Accepted Manuscript

Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives

Bing Zhang, Xiwen Dai, Ziyang Bao, Qing Mao, Yulin Duan, Yuwei Yang, Shaojie Wang

PII: S0223-5234(19)30683-X

DOI: https://doi.org/10.1016/j.ejmech.2019.07.062

Reference: EJMECH 11559

To appear in: European Journal of Medicinal Chemistry

Received Date: 5 June 2019

Revised Date: 14 July 2019

Accepted Date: 21 July 2019

Please cite this article as: B. Zhang, X. Dai, Z. Bao, Q. Mao, Y. Duan, Y. Yang, S. Wang, Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives, *European Journal of Medicinal Chemistry* (2019), doi: https://doi.org/10.1016/j.ejmech.2019.07.062.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1. Graphical Abstract

1	Targeting the	subpocket in	CCEPTED xanthine	MANUS oxidase:	CRIPT design,	synthesis,	and	biological
2	evaluation		of		2-[4-a	alkoxy-3-(1	H-tet	razol-1-yl)
3	phenyl]-6-oxo	-1,6-dihydropy	rimidine-5	-carboxyl	ic acid d	erivatives		
4								
5	Bing Zhang, Xiwer	ı Dai, Ziyang Bao, Ç	Qing Mao, Yul	in Duan, Yuv	vei Yang, S	haojie Wang*		
6								
7	Key Laboratory of Str	ucture-Based Drugs De	esign & Discove	ery of Ministry	of Education	, School of Phar	maceutio	cal Engineering,
8	Shenyang Pharmaceut	ical University, 103 Cu	lture Road, Sher	he District, Sh	enyang 1100	16, China		
9								
10								
11						\mathbf{Q}		
12					\sim			
13								
14								
15								
16				Y				
17								
10								
20								
21								
22								
23								
24								
25		\bigcirc						
26								
27								
28								
29								
30	*Corresponding autho	rs.						
31	Tel/Fax: +86-24-43520)230, E-mail: sjwang_9	9@163.com (S.	J. Wang).				
32								

1 Abstract

ACCEPTED MANUSCRIPT

2

3 Xanthine oxidase is an important target for the treatment of hyperuricemia, gout and other related diseases. 4 Analysis of the high-resolution structure of xanthine oxidase with febuxostat identified the existence of a 5 subpocket formed by the residues Leu648, Asn768, Lys771, Leu1014 and Pro1076. In this study, we designed and synthesized a series of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1.6-dihydropyrimidine-5-carboxylic 6 7 acid derivatives (8a-8z) with a tetrazole group targeting this subpocket of the xanthine oxidase active site, and 8 they were further evaluated for their inhibitory potency against xanthine oxidase in vitro. The results showed that all the tested compounds (8a-8z) exhibited an apparent xanthine oxidase inhibitory potency, with IC_{50} values 9 10 ranging from 0.0288 μ M to 0.629 μ M. Among them, compound **8u** emerged as the most potent xanthine oxidase 11 inhibitor, with an IC₅₀ value of 0.0288 μ M, which was comparable to febuxostat (IC₅₀ = 0.0236 μ M). The structure-activity relationship results revealed that the hydrophobic group at the 4'-position was indispensable 12 for the inhibitory potency in vitro against xanthine oxidase. A Lineweaver-Burk plot revealed that the 13 representative compound 8u acted as a mixed-type inhibitor for xanthine oxidase. Furthermore, molecular 14 modeling studies were performed to gain insights into the binding mode of 8u with xanthine oxidase and 15 16 suggested that the tetrazole group of the phenyl unit was accommodated in the subpocket, as expected. 17 Moreover, a potassium oxonate-induced hyperuricemia model in rats was chosen to further confirm the hypouricemic effect of compound 8u, and the result demonstrated that compound 8u could effectively reduce 18 19 serum uric acid levels at an oral dose of 5 mg/kg. In addition, acute oral toxicity study in mice indicated that compound **8u** was nontoxic and tolerated at a dose up to 2000 mg/kg. Thus, compound **8u** could be a potential 20 and efficacious agent in treatment of hyperuricemia with low toxicity. 21

- 22
- 23
- 24
- 25
- 26
- 27

Key words: 6-Oxo-1,6-dihydropyrimidine-5-carboxylic acid; Tetrazole; Xanthine oxidase inhibitor; Subpocket;
Synthesis

ACCEPTED MANUSCRIPT

1 1. Introduction

2

Xanthine oxidase (XO) is a molybdoenzyme catalyzing the oxidation of hypoxanthine to xanthine and xanthine to urate in the last two steps of purine nucleotide metabolism [1-3]. Uric acid is the final product of purine metabolism in humans, and the high level of uric acid in the plasma has been linked to a number of pathologies, such as gout, cardiovascular diseases, hypertension and renal diseases [4-6]. Therefore, XO is considered to be the most promising target for controlling the uric acid level and for the treatment of hyperuricemia, gout and other related diseases [7].

9 Allopurinol (**Fig. 1**), a prototype XO inhibitor and a hypoxanthine isomer, is a widely used drug for 10 inhibiting XO in gout. However, in some cases, the interactions of purine analogs XO inhibitors on activities of 11 purine and pyrimidine metabolizing enzymes lead to the reported hypersensitivity (Stevens-Johnsons) syndrome 12 characterized by fever, skin rash, hepatitis, leukocytosis with eosinophilia and worsening renal function induced 13 in some of the patients [8-10].

14 Therefore, finding the nonpurine compounds with potent XO-inhibition potency and fewer side effects than the purine analogs is in great demand. Considering these side effects, some nonpurine based XO inhibitors, such 15 as febuxostat (approved in USA, 2009) [11], topiroxostat (approved in Japan, 2013) [12], Y-700 [13], isoxazole 16 17 derivatives [14], selenazole derivatives [15], imidazole derivatives [16], 2-(indol-2-yl)-thiazole derivatives [17], 18 1,2,3-triazole derivatives [18], pyrazole derivatives [19], isonicotinic acid derivatives [20], 2-mercaptopyridine 19 derivatives [21], isocytosine derivatives [22], pyrimidine derivatives [23], fused pyrano [3, 2-d] pyrimidine 20 derivatives [24], dihydropyridazine derivatives [25], naphthopyran derivatives [26] and naphthoflavone derivatives [27] have been developed (Fig. 1). Additionally, other XO inhibitors with various chemotypes, 21 22 including 4-pyridyl-1*H*-imidazole derivatives [28]. 5-(4-pyridyl)-1,2,4-triazole derivatives [29]. 2-benzylamino-4-methyl-1,3-thiazole derivatives [30], 5-[4-(pyridin-4-yl)-1H-1,2,3-triazol-1-yl] benzonitrile 23 24 derivatives *N*-(4-alkoxy-3-cyanophenyl) isonicotinamide/nicotinamide [31], derivatives [32], 4,6-diaryl/heteroaryl pyrimidone derivatives [33] and pyrimidine-2,4-diamine derivatives [34], have also been 25 26 published in the literature. However, febuxostat is no longer a precise and safe therapy for hyperuricemia 27 because the FDA added a black-box warning to this drug due to its heart-related complications [35]. Therefore, 28 there is still a need to explore new nonpurine XO inhibitors with fewer side effects for the treatment of 29 hyperuricemia and gout.

4 Analysis of the high-resolution structure (Fig. 2a) of XO with febuxostat could identify the existence of a 5 subpocket formed by Leu648, Asn768, Lys771, Leu1014 and Pro1076 residues (Fig. 2b), and it was observed 6 that the cyano group of febuxostat could interact with the Asn768 residue deep inside the subpocket (Fig. 2c). In 7 many biologically important enzyme targets, targeting the unique subpocket of an enzyme active site could 8 impart selectivity by modulators [36-40], which would help to further avoid some side effects [41-42]. As a 9 consequence, the subpocket of the XO active site could be utilized for the development of the new nonpurine 10 XO inhibitors with increased selectivity and fewer side effects. The tetrazole moiety is a low-toxic and 11 practically nonmetabolized heterocyclic fragment acting as a hydrogen acceptor similar to the cyano group

1

2

[43-45], and the tetrazole moiety has received major attention from medicinal chemists due to its wide applications in the treatment of neonatal sepsis (latamoxef, approved in 1982) [46], hypertension (losartan, approved in 1994) [47] and symptoms of intermittent claudication (cilostazol, approved in 1988) [48]. Thus, the tetrazole moiety occupies an important position in the discovery of new drugs [49]. Therefore, we attempted to introduce a tetrazole moiety targeting the subpocket at the XO active site, with the hope of the tetrazole moiety filling the subpocket, which is useful for helping ligands anchored tightly to the binding site, enhancing the binding affinity [32, 50-52] and potentially preventing some side effects.

