), 351 (30), 350 (30), 338 (25), 337 (100), 89 (36), 73 (24), 45 (31).

HRMS: m/z calcd for C₁₉H₂₄N₄O₃Si: 384.1618; found: 384.1620.

Ethyl 4-[6-Chloro-9-(methoxymethyl)-2-(trimethylsilyl)-9H-

purin-8-yl]benzoate (51)⁹ Starting from purine 1e (271 mg, 1.0 mmol), following GP3 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine 5l was obtained after purification by column chromatography using hexane–EtOAc (10:1) as eluent; yield: 380 mg (91%); white solid; mp 121–122 °C. The reaction was performed also on 20 and 30 mmol scales furnishing the desired purine 5l in 70% and 85% yield, respectively.

¹H NMR (CDCl₃): δ = 8.20 (s, 4 H), 5.65 (s, 2 H), 4.41 (q, *J* = 7.2 Hz, 2 H), 3.60 (s, 3 H), 1.41 (t, *J* = 7.1 Hz, 3 H), 0.40 (s, 9 H).

¹³C NMR (CDCl₃): δ = 175.3, 165.8, 154.9, 153.5, 149.5, 132.8, 132.3, 130.0, 129.9, 129.8, 73.8, 61.4, 58.0, 14.3, -1.9.

MS (70 eV): *m*/*z* (%) = 418 (55), 404 (100), 389 (64), 388 (51), 384 (100), 374 (72), 93 (57), 57 (46), 45 (83), 43 (56).

HRMS: *m/z* calcd for C₁₉H₂₃ClN₄O₃Si: 418.1228; found: 418.1225.

Ethyl 4-[6-Iodo-9-(methoxymethyl)-9*H*-purin-8-yl]benzoate (7a)

À solution of purine **5a** (312 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF (10 mL) was added dropwise within 3 min to freshly prepared TMPMgCl·LiCl (1.3 mL, 0.94 M in THF, 1.2 mmol, 1.2 equiv) at -20 °C. The reaction mixture was stirred for 1 h prior to add a solution of I₂ (1.00 g, 3.9 mmol, 3.9 equiv) in anhydrous THF (2 mL). The resulting mixture was allowed to warm up to 0 °C over 3 h, and then quenched with sat. aq Na₂S₂O₃ (10 mL). The aqueous layer was extracted with EtOAc (2 × 20 mL), then the combined organic layers were washed with H₂O (30 mL) and brine (30 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using pentane–EtOAc

(1:1) as eluent to furnish purine 7a; yield: 306 mg (70%); beige solid; mp 152–154 °C.

¹H NMR (CDCl₃): δ = 8.68 (s, 1 H), 8.24–8.20 (m, 4 H), 5.61 (s, 2 H), 4.44 (q, *J* = 7.3 Hz, 2 H), 3.59 (s, 3 H), 1.44 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (CDCl₃): δ = 165.7, 155.1, 152.2, 150.5, 138.1, 133.0, 132.1, 130.1, 129.9, 121.6, 73.8, 61.5, 57.8, 14.3.

MS (70 eV): m/z (%) = 439 (14), 438 (62), 409 (17), 408 (100), 407 (88), 393 (17), 239 (11), 238 (14), 221 (11), 207 (16), 45 (70). HRMS: m/z calcd for C₁₆H₁₅IN₄O₃: 438.0189; found: 438.0182.

6-Iodo-9-(methoxymethyl)-8-(4-methoxyphenyl)-9*H*-purine (7b)

A solution of purine **5b** (270 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF (10 mL) was added dropwise within 3 min to freshly prepared TMPMgCl·LiCl (1.3 mL, 0.94 M in THF, 1.2 mmol, 1.2 equiv) at -20 °C. The reaction mixture was stirred for 1 h prior to add a solution of I₂ (1.00 g, 3.9 mmol, 3.9 equiv) in anhydrous THF (2 mL). The resulting mixture was allowed to warm up to 0 °C over 3 h. and then quenched with sat. aq Na₂S₂O₃ (10 mL). The aqueous layer was extracted with EtOAc (2 × 20 mL), then the combined organic layers were washed with H₂O (30 mL) and brine (30 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by column chromatography using pentane–Et₂O (1:1) as eluent to furnish purine **7b**; yield: 238 mg (60%); beige solid; mp 156–158 °C.

