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Synthesis of optically active 2,3-dihydrobenzofuran derivatives
through a combination strategy of iron(1II)-catalyzed reaction
and enzymatic reaction
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Abstract—Synthesis of optically active 2,3-dihydrofuran derivatives has been accomplished through a combination strategy of
ferric ion-catalyzed cycloaddition of styrene derivatives with quinones and following lipase-catalyzed enantioselective acylation.
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Iron is recognized as an economical and pollution free
metal source.! Recently we reported the synthesis of
2,3-dihydrobenzofuran by the reaction of styrene
derivatives with 1,4-benzoquinone using alumina-sup-
ported iron(IIl) perchlorate or iron(I) tetra-
fluoroborate as catalysts,> and we found that the
reaction was greatly accelerated in an ionic liquid sol-
vent system.> Since 2,3-dihydrobenzofuran molecular
flame is common in natural compounds,* it was neces-
sary to establish the synthetic route to access optically
active form of 2,3-dihydrobenzofuran derivatives.
Engler and co-workers reported excellent results in the
enantioselective synthesis of 2,3-dihydrobenzofuran
derivatives using chiral Lewis acid-catalyzed reaction;’
however, a large excess amount of a chiral Titanium-
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(IV) complex was required for the reaction.>® From the
standpoint of Green Chemistry, we should develop
a greener reaction process through catalytic reaction
systems. So, we wanted to synthesize optically active
2,3-dihydrobenzofuran derivatives through a catalytic
reaction process. Here we report the successful results
of the synthesis of optically pure 2,3-dihydrobenzo-
furan derivatives using a combination strategy of iron
salt-catalyzed reaction and enzymatic reaction as illus-
trated in Scheme 1.

Since iron(III) salt-catalyzed cycloaddition of styrene
derivatives with 1,4-benzoquinone was strongly depen-
dent on the nature of these derivatives,’> we first tested
the cycloaddition reaction using 3-(4-methoxy)phenyl-
2-propenol (2a) as substrate in the presence of 3 mol%
of alumina-supported iron(III) perchlorate in acetoni-
trile (Eq. (1)). But no desired compound was obtained
and starting 2a was recovered after 24 h reaction as
shown in Table 1 (entry 1).

Iron(IT) tetrafluoroborate worked very well for the
reaction of frans-anethol with 1,4-benzoquinone in the
[bmim]PF, solvent system,’ but no desired product was
obtained for the reaction of 2a in this catalytic system
either (entry 2). z-Butyldimethylsilyl ether 2¢ and allylic
ether 2d also gave no desired product (entries 3 and 4)
and it was finally found that the hydroxyl group must
be protected as acetate; 2-(4-methoxy)phenyl-3-
acetoxymethyl-2,3-dihydro-5-benzofuranol  (1b) was
obtained with high trans selectivity (11:1) from 3-(4-
methoxy)phenyl-2-propenyl acetate (2b) in 84% yield
(entry 4). The reaction of 2b using iron(Il) tetra-
fluoroborate as catalyst in [bmim]PF, proceeded, but
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Table 1. Synthesis of 2-aryl-3-hydroxymethyl-2,3-dihydrobenzofuran derivatives using iron salt-catalyzed reaction

Catalyst (3 mol%)

OR o]
MeOO—//_/ * og RT
2 3

a (R=H), b (R=Ac),
¢ (R= SiMeyBuY), d (R=CH,CH=CH,)

RO ]
Me0L) ¢ OR

(£)-1

M

a (R=H, R'=H), b (R=Ac, R'=H)

Entry R Catalyst Solvent Time Yield (%)* trans cis®
1 H Fe(ClO,);/Al,04 CH,CN 24 h 0° -

2 H Fe(BF,),/6H,0 [bmim]PF lh 0° -

3 SiMe,Bu’ Fe(ClO,);/Al,04 CH,CN 48 h 0° -

4 CH,CH=CH, Fe(ClO,)5/Al,04 CH,CN 24 h 04 -

5 Ac Fe(ClO,);/Al,04 CH,CN 2h 84 11:1

6 Ac Fe(BF,),/6H,0 [bmim]PF 20 min 23 20:1

4 Isolated yield.
® Determined by capillary GC-analysis.
¢ No reaction took place and starting compound 2 was recovered.

d Unidentified polymeric products were produced but neither desired product 1 nor starting compound 2 was recovered.

the result was insufficient (entry 5). Therefore, alumina-
supported iron(III) perchlorate in acetonitrile was
appropriate for this type of substrate, while iron(II)
catalyst in an ionic solvent system gave better results
when frans-anethol was used as substrate.?