8

Fig. 2. Structure analysis of the XO-febuxostat complex. (a) Crystal structure of the XO-febuxostat complex as a
cartoon representation. (b) The subpocket is shown as a gray surface and febuxostat is represented as an orange
line. (c) Febuxostat is represented as an orange line, and key polar interactions are depicted with black dashed
lines.

13

In our previous report, we explored several new classes of nonpurine XO inhibitors, including isoxazole derivatives [14], imidazole derivatives [16] and 4-pyridyl-1*H*-imidazole derivatives [28]. Among them, imidazole derivatives containing a 1-hydroxyimidazole moiety showed excellent inhibitory potency *in vitro* against XO [16], and structure-activity relationship analysis and molecular modeling studies indicated that the 1-hydroxy moiety could form an extra H-bond with Thr1010 and contribute to the inhibitory potency [16,28].

The results inspired us to further explore novel XO inhibitors based on an extra H-bond with Thr1010 in 1 2 addition to the interactions between the carboxyl group and Arg880 and Thr1010. Pyrimidine, a six membered 3 heterocyclic compound bearing two N-atoms in the ring, is usually used as an important pharmacophore for the 4 design of many drugs, such as anticancer, antiviral and antibacterial agents [53], and there are also many 5 successful examples of replacing five-membered heterocycles with the pyrimidine heterocycle in rational drug design [54]. In addition, several nonpurine XO inhibitors containing a pyrimidine heterocycle were also reported 6 7 [21-24], so it was suggested that the pyrimidine group could be used as a potent pharmacophore to replace the 8 imidazole ring of imidazole derivatives [16]. Accordingly, we attempted to adopt the pyrimidine ring to replace 9 the imidazole ring by the bioisosteric replacement strategy and replace the cyano group with the tetrazole group 10 to design a series of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid 11 derivatives (Fig. 3).

In this paper, we described the synthesis, *in vitro* bioevaluation and structure-activity relationships of 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives (**8a-8z**) with a tetrazole group targeting the subpocket formed by Leu648, Asn768, Lys771, Leu1014 and Pro1076 residues in the XO active site. Moreover, we determined the inhibitory behavior of the representative compound **8u** by using molecular modeling studies, steady-state kinetic analysis and a hyperuricemic rat model, as well as its acute oral toxicity.

21 **2. Results and discussion**

18

19

2 2.1. Chemistry

3

4 The synthesis of the 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acids 8a-8y and the 2-[4-hydroxy-3-(1*H*-tetrazol-1-yl) phenyl]-6-oxo-1, 6-dihydropyrimidine-5-carboxylic acid 5 8z reported in this study are described in Scheme 1. The commercially available 4-hydroxybenzonitrile (1) was 6 7 nitrated with nitric acid in acetic acid to provide 4-hydroxy-3-nitrobenzonitrile (2) at a good yield, which was 8 reduced under a hydrogen atmosphere catalyzed by Pd/C in methanol to obtain then 3-amino-4-hydroxybenzonitrile (3) with high efficiency. Cyclization of the 3-amino-4-hydroxybenzonitrile (3) 9 with triethyl orthoformate and sodium azide in acetic acid generated the key intermediate (4) [55] with a 10 11 moderate yield, which was further alkylated with the appropriate alkyl halides in the presence of anhydrous potassium carbonate and potassium iodide in DMF to give excellent yields of 4-alkoxy-3-(1H-tetrazol-1-yl) 12 benzonitriles 5a-5y. The resulting intermediates 5a-5y were treated with sodium methoxide and anhydrous 13 methanol to afford the imidates, which following aminolysis with ammonium chloride, gave 14 15 4-alkoxy-3-(1*H*-tetrazol-1-yl) benzimidamide hydrochloride compounds **6a-6y** [56] in moderate yields. The condensation reaction of diethyl ethoxymethylenemalonate with 4-alkoxy-3-(1H-tetrazol-1-yl) benzimidamide 16 17 hydrochloride compounds **6a-6y** in the presence of sodium ethoxide as an alkaline catalyst provided ethyl 18 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylates 7a-7y [57] in good yields, 19 and this reaction was followed by hydrolysis reactions using an aqueous solution of lithium hydroxide to give 20 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5- carboxylic acids 8a-8y.

The 2-[4-hydroxy-3-(1*H*-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid **8z** was obtained by removing the benzyl protecting group of the compound **8i** under a hydrogen atmosphere at room temperature catalyzed by Pd/C in DMF.

The structures were elucidated by HRMS, IR, ¹H NMR and ¹³C NMR spectra. All spectral data were in accordance with the assumed structures. HRMS analysis revealed the target compounds with [M-H]⁻ ion peaks. The IR spectra of the target compounds displayed hydroxyl stretching vibrations at 3402.8-3470.2 cm⁻¹ (**8a-8y**) and a phenolic hydroxyl stretching vibration at 3561.9 cm⁻¹ (**8z**). In ¹H NMR spectra, the CH of the tetrazole group was observed as a singlet at approximately 9.80 ppm in the series **8a-8z**.

Scheme 1. Reagents and conditions: i. HNO₃, HAc, 75°C; ii. Pd/C, H₂, MeOH, 25°C; iii. NaN₃, triethyl
orthoformate, HAc, 60°C; iv. R₁Cl or R₁Br, K₂CO₃, KI, DMF, 50-65°C; v. MeONa, MeOH, 25°C, 36 h, then
NH₄Cl, 50°C; vi. diethyl ethoxymethylenemalonate, NaH, EtOH, 25°C; and vii. LiOH, H₂O, THF, 50°C.

5

1

7

8 The *in vitro* bovine XO inhibitory activity of compounds **8a-8z** was measured spectrophotometrically by 9 determining uric acid production at 295 nm. Febuxostat and allopurinol were included as the positive controls. 10 The testing results are shown in **Table 1**. All compounds exhibited excellent inhibitory potency with IC₅₀ values 11 ranging from 0.0288 μ M to 0.629 μ M. In particular, compound **8u** with a 3-chlorobenzyloxy group substituted 12 at the 4'-position emerged as the most potent XO inhibitor (IC₅₀ = 0.0288 μ M), which was comparable to 13 febuxostat (IC₅₀ = 0.0236 μ M) and had an IC₅₀ value 264-fold higher than that of allopurinol (IC₅₀ = 7.590 μ M).

^{6 2.2.} Biological activity in vitro

4

2 Table 1

3 In vitro XO inhibitory potency of designed compounds

				COOH	
		RO	N N		A
			N-N		
Compound	R	$IC_{50}\left(\mu M\right)^{a}$	Compound	R	$IC_{50} (\mu M)^a$
8a	7	0.0920±0.00428	80	0	0.0507±0.00208
8b		0.0737±0.00172	8p	F	0.0531±0.00394
8c		0.0644±0.00279	8q	CI	0.0691±0.00443
8d	$\downarrow \gamma$	0.0541±0.00236	8r	Br	0.0552±0.00193
8e		0.0437±0.00105	85	-0	0.0516±0.00319
8f		0.0569±0.000486	8t	F	0.0477±0.00187
8g		0.0692±0.00406	8u		0.0288±0.00239
8h		0.0500±0.00326	8v	Br	0.0450±0.00131
8i		0.0461±0.00298	8w		0.0917±0.00357
8j		0.0585±0.0000781	8x		0.0639±0.00305
8k	$\bigcirc \checkmark$	0.0683±0.00339	8y	CI	0.0838±0.00657

	ACCEPT	FED MANU	SCRIPT	
81	0.0945±0.00295	8z	H 0.629±0.0374	
8m	0.0894±0.00745	Febuxostat	0.0236±0.00230	
8n	0.149±0.0160	Allopurinol	7.590±0.215	

1 a. All values are expressed as the mean \pm standard error of the mean of triplicate determinations.