 ^1H NMR (CDCl₃): δ = 8.63 (s, 1 H), 8.10–8.08 (m, 2 H), 7.08–7.06 (m, 2 H), 5.59 (s, 2 H), 3.90 (s, 3 H), 3.58 (s, 3 H).

¹³C NMR (CDCl₃): δ = 162.3, 156.3, 151.6, 150.6, 138.1, 131.7, 120.3, 120.2, 114.5, 73.9, 57.7, 55.5.

MS (70 eV): *m*/*z* (%) = 397 (15), 396 (100), 366 (21), 365 (23), 269 (12), 239 (11), 238 (9), 197 (7), 133 (12), 45 (30).

HRMS: *m*/*z* calcd for C₁₄H₁₃IN₄O₂: 396.0083; found: 396.0074.

Negishi Cross-Coupling Reactions; General Procedure 4 (GP4) A solution of the desired purine derivative in anhydrous THF (c = ca. 0.1 M) was added dropwise within 3 min to freshly prepared TMPMgCl·LiCl (0.94 M in THF, 1.2 equiv) at -20 °C. The reaction mixture was stirred for 1 h prior to add a solution of ZnCl₂ (1 M in THF, 1.3 equiv). The resulting reaction mixture was allowed to warm up to 25 °C over 30 min, then Pd(dba)₂ (2 mol%), (*o*-furyl)₃P (4 mol%), and the desired aryl iodide (1.3 equiv) were successively added. After the completion of the reaction (checked by GC-analysis of reaction aliquots quenched with sat. aq NH₄Cl, 3–14 h), the reaction mixture was extracted with EtOAc (3 × 20 mL) and the combined organic layers were washed with H₂O (30 mL) and brine (30 mL), dried (Na₂SO₄), and concentrated in vacuo. The crude material was purified by column chromatography.

Ethyl 4-[9-(Methoxymethyl)-6-phenyl-9*H*-purin-8-yl]benzoate (7c)

Starting from purine **5a** (312 mg, 1.0 mmol), following GP4 and using 4-iodobenzene as aryl iodide, the desired purine **7c** was obtained after purification by column chromatography using pentane–EtOAc (5:1) as eluent; yield: 245 mg (63%); beige solid; mp 156–157 °C.

¹H NMR (CDCl₃): δ = 9.07 (s, 1 H), 8.94–8.92 (m, 2 H), 8.28–8.23 (m, 4 H), 7.61–7.43 (m, 3 H), 5.68 (s, 2 H), 4.45 (q, *J* = 7.0 Hz, 2 H), 3.62 (s, 3 H), 1.45 (t, *J* = 7.1 Hz, 3 H).

¹³C NMR (CDCl₃): δ = 165.8, 155.1, 154.7, 154.2, 152.4, 135.2, 132.8, 132.6, 131.2, 130.5, 130.0, 129.9, 129.8, 128.7, 73.4, 61.4, 57.6, 14.3.

MS (70 eV): *m/z* (%) = 388 (26), 359 (9), 358 (46), 357 (100), 343 (10), 329 (13), 285 (6), 209 (9), 45 (23).

HRMS: m/z calcd for C₂₂H₂₀N₄O₃: 388.1535; found: 388.1529.

Ethyl 4-[9-(Methoxymethyl)-8-(4-methoxyphenyl)-9*H*-purin-6-yl]benzoate (7d)

Starting from purine **5b** (270 mg, 1.0 mmol), following GP4 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine **7d** was obtained after purification by column chromatography using pentane–EtOAc (3:1) as eluent; yield: 230 mg (55%); beige solid; mp 158–159 °C.

¹H NMR (CDCl₃): δ = 9.05–9.01 (m, 3 H), 8.24–8.22 (m, 2 H), 8.18–8.14 (m, 2 H), 7.12–7.08 (m, 2 H), 5.68 (s, 2 H), 4.43 (q, *J* = 7.0 Hz, 2 H), 3.92 (s, 3 H), 3.62 (s, 3 H), 1.44 (t, *J* = 7.1 Hz, 3 H).