Next we attempted to prepare optically active 2,3-dihy-
drobenzofuran by lipase-catalyzed enantioselective
transesterification.’ Acetate (+)-1b was treated with
potassium carbonate in methanol to release alcohol
(x)-1a, which was subjected to the lipase-catalyzed
acylation using vinyl acetate as an acyl donor. Enzy-

matic acetylation of (+)-la proceeded smoothly in
diisopropyl ether at 35°C (Eq. (2)); however, the best
enantioselectivity (£ value'®) was only 10 when
Novozyme 435 was used as catalyst.'""!? This was
insufficient from a practical aspect. We anticipated that
protection of the phenolic hydroxyl group on the C-
ring of (+)-1a might affect the enantioselectivity of the
enzymatic reaction, because the acidic phenol hydroxyl
group is assumed to bind with a peptide residue of the
enzyme through a hydrogen bond formation; this may
cause an incorrect orientation of the large aromatic ring
moiety in the active site. Three types of compounds,

Table 2. Synthesis of optically active 2-aryl-3-hydroxymethyl-2,3-dihydrofuran derivatives

Lipase Aco OR'
RO)@OR1 1.5 eq.Vinyl écetate I_> MeOO" 6]
MeO+ ¢, (25,35)-4 @
()1 i-Prp0, 35°C L HO- o
MeO
a (R=H, R'=H), e (R=H, R'=Me), (2R,3R)1

f (R=H, R'=MOM), g (R=H, R'=Bn)

a (R'=H), e (R'=Me),
f (R'=MOM), g (R"=Bn)

Entry R! Enzyme?® Time (h) Yield of 4° (%  [a]p of 4 (¢ ca. 1, CHCly) Yield of 1° (% ee) Conv.?  E value®
ee)°
1 H Novozyme 5 21 (78) —12 38 (21) 0.21 10
2 H PS 26 33 (45) —6 57 (35) 0.44 4
3 H SL 48 18 (65) -3 54 (22) 0.25 6
4 Me Novozyme 0.75 47 91) —58 32 (79) 0.47 49
5 Me PS 4 50 (2) -3 33 (10) 0.85 1
6 Me MY 10 13 (82) +51 69 (38) 0.32 15
7 Me QL 3 28 (8) 41 64 (13) 0.64 1
8 MOM Novozyme 1 25 (64) —28 60 (>99)° 0.61 =100
9 Bn Novozyme 2 40 (>99)" —-36 50 (69) 0.41 >400

# See reference section.
b Isolated yield.

¢ Enantiomeric excess was determined by HPLC analysis (Daicel ChiralpakOD, hexane/i-PrOH=38:1 or 20:1, 1.0 ml/min).

d conv. (c¢) was calculated by the following formula: c¢=eeS/(eeS=eeP).'°

¢ E=In[1-c(1+eeP)]/In[1-c(1-€€P)], here ¢ means conv.
fOnly one enantiomer was detected by HPLC analysis.
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5-methoxybenzofuran (+)-1e,® 5-methoxymethylbenzo-
furan (+)-1f, and 5-benzyloxybenzofuran (+)-1g were
prepared,'® and subjected to enzymatic transesterifica-
tion (Eq. (2)). As we anticipated, remarkable enhance-
ment in enantioselectivity was accomplished using these
three substrates in the enzymatic transesterification
(Table 2).

Practical optical resolution was thus realized when
methoxy derivative (+)-le, methoxymethyl derivative
(x)-1f, or benzyloxy derivative (+)-1g was used as sub-
strate. The lipase-catalyzed acylation worked very well
with the preference of the (2S5,3S5)-enantiomer,!” and
the E values almost reached a sufficient level (entries 4,
8, and 9). Remarkable acceleration was also achieved
when 5-methoxy derivative (+)-1e was subjected to the
Novozyme-catalyzed reaction, and acetate (2S5,35)-de
was obtained in 47% yield with 91% ee after just 0.75 h
(entry 4), while it took 5 h when (+)-1a was subjected to
the reaction (entry 1). It should be emphasized that
perfect enantioselective reaction was accomplished
when benzyl protected (+)-1g was used as a substrate;
enantiomerically pure (>99% ee) acetate (25,35)-4g was
obtained in 40% (80% theoretical yield) yield after 2 h
reaction at rt (entry 9). In the case of lipase PS-cata-
lyzed reaction, no enhancement in enantioselectivity
was recorded by protection of the phenolic hydroxyl
group at the 5 position, although remarkable accelera-
tion in the acylation was achieved (entry 5). Lipase MY
was the second choice of this reaction among tested
enzymes, though this enzyme has an opposite enan-
tiomer preference for this substrate and (2R,3R)-4e was
produced by lipase MY-catalyzed reaction (entry 6).

It was very interesting that enantioselectivity of the
enzymatic reaction was strongly influenced by the sub-
stituent apart from the reaction point in the substrate.
We are now assuming that protection of the 5-hydroxyl
group is responsible for orienting the aromatic group in
the incorrect cavity in the active site.'®* We tend to focus
only on the functional groups located near to the
reaction point in designing a suitable substrate molecule
for the enzymatic reaction. However, the present results
suggest there is a possibility of improving enantioselec-
tivity of the enzymatic reaction by proper modification
of the substrate, even if the original reaction was inade-
quate one.

In conclusion, we accomplished the synthesis of opti-
cally active 2,3-dihydrobenzofuran derivatives through
a combination strategy of ferric iron-catalyzed reaction
and enzymatic reaction. It should be noted that the
enantioselectivity of lipase-catalyzed reaction was
remarkably modified by protecting the phenolic
hydroxyl group on the C-ring which is located apart
from the reaction point. Further investigation of the
scope and limitations of this reaction will make it even
more beneficial.
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We initially tested lipase-catalyzed hydrolysis of acetate
(£)-1b; however, the enantioselectivity was insufficient;
the best enantioselectivity (E value!®) was 11 for
Novozyme 435 among tested nine enzymes. In addition,
protection of the phenolic hydroxyl group of (+)-1b was
unsuccessful and formed deacetylated (+)-1a. We there-
fore decided to investigate lipase-catalyzed transesterifica-
tion of (+)-1a.
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