2

3 Among the tested compounds, increasing the size of the substituent at the 4'-position of the phenyl moiety from a methoxy to an isopentyloxy group could steadily improve the XO inhibitory potency (8a < 8b < 8c < 8d, 4 5 $IC_{50} = 0.0920 \,\mu M$, 0.0737 μM , 0.0646 μM and 0.0541 μM , respectively). This finding indicated that increasing the size of saturated alkoxy groups at the 4'-position of the phenyl moiety could favor the XO inhibitory potency, 6 7 which may be due to the improved hydrophobic interactions with nonpolar residues at the entrance of the pocket 8 [22], and similar inhibitory behavior could also be observed for selenazole derivatives [15]. The replacement of a methoxy group with an allyloxy group at the 4'-position of the phenyl moiety led to approximately a 2-fold 9 10 increase in the inhibitory potency (8e vs 8a, $IC_{50} = 0.0437 \mu M$ and 0.0920 μM , respectively), and when the 11 methyl substituent was introduced into the double bond of the allyloxy group (8e), the inhibitory potency slightly decreased (8e > 8f > 8g, IC₅₀ = 0.0437 μ M, 0.0569 μ M and 0.0692 μ M, respectively). Meanwhile, a 12 13 decrease in the inhibitory potency was also observed by increasing the size of cycloalkoxy groups, such as 14 cyclopropylmethoxy, cyclopentyloxy and cyclohexylmethoxy groups (8i > 8j > 8k, IC₅₀ = 0.0461 µM, 0.0585 μ M and 0.0683 μ M, respectively), implying that increasing the size of the olefinoxy groups or the cycloalkoxy 15 16 groups at the 4'-position of the phenyl moiety could damage the XO inhibitory potency, which may be due to the 17 steric hindrance of the substituents with the amino acids at the entrance of the active pocket. Moreover, the introduction of the propargyloxy group at the 4'-position did not translate into improvement in the XO inhibitory 18 potency (**8h** vs **8e**, $IC_{50} = 0.0500 \mu M$ and $0.0437 \mu M$, respectively). 19

Among the benzyloxy containing compounds, the insertion of the electron donating or electron withdrawing substituents, such as fluoro, chloro, bromo and methoxy substituents, at *para* position of the benzyloxy group led to a 1.3-1.8-fold increase in the inhibitory potency compared with the unsubstituted benzyloxy derivative (**80**, **8p**, **8q**, **8r** vs **8l**, IC₅₀ = 0.0507 μ M, 0.0531 μ M, 0.0691 μ M, 0.0552 μ M and 0.0945 μ M, respectively). This finding demonstrated that modulation of the electron density of the benzyloxy aromatic ring could benefit the

inhibitory potency through introducing fluoro, chloro, bromo and methoxy substituents into the *para* position of 1 2 the benzyloxy group, except compounds with a methyl or *tert*-butyl group at the *para* position of the benzyloxy 3 group (8m and 8n, IC₅₀ =0.0894 µM and 0.149 µM, respectively). Then, the compounds with fluoro, chloro, 4 bromo and methoxy groups at the *meta* position of the benzyloxy group were prepared (8t, 8u and 8t, IC_{50} = 5 0.0477 µM, 0.0288 µM and 0.0450 µM, respectively). Interestingly, the chloro substitution at the *meta* position, as in the case of compound **8u**, showed a remarkable inhibitory potency (IC₅₀ = 0.0288 μ M), 2.4-fold higher 6 7 than that of compound **8p** with chloro substitution at the *para* position (IC₅₀ = 0.0691 μ M), which indicated that 8 a chlorine atom substituted at the *meta* position of the benzyloxy group was beneficial for increasing the 9 inhibitory potency. To further examine the influence of the positions and number of chlorine atoms on the 10 benzyloxy group, the corresponding ortho-monochloro, ortho and para-dichloro and ortho-dichloro substituted 11 derivatives were synthesized (8w, 8x and 8y, $IC_{50} = 0.0917 \mu M$, 0.0639 μM and 0.0838 μM , respectively). 12 Among them, the ortho substituted derivative 8w showed a 3.2-fold decrease in inhibitory potency in 13 comparison to compound 8u (8w < 8u, IC₅₀ = 0.0917 μ M and 0.0288 μ M, respectively), and the dichloro 14 substituted derivatives also had a slight decrease in the inhibitory potency (8x, 8y < 8u, $IC_{50} = 0.0639 \mu M$, 0.0838 µM and 0.0288 µM, respectively). Presumably, the chloro monosubstitution at the meta position kept the 15 chlorobenzyloxy moiety in a more favorable position so that it could form better hydrophobic interactions with 16 17 nonpolar residues at the entrance of the XO active pocket.

18 Compound **8z** has a polar hydroxy group substituted at the 4'-position, and it showed an IC₅₀ value of 629 19 μ M, which was 4.2-21.8-fold weaker than those of other compounds (**8a-8y**) with hydrophobic alkoxy groups 20 substituted at the 4'-position. In addition, the hydrophobic group at the 4'-position was indispensable for the 21 inhibitory potency *in vitro* against XO, and this finding was consistent with the conclusion of the isocytosine 22 derivatives [22].

- 23
- 24 2.3. Molecular modeling
- 25

To explore a probable interaction model of inhibitors and the XO active site, molecular docking of the compound **8u** in the substrate binding pocket of XO was performed using the Glide XP docking protocol (2016, Schrodinger Suite). Since molybdenum-pterion sites of both XO and bovine xanthine dehydrogenase (XDH) are structurally equivalent [58], the X-ray crystal structure of the XDH/febuxostat complex (PDB code 1N5X) used in the docking studies was obtained from the RCSB Protein Data Bank (PDB) [16]. The protein was prepared by
removing all water molecules and adding all hydrogen atoms using Protein Preparation Wizard (2016,
Schrodinger Suite). The carboxyl groups of compound **8u** and febuxostat were calculated in dissociated forms
using the LIGPREP module (2016, Schrodinger Suite).

5 The binding model of the representative compound **8u** was illustrated by Discovery Studio Visualizer 2017 and Pymol (Fig. 4). According to our docking studies, the binding site residues and overall binding mode of 8u 6 7 were similar to that observed with febuxostat (Fig. 4a, Fig. 4b), and the results showed that the tetrazole moiety 8 of the phenyl unit was able to be accommodated by the subpocket formed by Leu648, Asn768, Lys771, Leu1014 9 and Pro1076, which further interacted with Asn768 and Lys771 through two hydrogen bonds, as expected (Fig. 10 4c). In the deepest part of the channel, the carbonyl group of the pyrimidine engaged in two hydrogen bonds 11 with the side chain hydroxy group of Thr1010 and the backbone amino group of Thr1010 and two additional 12 hydrogen bonds with the guanidine group of Arg880. Moreover, the carboxyl group of the pyrimidine formed an 13 electrostatic interaction and a hydrogen bond with Arg880 and two additional hydrogen bonds with Mo-OH. The 14 pyrimidine ring as a whole was sandwiched between Phe914 and Phe1009 via "face-to-face" and "face-to-edge" 15 π - π stacking interactions, respectively. In addition, the N-3 atom of the pyrimidine acted as a H-bond acceptor and linked to the amino acid residue Glu802 via a hydrogen bond. Furthermore, several hydrophobic 16 interactions, including a strong π - π interaction between Phe649 and the 3-chlorobenzyl group of the phenyl unit, 17 were also observed at the mouth of the pocket with Leu648, Phe649, Leu873, Val1011 and Leu1014 (Fig. 4c). 18

As designed, the carbonyl group, which exercised a role similar to the carboxyl group of febuxostat, was able to interact simultaneously with Thr1010 and Arg880. Meanwhile, the carboxyl group was closer to the deep part of the active pocket, still retaining the key interactions with Arg880 and surprisingly increasing two extra

hydrogen bonds with Mos3004.

rainbow) is shown as a cartoon, and small molecules are shown as a line. The subpocket of the binding pocket is shown as a surface colored in gray. **8u** (cyan) and febuxostat (orange) occupy the same binding site in XO. (b) XO residues interacting with febuxostat are depicted by gray lines. Hydrogen bonds of febuxostat are shown as black dashed lines. (c) XO residues interacting with **8u** (cyan) are depicted by gray lines. Hydrogen bonds, electrostatic interactions and π - π stacking interactions of **8u** are shown as green, orange and purple dashed lines, respectively.