¹³C NMR (CDCl₃): δ = 166.3, 162.1, 156.4, 155.6, 151.7, 151.7, 139.5, 132.1, 131.5, 131.1, 129.8, 129.7, 121.0, 114.5, 73.4, 61.1, 57.5, 55.5, 14.3.

MS (70 eV): *m*/*z* (%) = 419 (21), 418 (86), 389 (9), 388 (43), 387 (100), 373 (17), 359 (15), 315 (9), 300 (9), 159 (8), 45 (28).

HRMS: m/z calcd for C₂₃H₂₂N₄O₄: 418.1641; found 418.1640.

Ethyl 4-{9-(Methoxymethyl)-8-[3-(trifluoromethyl)phenyl]}-2-(trimethylsilyl)-9*H*-purin-6-yl)benzoate (7e)

Starting from purine **5i** (380 mg, 1.0 mmol), following GP4 and using ethyl 4-iodobenzoate as aryl iodide, the desired purine **7e** was obtained after purification by column chromatography using pentane–CH₂Cl₂ (5:4) as eluent; yield: 280 mg (55%); beige solid; mp 148–149 °C.

¹H NMR (CDCl₃): δ = 9.10–9.06 (m, 2 H), 8.52 (br s, 1 H), 8.45– 8.42 (m, 1 H), 8.27–8.23 (m, 2 H), 7.87–7.84 (m, 1 H), 7.76–7.71 (m, 1 H), 5.72 (s, 2 H), 4.44 (q, *J* = 7.2 Hz, 2 H), 3.66 (s, 3 H), 1.45 (t, *J* = 7.2 Hz, 3 H), 0.49 (s, 9 H).

¹³C NMR (CDCl₃): δ = 174.0, 166.5, 154.6, 153.9, 150.8, 140.4, 133.0 (q, ${}^{4}J_{CF}$ = 1 Hz), 131.9, 131.7 (q, ${}^{2}J_{CF}$ = 33 Hz), 130.0, 129.8, 129.7, 129.7, 129.6, 127.5 (q, ${}^{3}J_{CF}$ = 4 Hz), 126.8 (q, ${}^{3}J_{CF}$ = 4 Hz), 123.8 (q, ${}^{1}J_{CF}$ = 272 Hz), 73.2, 61.1, 57.8, 14.3, -1.7.

HRMS (ESI): m/z calcd for $C_{26}H_{27}F_3N_4O_3Si + H^+$: 529.1877; found: 529.1872.

Acknowledgment

We thank the European Research Council (ERC-227763) for financial support as well as Rockwood Lithium GmbH (Frankfurt), Evonik AG (Hanau), W. C. Heraeus GmbH (Hanau), and BASF AG (Ludwigshafen) for the generous gift of chemicals. We also acknowledge Dr. Vladimir Malakhov and Christelle Pecceu for their helpful supports.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (1) Current address: Medicinal Chemistry Research, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
- (2) (a) Rosemeyer, H. *Chem. Biodiversity* 2004, *1*, 361.
 (b) Legraverend, M.; Grierson, D. S. *Bioorg. Med. Chem.* 2006, *14*, 3987. (c) Brændvang, M.; Gundersen, L.-L. *Bioorg. Med. Chem.* 2007, *15*, 7144. (d) Legraverend, M. *Tetrahedron* 2008, *64*, 8585.
- (3) Čerňa, I.; Pohl, R.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2010, 75, 2302; and references cited therein.
- (4) (a) He, R.; Ching, S. M.; Lam, Y. J. Comb. Chem. 2006, 8, 923. (b) Lin, X.; Robins, M. J. Collect. Czech. Chem. Commun. 2006, 71, 1029. (c) Kalla, R. V.; Elzein, E.; Perry, T.; Li, X.; Gimbel, A.; Yang, M.; Zeng, D.; Zablocki, J. Bioorg. Med. Chem. Lett. 2008, 18, 1397.