7

8 2.4. Steady-state kinetic analysis

9

10 To determine the action mode of compounds 8a-8z with XO, enzyme kinetics studies of the representative 11 compound 8u were performed (Fig. 5). As show in Fig.5, the analysis on the data of compound 8u indicated that V_{max} decreased with changing slope (K_m/V_{max}) in the presence of increasing concentrations of inhibitor, wherein, 12 the K_m and V_{max} values in the presence of 0.0133 to 0.106 μ M compound **8u** were 11.48, 24.63, 44.17, 74.54 μ M 13 14 and 0.151, 0.141, 0.124, 0.0961 µM /min, while, for the positive control, the K_m and V_{max} values were 5.33 µM and 0.155 μ M /min, respectively. This behavior showed that **8u** acted as a mixed-type mode inhibitor with 15 respect to xanthine for binding to XO, which was similar to febuxostat. Moreover, it was found that the 16 intersecting lines on the graph converge to the second quadrant, which indicated that the value of α (a constant 17 that defines the degree to which inhibitor binding affects the affinity of the enzyme for the substrate) was greater 18 19 than 1 [6,8]. This confirmed that the inhibitor preferentially bound to the free enzyme and not the enzyme-20 substrate complex. In addition, dose-dependent inhibition of XO by 8u was exhibited (Fig. 6).

Fig. 6. The inhibition of XO by compound **8u**. Values are means \pm SDs, n = 3.

7 2.5. Acute oral toxicity study

- To explore the preliminary toxicity profile of the most potent compound **8u**, the acute oral toxicity study was performed at dose up to 2000 mg/kg, which was about 400 times over the effective dose of 5mg/kg, according to OECD guidelines 2001 [59]. No signs and symptoms of toxicity and mortality were observed within 24 h after the administration of test compound.
- 5

6 2.6. Hypouricemic effect in vivo

7

8 Since the compound **8u** showed more potent inhibitory activity than all other compounds tested *in vitro*, its 9 in vivo hypouricemic effect in the acute hyperuricemia rat model was investigated and compared with those of 10 febuxostat and allopurinol (Fig. 7). As expected, an intraperitoneal injection of 300 mg/kg potassium oxonate 11 markedly increased serum uric acid levels 3 h after drug administration in the model group compared with the blank group (P < 0.001 for **Blank** vs **Model**), confirming that the model was successfully established. In 12 13 addition, administration of a single oral dose of 5 mg/kg 8u was able to significantly reduce the serum levels of 14 uric acid at 3 h (P < 0.05 for **8u** vs **Model**), although the hypouricemic action was slightly lower than that of febuxostat and allopurinol at an oral dose of 5 mg/kg and 10 mg/kg, respectively. Furthermore, the compound 8u 15 was able to reduce the serum uric acid levels comparable to the blank group from 3 h to 8 h ($^{\odot}P > 0.05$ for **8u** vs 16 Blank). The results of *in vivo* hypouricemic activity evaluation suggested that compound 8u was a potential and 17 18 efficacious agent in the treatment of hyperuricemia.

Fig. 7. Effect of compound **8u**, febuxostat and allopurinol on the serum uric acid levels in the potassium oxonate-induced hyperuricemic rat model. (a) Time course changes in the serum uric acid levels after oral administration of Febuxostat, Allopurinol and **8u** in a potassium oxonate induced hyperuricemic rat. (b) The serum uric acid levels 3 h after oral administration of Febuxostat, Allopurinol and **8u** in a potassium oxonate induced hyperuricemic rat. (c) The AUC (uric acid, 3-8 h) after oral administration of **8u**, febuxostat and allopurinol in

a potassium oxonate induced hyperuricemic rat. Data are expressed as the mean \pm S.D. **P* < 0.05, **P* < 0.001 and *****P* < 0.0001 vs hyperuricemic rat (**model**), ⁽ⁱ⁾*P*>0.05 vs **Blank**.

- 3
- 4

5 **3.** Conclusion

6

7 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl) We designed, synthesized and identified а series of 8 phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives as novel XO inhibitors with a tetrazole 9 group targeting the subpocket formed by residues Leu648, Asn768, Lys771, Leu1014 and Pro1076 at the XO active site. Specifically, compound **8u**, which was comparable to febuxostat, emerged as the most potent XO 10 inhibitor. The Lineweaver-Burk plot showed that compound 8u acted as a mixed-type XO inhibitor. The 11 structure-activity relationship analysis demonstrated that the hydrophobic group at the 4'-position was 12 indispensable for the inhibitory potency in vitro against XO. Furthermore, molecular docking studies provided 13 14 the molecular basis for rationalizing the activity of the designed compounds and suggested that the subpocket centered around Asn768 was able to accommodate the tetrazole group, which further provided a potential 15 16 strategy for the design of nonpurine XO inhibitors. The results of in vivo hypouricemic activity evaluation 17 suggested that compound 8u could effectively reduce serum uric acid levels at an oral dose of 5 mg/kg. In addition, acute oral toxicity study in mice indicated that compound 8u was nontoxic and tolerated at dose up to 18 2000 mg/kg. Thus, compound **8u** could be a potential and efficacious agent in treatment of hyperuricemia with 19 20 low toxicity.

- 21
- 22 4. Experimental protocols
- 23
- 24 4.1 Chemistry
- 25

Unless otherwise indicated, reagents and solvents were purchased from commercial sources and used without further purification. All reactions were monitored by TLC using silica gel aluminum cards (0.2 mm thickness) with 254 nm and 365 nm fluorescent indicator. Melting points were recorded on a YRT-3 melting apparatus and were uncorrected. ¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer or a Bruker 1 600 MHz spectrometer, and ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer or a Bruker 2 600 MHz spectrometer. Chemical shifts were expressed in parts per million using tetramethylsilane as an 3 internal reference and DMSO- d_6 as the solvent. IR spectra were determined as KBr pellets on a Bruker IFS-55 4 spectrometer and expressed in reciprocal centimeters. ESI-MS data were gathered using an Agilent 1100 5 instrument. ESI-HRMS data were recorded in the Agilent 6540 Series Q-TOF-MS system.

6

7 4.1.1. Synthesis of 4-hydroxy-3-nitrobenzonitrile (2)

A solution of nitric acid (24.4 g, 0.252 mol) in acetic acid (80 mL) was added dropwise at 75 °C to a stirred solution of 4-hydroxybenzonitrile (30.0 g, 0.252 mol) in acetic acid (200 mL). Upon completion of the addition, the mixture was heated under reflux for anther 1 h, then it was poured into ice water, and the precipitate was filtered, washed with water to yield the compound **2** (39.0 g, 94.2%) as a yellow solid, mp 144.2°C-145.6°C. MS (ESI) m/z: 163.0 [M - H]⁻; ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.34 (s, 1H), 8.42 (d, *J* = 2.1 Hz, 1H), 7.94 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 1H).

14

15 4.1.2. Synthesis of 3-amino-4-hydroxybenzonitrile (3)

A mixture of the compound **2** (39.0 g, 0.238 mol) and 10% Pd/C (3.9 g) in methanol was stirred at room temperature for 12 h under hydrogen atmosphere. After the completion of the reaction, the Pd/C was filtered out and the filtrate was evaporated to give a brown solid (29.5 g, 92.3%), which was used directly in the next step. Mp 135.6 °C-136.6 °C. MS (ESI) m/z: 480.8 $[2M + Na]^+$; ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 8.26 (d, *J* = 2.1 Hz, 1H), 8.07 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.58 (d, *J* = 8.9 Hz, 1H), 4.92 (hept, *J* = 6.0 Hz, 1H), 1.27 (d, *J* = 6.0 Hz, 6H).

22

23 4.1.3. Synthesis of 4-hydroxy-3-(1H-tetrazol-1-yl) benzonitrile (4)

A mixture of 4-hydroxy-3-nitro benzonitrile (29.5 g, 0.220 mol), triethyl orthoformate (39.1 g, 0.264 mol) and sodium azide (14.4 g, 0.222 mol) was added to acetic acid (88.5 mL). The mixture was stirred at 60 °C for 12 h under nitrogen atmosphere. After completion of the reaction, the precipitate was filtered and recrystallized from ethanol to give the compound **4** (21.53 g, 52.3%) as a gray white solid, mp 194.8°C-195.0°C. MS (ESI) m/z: 185.9 [M - H]⁻; ¹H NMR (600 MHz, DMSO- d_6) δ 12.15 (s, 1H), 9.83 (s, 1H), 8.20 (d, *J* = 2.1 Hz, 1H), 7.89 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.26 (d, *J* = 8.6 Hz, 1H).

1 4.1.4. Synthesis of 4-methoxy-3-(1H-tetrazol-1-yl) benzonitrile (5a)

2	A mixture of the compound 4 (6 g, 32.06 mmol), methyl iodide (5.46 g, 38.47 mmol), anhydrous potassium
3	carbonate (8.85 g, 42.7 mmol) and DMF (32 mL) was reacted at ambient temperature for 6 h under nitrogen
4	atmosphere. After the reaction was completed, the mixture was poured into water (200 mL). The precipitate was
5	filtered, washed with water, and recrystallized (petroleum ether : ethyl acetate = $1:2$) to yield the compound 5a
6	(3.65 g, 39.1%) as a white solid, mp 172.3 °C-174.1 °C . MS (ESI) m/z: 202.4 [M + H] ⁺ ; 224.4 [M + Na] ⁺ ; ¹ H
7	NMR (600 MHz, DMSO- <i>d</i> ₆) δ 9.85 (s, 1H), 8.28 (d, <i>J</i> = 2.1 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.56 (d, <i>J</i> =
8	8.8 Hz, 1H), 3.96 (s, 3H).
9	

10 *4.1.5. General procedure for synthesis of 4-alkoxy-3-(1H-tetrazol-1-yl) benzonitriles* (**5b-5y**)

A mixture of compound **4** (6 g, 32.06 mmol), alkyl halides or benzyl halides (38.47 mmol), anhydrous potassium carbonate (8.85 g, 42.7 mmol), potassium iodide (710.48 mg, 4.28 mmol) and DMF (32 mL) was reacted at 50°C for 8 h under nitrogen atmosphere. After the reaction was completed, the mixture was poured into water (200 mL). The precipitate was filtered, washed with water, and recrystallized (petroleum ether: ethyl acetate = 1:2) to yield 4-alkoxy-3-(1*H*-tetrazol-1-yl) benzonitriles (**5b-5y**).

16

17 4.1.5.1. Synthesis of 4-isopropoxy-3-(1H-tetrazol-1-yl) benzonitrile (5b)

18 A white solid, yield: 66.5%. Mp 135.6 °C-136.6 °C. MS (ESI) m/z: 480.8 $[2M + Na]^+$; ¹H NMR (600 MHz, 19 DMSO-*d*₆) δ 9.79 (s, 1H), 8.26 (d, *J* = 2.1 Hz, 1H), 8.07 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.58 (d, *J* = 8.9 Hz, 1H), 4.92 20 (hept, *J* = 6.0 Hz, 1H), 1.27 (d, *J* = 6.0 Hz, 6H).

21

22 4.1.5.2. Synthesis of 4-isobutoxy-3-(1H-tetrazol-1-yl) benzonitrile (5c)

23 A white solid, yield: 69.3%. Mp 139.2 °C-140.6 °C. MS (ESI) m/z: 244.4 $[M + H]^+$; 266.3 $[M + Na]^+$; 508.9

24 $[2M + Na]^+$; ¹H NMR (600 MHz, DMSO-d₆) δ 9.79 (s, 1H), 8.28 (d, J = 2.1 Hz, 1H), 8.10 (dd, J = 8.8, 2.1 Hz,

25 1H), 7.54 (d, J = 8.8 Hz, 1H), 3.98 (d, J = 6.3 Hz, 2H), 1.95 (hept, J = 6.6 Hz, 1H), 0.84 (d, J = 6.7 Hz, 6H).

26

27 4.1.5.3. Synthesis of 4-(isopentyloxy)-3-(1H-tetrazol-1-yl) benzonitrile (5d)

28 A white solid, yield: 81.9%. Mp 108.7 °C-190 °C. MS (ESI) m/z: 258.3 $[M + H]^+$; 280.2 $[M + Na]^+$; 536.8

29 $[2M + Na]^+$; ¹H NMR (600 MHz, DMSO-d₆) δ 9.79 (s, 1H), 8.27 (d, J = 2.1 Hz, 1H), 8.10 (dd, J = 8.8, 2.1 Hz,

30 1H), 7.57 (d, J = 8.8 Hz, 1H), 4.22 (t, J = 6.3 Hz, 2H), 1.57 (dq, J = 12.2, 6.0 Hz, 3H), 0.83 (d, J = 6.3 Hz, 6H).

1	ACCEPTED MANUSCRIPT
2	4.1.5.4. Synthesis of 4-(allyloxy)-3-(1H-tetrazol-1-yl) benzonitrile (5e)
3	A white solid, yield: 94.5%. Mp 112.4°C-113.5°C. MS (ESI) m/z: 228.3 [M + H] ⁺ ; 250.2 [M + Na] ⁺ ; 476.9
4	$[2M + Na]^+$; ¹ H NMR (600 MHz, DMSO- <i>d</i> 6) δ 9.84 (s, 1H), 8.29 (d, <i>J</i> = 2.0 Hz, 1H), 8.11 (dd, <i>J</i> = 8.8, 2.0 Hz,
5	1H), 7.54 (d, $J = 8.8$ Hz, 1H), 5.98 (ddt, $J = 15.8$, 10.4, 5.1 Hz, 1H), 5.31 – 5.23 (m, 2H), 4.81 (d, $J = 5.1$ Hz,
6	2H).
7	
8	4.1.5.5. Synthesis of 4-[(2-methylallyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5f)
9	A white solid, yield: 85.4%. Mp 115.9°C -117.5°C. MS (ESI) $m/z : 242.3 [M + H]^+$; 264.2 $[M + Na]^+$; 504.8
10	$[2M + Na]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.81 (s, 1H), 8.30 (d, $J = 2.0$ Hz, 1H), 8.11 (dd, $J = 8.8$, 2.0 Hz,
11	1H), 7.53 (d, <i>J</i> = 8.8 Hz, 1H), 4.92 (d, <i>J</i> = 19.0 Hz, 2H), 4.71 (s, 2H), 1.65 (s, 3H).
12	
13	4.1.5.6. Synthesis of 4-[(3-methylbut-2-en-1-yl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5g)
14	A white solid, yield: 70.2%. Mp 126.3°C-127.2°C. MS (ESI) m/z: 256.2 [M + H] ⁺ ; 278.2 [M + Na] ⁺ ; 532.8
15	$[2M + Na]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.79 (s, 1H), 8.26 (d, $J = 2.0$ Hz, 1H), 8.09 (dd, $J = 8.8$, 2.0 Hz,
16	1H), 7.55 (d, <i>J</i> = 8.8 Hz, 1H), 5.37 (t, <i>J</i> = 6.6 Hz, 1H), 4.78 (d, <i>J</i> = 6.7 Hz, 2H), 1.69 (d, <i>J</i> = 23.2 Hz, 6H).
17	
18	4.1.5.7. Synthesis of 4-(prop-2-yn-1-yloxy)-3-(1H-tetrazol-1-yl) benzonitrile (5h)
19	A brown solid, yield: 82.4%. Mp 138.4°C-138.9°C. ¹ H NMR (600 MHz, DMSO-d6) δ 9.83 (s, 1H), 8.37 –
20	8.27 (m, 1H), 8.21 – 8.12 (m, 1H), 7.61 (d, <i>J</i> = 8.8 Hz, 1H), 5.15 – 5.03 (m, 2H), 3.74 (d, <i>J</i> = 2.6 Hz, 1H).
21	
22	4.1.5.8. Synthesis of 4-(cyclopropylmethoxy)-3-(1H-tetrazol-1-yl) benzonitrile (5i)
23	A brown solid, yield: 91.3%. Mp 139.1°C-140.2°C. ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.81 (s, 1H), 8.28 (d,
24	<i>J</i> = 2.1 Hz, 1H), 8.07 (dd, <i>J</i> = 8.7, 2.1 Hz, 1H), 7.52 (d, <i>J</i> = 8.8 Hz, 1H), 4.09 (d, <i>J</i> = 7.1 Hz, 2H), 1.20 (dddd, <i>J</i>
25	= 15.1, 10.3, 5.3, 2.4 Hz, 1H), 0.56 – 0.49 (m, 2H), 0.34 – 0.27 (m, 2H).
26	
27	4.1.5.9. Synthesis of 4-(cyclopentyloxy)-3-(1H-tetrazol-1-yl) benzonitrile (5J)
28	A white solid, yield: 64.3%. Mp 148°C-149.1°C. MS (ESI) m/z: 256.3 $[M + H]^+$; 278.2 $[M + Na]^+$; ¹ H
29	NMR (600 MHz, DMSO-d ₆) δ 9.75 (s, 1H), 8.26 (d, <i>J</i> = 2.1 Hz, 1H), 8.07 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.54 (d, <i>J</i> =
30	8.8 Hz, 1H), 5.11 (tt, <i>J</i> = 5.6, 2.5 Hz, 1H), 1.95 – 1.82 (m, 2H), 1.71 – 1.62 (m, 2H), 1.59 – 1.47 (m, 4H). 19