- (5) (a) Hocek, M.; Hocková, D.; Dvořáková, H. Synthesis 2004, 889. (b) Hocek, M.; Pohl, R. Synthesis 2004, 2869.
 (c) Čerňa, I.; Pohl, R.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2008, 73, 9048.
- (6) (a) Tobrman, T.; Dvořák, D. Org. Lett. 2003, 5, 4289.
 (b) Tobrman, T.; Dvořák, D. Org. Lett. 2006, 8, 1291.
- (7) (a) Stevenson, T. M.; Prasad, A. S. B.; Citineni, J. R.; Knochel, P. *Tetrahedron Lett.* **1996**, *37*, 8375. (b) Prasad, A. S. B.; Stevenson, T. M.; Citineni, J. R.; Nyzam, V.; Knochel, P. *Tetrahedron* **1997**, *53*, 7237.
- (8) (a) Leonard, N. J.; Bryant, D. J. J. Org. Chem. 1979, 44, 4612. (b) Tanaka, H.; Uchida, Y.; Shinozaki, M.; Hayakawa, H.; Matsuda, A.; Miyasaka, T. Chem. Pharm. Bull. 1983, 31, 787. (c) Kato, K.; Hayakawa, H.; Tanaka, H.; Kumamoto, H.; Shindoh, S.; Shuto, S.; Miyasaka, T. J. Org. Chem. 1997, 62, 6833. (d) Ghosh, A. K.; Lagisetty, P.; Zajc, B. J. Org. Chem. 2007, 72, 8222.
- (9) Zimdars, S.; Mollat du Jourdin, X.; Crestey, F.; Carell, T.; Knochel, P. Org Lett. 2011, 13, 792.
- (10) For a recent review on hindered metal amide bases, see: Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P. Angew. Chem. Int. Ed. 2011, 50, 9794.
- (11) (a) Mosrin, M.; Bresser, T.; Knochel, P. Org Lett. 2009, 11, 3406. (b) Mosrin, M.; Monzon, G.; Bresser, T.; Knochel, P. Chem. Commun. 2009, 5615. (c) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837. (d) Crestey, F.; Knochel, P. Synthesis 2010, 1097. (e) Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. J. Org. Chem. 2010, 75, 4686.
- (12) (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 2958. (b) Lin, W.; Baron, O.; Knochel, P. Org. Lett. 2006, 8, 5673.
- (13) Blomberg, C.; Hartog, F. A. Synthesis 1977, 18.

- (14) (a) Wunderlich, S.; Knochel, P. Angew. Chem. Int. Ed. 2007, 46, 7685. (b) Wunderlich, S.; Knochel, P. Org. Lett. 2008, 10, 4705. (c) Rohbogner, C.; Wunderlich, S.; Clososki, G.; Knochel, P. Eur. J. Org. Chem. 2009, 1781.
- (15) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.
- (16) (a) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (b) Negishi, E.; Zeng, X.; Tan, Z.; Qian, M.; Hu, Q.; Huang, Z. In Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004, Chap. 15. (c) Casares, J. A.; Espinet, P.; Fuentes, B.; Salas, G. J. Am. Chem. Soc. 2007, 129, 3508.
- (17) Metzger, A.; Piller, F. M.; Knochel, P. Chem. Commun. 2008, 5824.
- (18) Berliner, M.; Belecki, K. Org. Synth. 2007, 84, 102.
- (19) Maurer, H. K. *Ph. D. Dissertation*; Universität Heidelberg: Germany, **1963**.
- (20) Graham, T. H.; Liu, W.; Shen, D.-M. Org. Lett. 2011, 13, 6232.
- (21) Tromp, R. A.; Spanjersberg, R. F.; von Frijtag Drabbe Künzel, J.; IJzerman, A. P. J. Med. Chem. 2005, 48, 321.
- (22) Kode, N. R.; Phadtare, S. *Molecules* **2011**, *16*, 5840.
- (23) Stathakis, C. I.; Bernhardt, S.; Quint, V.; Knochel, P. Angew. Chem. Int. Ed. **2012**, *51*, 9428.
- (24) Guthmann, H.; Könemann, M.; Bach, T. Eur. J. Org. Chem. 2007, 632.
- (25) Ibrahim, N.; Chevot, F.; Legraverend, M. *Tetrahedron Lett.* 2011, *52*, 305.
- (26) Nair, V.; Chi, G.; Uchil, V. R. Patent WO 2007106450, 2007; Chem. Abstr. 2007, 147, 385768
- (27) Gamadeku, T.; Gundersen, L.-L. Synth. Commun. 2010, 40, 2723.