1	ACCEPTED MANUSCRIPT
2	4.1.5.10. Synthesis of 4-(cyclohexylmethoxy)-3-(1H-tetrazol-1-yl) benzonitrile (5k)
3	A white solid, yield: 63.2%. Mp 120.6°C-122.2°C. ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.78 (s, 1H), 8.27 (d, J
4	= 2.1 Hz, 1H), 8.09 (dd, J = 8.8, 2.1 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 4.01 (d, J = 6.2 Hz, 2H), 1.71 – 1.56 (m,
5	6H), 1.17 (qt, <i>J</i> = 12.3, 3.2 Hz, 2H), 1.07 (qt, <i>J</i> = 12.6, 3.2 Hz, 1H), 0.91 (qd, <i>J</i> = 12.4, 3.4 Hz, 2H).
6	
7	4.1.5.11. Synthesis of 4-(benzyloxy)-3-(1H-tetrazol-1-yl) benzonitrile (5l)
8	A white solid, yield: 66.6%. Mp 148.3°C-149.0°C. MS (ESI) m/z: 576.8 [2M + Na] ⁺ ; ¹ H NMR (600 MHz,
9	DMSO-d ₆) δ 9.83 (s, 1H), 8.31 (d, <i>J</i> = 2.1 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.63 (d, <i>J</i> = 8.8 Hz, 1H), 7.41
10	– 7.31 (m, 6H), 5.36 (s, 2H).
11	
12	4.1.5.12. Synthesis of 4-[(4-methylbenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5m)
13	An off-white solid, yield: 96.5%. Mp 161.2°C-162.5°C. MS (ESI) m/z : 604.6 [2M + Na] ⁺ ; ¹ H NMR (600
14	MHz, DMSO-d ₆) δ 9.80 (s, 1H), 8.29 (d, <i>J</i> = 2.1 Hz, 1H), 8.11 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.62 (d, <i>J</i> = 8.8 Hz, 1H),
15	7.26 (d, <i>J</i> = 8.0 Hz, 2H), 7.18 (d, <i>J</i> = 7.8 Hz, 2H), 5.29 (s, 2H), 2.28 (s, 3H).
16	
17	4.1.5.13. Synthesis of 4-{[4-(tert-butyl) benzyl] oxy}-3-(1H-tetrazol-1-yl) benzonitrile (5n)
18	An off-white solid, yield: 80.2%. Mp 125.6 °C-128.4 °C. MS (ESI) m/z: 356.4 $[M + Na]^+$; ¹ H NMR (600
19	MHz, DMSO-d ₆) δ 9.84 (s, 1H), 8.30 (d, <i>J</i> = 2.1 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.65 (d, <i>J</i> = 8.8 Hz, 1H),
20	7.42 – 7.37 (m, 2H), 7.33 – 7.26 (m, 2H), 5.32 (s, 2H), 1.26 (s, 9H).
21	
22	4.1.5.14. Synthesis of 4-[(4-methoxybenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (50)
23	A white solid, yield: 68.4%. Mp 148.9°C-150.2°C. MS (ESI) m/z: 330.2 $[M + Na]^+$; ¹ H NMR (600 MHz,
24	DMSO-d ₆) δ 9.79 (s, 1H), 8.29 (d, <i>J</i> = 2.0 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.64 (d, <i>J</i> = 8.8 Hz, 1H), 7.33
25	(d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 5.26 (s, 2H), 3.74 (s, 3H).
26	
27	4.1.5.15. Synthesis of 4-[(4-fluorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5p)
28	A white solid, yield: 52.7%. Mp 160.7°C-161.6°C. MS (ESI) m/z: 296.4 $[M + H]^+$; 318.2 $[M + Na]^+$; ¹ H
29	NMR (600 MHz, DMSO-d ₆) δ 9.83 (s, 1H), 8.30 (d, <i>J</i> = 2.0 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 2.0 Hz, 1H), 7.63 (d, <i>J</i> =
30	8.8 Hz, 1H), 7.45 (dd, <i>J</i> = 8.4, 5.6 Hz, 2H), 7.21 (t, <i>J</i> = 8.8 Hz, 2H), 5.34 (s, 2H).

1	ACCEPTED MANUSCRIPT
2	4.1.5.16. Synthesis of 4-[(4-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5q)
3	A white solid, yield: 61.1%. Mp 195.9°C-197°C. ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.84 (s, 1H), 8.31 (d, J =
4	2.0 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 2.0 Hz, 1H), 7.61 (d, <i>J</i> = 8.8 Hz, 1H), 7.45 (d, <i>J</i> = 8.4 Hz, 2H), 7.41 (d, <i>J</i> = 8.4 Hz,
5	2H), 5.35 (s, 2H).
6	
7	4.1.5.17. Synthesis of 4-[(4-bromobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5r)
8	A white solid, yield: 59.4%. Mp 181.3°C-183.6°C. MS (ESI) m/z: 373.1 [M + H] ⁺ ; 395.2 [M + Na] ⁺ ; ¹ H
9	NMR (600 MHz, DMSO-d ₆) δ 9.84 (s, 1H), 8.31 (d, <i>J</i> = 1.8 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 1.8 Hz, 1H), 7.61 (d, <i>J</i> =
10	8.8 Hz, 1H), 7.58 (d, <i>J</i> = 8.3 Hz, 2H), 7.34 (d, <i>J</i> = 8.2 Hz, 2H), 5.34 (s, 2H).
11	
12	4.1.5.18. Synthesis of 4-[(3-methoxybenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5s)
13	A white solid, yield: 85.6%. Mp 134.4°C-135.6°C .MS (ESI) m/z: 308.3 $[M + H]^+$; 330.2 $[M + Na]^+$; ¹ H
14	NMR (400 MHz, DMSO-d ₆) δ 9.85 (s, 1H), 8.31 (d, <i>J</i> = 2.1 Hz, 1H), 8.12 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.61 (d, <i>J</i> =
15	8.8 Hz, 1H), 7.28 (t, 1H), 6.97 – 6.85 (m, 3H), 5.33 (s, 2H), 3.73 (s, 3H).
16	
17	4.1.5.19. Synthesis of 4-[(3-fluorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5t)
18	An off-white solid, yield: 87.0%. Mp 142.6°C -144.7°C .MS (ESI) m/z: 296.3 [M + H] ⁺ ; 318.2 [M + Na] ⁺ ;
19	¹ H NMR (400 MHz, DMSO-d ₆) δ 9.87 (s, 1H), 8.31 (d, J = 2.1 Hz, 1H), 8.13 (dd, J = 8.8, 2.2 Hz, 1H), 7.61 (d,
20	<i>J</i> = 8.8 Hz, 1H), 7.49 – 7.38 (m, 1H), 7.24 – 7.19 (m, 2H), 7.19 – 7.13 (m, 1H), 5.38 (s, 2H).
21	
22	4.1.5.20. Synthesis of 4-[(3-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5u)
23	An off-white solid, yield: 54.3%. Mp 157.2°C-158.5°C. ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.88 (s, 1H), 8.32
24	(d, J = 2.1 Hz, 1H), 8.14 (dd, J = 8.8, 2.1 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H), 7.44 – 7.38
25	(m, 2H), 7.34 (dd, $J = 5.0$, 3.4 Hz, 1H), 5.37 (s, 2H).
26	
27	4.1.5.21. Synthesis of 4-[(3-bromobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5v)
28	An off-white solid, yield: 66.5%. Mp 161.9 °C -162.2 °C. MS (ESI) m/z: 378.2 $[M + Na]^+$; ¹ H NMR (600
29	MHz, DMSO-d ₆) δ 9.87 (s, 1H), 8.32 (d, <i>J</i> = 2.1 Hz, 1H), 8.14 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.64 – 7.57 (m, 2H),
30	7.54 (dt, $J = 7.5$, 1.8 Hz, 1H), 7.40 – 7.31 (m, 2H), 5.36 (s, 2H).

1	ACCEPTED MANUSCRIPT
2	4.1.5.22. Synthesis of 4-[(2-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5w)
3	A white solid, yield: 63.5%. Mp 149.5°C-151.7°C. MS (ESI) m/z: 644.8 [2M + Na] ⁺ ; ¹ H NMR (400 MHz,
4	DMSO-d ₆) δ 9.75 (s, 1H), 8.32 (d, <i>J</i> = 2.1 Hz, 1H), 8.15 (dd, <i>J</i> = 8.7, 2.1 Hz, 1H), 7.70 (d, <i>J</i> = 8.8 Hz, 1H), 7.50
5	(dd, <i>J</i> = 7.7, 1.6 Hz, 1H), 7.45 (dd, <i>J</i> = 7.1, 2.2 Hz, 1H), 7.43 – 7.32 (m, 2H), 5.41 (s, 2H).
6	
7	4.1.5.23. Synthesis of 4-[(2, 6-dichlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5x)
8	A white solid, yield: 83.8%. Mp 178.0°C-178.9°C. MS (ESI) m/z: 368.4 [M + Na] ⁺ ; ¹ H NMR (400 MHz,
9	DMSO-d ₆) δ 9.57 (s, 1H), 8.32 (d, <i>J</i> = 2.1 Hz, 1H), 8.20 (dd, <i>J</i> = 8.7, 2.1 Hz, 1H), 7.86 (d, <i>J</i> = 8.8 Hz, 1H), 7.56
10	– 7.50 (m, 2H), 7.48 – 7.42 (m, 1H), 5.48 (s, 2H).
11	
12	4.1.5.24. Synthesis of 4-[(2, 4-dichlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzonitrile (5y)
13	A white solid, yield: 92.2%. Mp 176.7°C-177.3°C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 9.75 (s, 1H), 8.32 (d, J
14	= 2.1 Hz, 1H), 8.14 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.76 – 7.63 (m, 2H), 7.54 – 7.41 (m, 2H), 5.40 (s, 2H).
15	
16	4.1.6. General procedure for synthesis of 4-alkoxy-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6a-6y)
17	A 500 mL flask was charged with 250 mL of anhydrous methanol, 17.40 mmol of the compounds 5a-5y, and
18	5.22 mmol of sodium methoxide. The complex was protected from moisture and stirred for 36 h. Then, 34.8
19	mmol NH ₄ Cl was added and stirring was continued at 50°C for 6 h. Unreacted NH ₄ Cl was filtered, and the
20	reaction mixture was concentrated under reduced pressure. The crude residue was refluxed with ethyl acetate
21	and the precipitate was collected by filtration to give the compounds 6a-6y, which were used for the next
22	reaction without further purification.
23	
24	4.1.6.1. Synthesis of 4-methoxy-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6a)
25	A white solid, yield: 31.8%. MS (ESI) m/z: 218.2 $[M + H]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.96 (s, 1H),
26	9.22 (s, 3H), 8.35 (d, <i>J</i> = 2.4 Hz, 1H), 8.24 (dd, <i>J</i> = 8.9, 2.5 Hz, 1H), 7.64 (d, <i>J</i> = 9.0 Hz, 1H), 4.01 (s, 3H).
27	
28	4.1.6.2. Synthesis of 4-isopropoxy-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6b)
29	A white solid, yield: 24.0%. MS (ESI) m/z: 247.2 $[2M + H]^+$; 269.1 $[2M + Na]^+$ ¹ H NMR (600 MHz,
30	DMSO-d ₆) δ 9.85 (s, 1H), 9.26 (s, 4H), 8.25 (d, <i>J</i> = 2.4 Hz, 1H), 8.08 (dd, <i>J</i> = 8.9, 2.5 Hz, 1H), 7.65 (d, <i>J</i> = 9.0

1 Hz, 1H), 4.96 (hept, J = 6.1 Hz, 1H), 1.30 (d, J = 6.0 Hz, 6H).

2	
3	4.1.6.3. Synthesis of 4-isobutoxy-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6c)
4	A white solid, yield: 61.6%. MS (ESI) m/z: 261.3 $[M + H]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.87 (s, 1H),
5	8.89 (s, 3H), 8.30 (d, J = 2.4 Hz, 1H), 8.18 (dd, J = 8.8, 2.5 Hz, 1H), 7.60 (d, J = 8.9 Hz, 1H), 4.01 (d, J = 6.4
6	Hz, 2H), 1.97 (dp, <i>J</i> = 13.2, 6.6 Hz, 1H), 0.86 (d, <i>J</i> = 6.7 Hz, 6H).
7	
8	4.1.6.4. Synthesis of 4-(isopentyloxy)-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6d)
9	A white solid, yield: 34.5%. MS (ESI) m/z: 275.2 $[M + H]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.86 (s, 1H),
10	9.14 (s, 4H), 8.28 (d, J = 2.4 Hz, 1H), 8.16 (dd, J = 8.9, 2.4 Hz, 1H), 7.64 (d, J = 9.0 Hz, 1H), 4.25 (t, J = 6.3 Hz,
11	2H), 1.59 (dq, <i>J</i> = 12.1, 6.1, 5.6 Hz, 3H), 0.85 (d, <i>J</i> = 6.3 Hz, 6H).
12	
13	4.1.6.5. Synthesis of 4-(allyloxy)-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6e)
14	A white solid, yield: 36.3%. MS (ESI) m/z: 245.1 $[M + H]^+$; 488.9 $[2M + H]^+$; 243.3 $[M - H]^-$; ¹ H NMR
15	$(600 \text{ MHz}, \text{DMSO-d}_6) \delta 9.94 (s, 1\text{H}), 8.63 (s, 6\text{H}), 8.33 (s, 1\text{H}), 8.20 (d, J = 8.9 \text{ Hz}, 1\text{H}), 7.60 (d, J = 8.8 \text{ Hz}, 1\text{H})$
16	1H), 6.00 (ddt, <i>J</i> = 15.6, 9.9, 4.6 Hz, 1H), 5.28 (dd, <i>J</i> = 28.0, 13.9 Hz, 2H), 4.84 (d, <i>J</i> = 3.9 Hz, 2H).
17	
18	4.1.6.6. Synthesis of 4-[(2-methylallyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6f)
19	A white solid, yield: 33.6%. MS (ESI) m/z: 259.1 $[M + H]^+$; 517.0 $[2M + H]^+$; 257.3 $[M - H]^-$; ¹ H NMR
20	$(600 \text{ MHz}, \text{DMSO-d}_6) \delta 9.91 \text{ (s, 1H)}, 8.32 \text{ (d, } J = 2.3 \text{ Hz}, 1\text{H}), 8.20 \text{ (dd, } J = 8.9, 2.4 \text{ Hz}, 1\text{H}), 8.13 - 7.96 \text{ (m, III)}, 8.13 - 7.96 \text{ (m, IIII)}, 8.13 - 7.96 \text{ (m, IIIII)}, 8.13 - 7.96 \text{ (m, IIII)}, 8.13 - 7.96 \text{ (m, IIIII)}, 8.13 - 7.96 \text{ (m, IIIIII)}, 8.13 - 7.96 (m,$
21	10H), 7.59 (d, <i>J</i> = 8.9 Hz, 1H), 4.93 (d, <i>J</i> = 4.0 Hz, 2H), 4.74 (s, 2H), 1.66 (s, 3H).
22	
23	4.1.6.7. Synthesis of 4-[(3-methylbut-2-en-1-yl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6g)
24	A white solid, yield: 47.3%. MS (ESI) m/z: 273.2 $[M + H]^+$; 544.9 $[2M + H]^+$; ¹ H NMR (600 MHz,
25	DMSO-d ₆) δ 9.87 (s, 1H), 9.22 (s, 0H), 8.30 (d, 2H), 8.18 (dd, 2H), 7.61 (d, <i>J</i> = 8.9 Hz, 1H), 5.39 (s, 2H), 4.81
26	(d, <i>J</i> = 6.5 Hz, 3H), 1.70 (d, <i>J</i> = 17.8 Hz, 7H).
27	
28	4.1.6.8. Synthesis of 4-(prop-2-yn-1-yloxy)-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6h)
29	A white solid, yield: 36.7%. MS (ESI) m/z: 243.4 $[M + H]^+$; 265.3 $[M + Na]^+$; ¹ H NMR (600 MHz,
30	DMSO-d ₆) δ 9.92 (s, 1H), 9.01 (s, 5H), 8.34 (s, 1H), 8.23 (d, <i>J</i> = 8.8 Hz, 1H), 7.66 (d, <i>J</i> = 8.9 Hz, 1H), 5.11 (s,

ACCEPTED MANUSCRIPT

2H), 3.77 (s, 1H).

2	
3	4.1.6.9. Synthesis of 4-(cyclopropylmethoxy)-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6i)
4	A white solid, yield: 53.7%. MS (ESI) m/z: 259.3 $[M + H]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.90 (s, 1H),
5	8.32 (d, J = 2.4 Hz, 1H), 8.18 (dd, J = 8.9, 2.5 Hz, 1H), 7.72 (s, 29H), 7.58 (d, J = 8.9 Hz, 1H), 4.11 (d, J = 7.1
6	Hz, 2H), 1.27 – 1.16 (m, 1H), 0.57 – 0.48 (m, 2H), 0.35 – 0.28 (m, 2H).
7	
8	4.1.6.10. Synthesis of 4-(cyclopentyloxy)-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6J)
9	A white solid, yield: 26.9%. MS (ESI) m/z: 273.2 $[M + H]^+$; 295.2 $[M + Na]^+$; ¹ H NMR (600 MHz,
10	DMSO-d ₆) δ 9.83 (s, 1H), 8.40 (s, 1H), 8.29 (d, <i>J</i> = 2.4 Hz, 1H), 8.16 (dd, <i>J</i> = 8.9, 2.4 Hz, 4H), 7.60 (d, <i>J</i> = 8.9
11	Hz, 1H), 5.17 – 5.13 (m, 1H), 1.97 – 1.88 (m, 2H), 1.74 – 1.65 (m, 2H), 1.60 – 1.51 (m, 4H).
12	
13	4.1.6.11. Synthesis of 4-(cyclohexylmethoxy)-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6k)
14	A white solid, yield: 42.5%. MS (ESI) m/z: 301.3 $[M + H]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.85 (s, 1H),
15	8.26 (d, J = 2.5 Hz, 1H), 8.14 (dd, J = 9.0, 2.5 Hz, 2H), 7.96 (s, 10H), 7.61 (d, J = 8.9 Hz, 1H), 4.04 (d, J = 6.2
16	Hz, 2H), 1.73 – 1.57 (m, 6H), 1.25 – 1.13 (m, 2H), 1.12 – 1.03 (m, 1H), 0.99 – 0.89 (m, 2H).
17	
18	4.1.6.12. Synthesis of 4-(benzyloxy)-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (61)
19	A white solid, yield: 46.4%. MS (ESI) m/z: 295.2 $[M + H]^+$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.91 (s, 1H),
20	8.86 (s, 4H), 8.29 (d, J = 2.4 Hz, 1H), 8.14 (dd, J = 8.9, 2.5 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H), 7.42 - 7.36 (m,
21	4H), 7.36 – 7.32 (m, 1H), 5.39 (s, 2H).
22	
23	4.1.6.13. Synthesis of 4-[(4-methylbenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6m)
24	A white solid, yield: 42.5%. MS (ESI) m/z: 309.4 $[M + H]^+$; 307.3 $[M - H]^-$; ¹ H NMR (600 MHz, DMSO-d ₆)
25	δ 9.89 (s, 1H), 8.92 (s, 4H), 8.28 (d, J = 2.4 Hz, 1H), 8.13 (dd, J = 8.9, 2.5 Hz, 1H), 7.67 (d, J = 8.9 Hz, 1H),
26	7.29 (d, <i>J</i> = 7.8 Hz, 2H), 7.19 (d, <i>J</i> = 7.7 Hz, 2H), 5.34 (s, 2H), 2.29 (s, 3H).
27	
28	4.1.6.14. Synthesis of 4-{[4-(tert-butyl) benzyl] oxy}-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6n)
29	A white solid, yield: 46.1%. MS (ESI) m/z: 351.3 $[M + H]^+$; 349.4 $[M - H]^-$; ¹ H NMR (600 MHz, DMSO-d ₆)
30	δ 9.92 (s, 1H), 8.30 (d, <i>J</i> = 2.4 Hz, 1H), 8.16 (dd, <i>J</i> = 8.9, 2.4 Hz, 1H), 7.70 (d, <i>J</i> = 9.0 Hz, 1H), 7.43 – 7.37 (m,

1 2H), 7.36 – 7.29 (m, 2H), 5.35 (s, 2H), 1.26 (s, 9H).

2	
3	4.1.6.15. Synthesis of 4-[(4-methoxybenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (60)
4	A white solid, yield: 74.6%. MS (ESI) m/z: 325.2 $[M + H]^+$; 323.0 $[M - H]^-$; ¹ H NMR (600 MHz, DMSO-d ₆)
5	δ 9.93 (s, 1H), 8.36 (d, J = 2.4 Hz, 1H), 8.24 (dd, J = 8.9, 2.4 Hz, 1H), 8.10 (s, 15H), 7.73 (d, J = 9.0 Hz, 1H),
6	7.37 (dd, 2H), 6.94 (dd, 2H), 5.32 (s, 2H), 3.75 (s, 3H).
7	
8	4.1.6.16. Synthesis of 4-[(4-fluorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6p)
9	A white solid, yield: 38.6%. MS (ESI) m/z: 313.2 $[M + H]^+$; 311.3 $[M - H]^-$; ¹ H NMR (600 MHz, DMSO-d ₆)
10	δ 9.93 (s, 1H), 8.97 (s, 6H), 8.32 (s, 1H), 8.19 (dd, J = 9.0, 2.4 Hz, 1H), 7.69 (d, J = 8.9 Hz, 1H), 7.48 (dd, J =
11	8.4, 5.4 Hz, 2H), 7.29 – 7.13 (m, 2H), 5.38 (s, 2H).
12	
13	4.1.6.17. Synthesis of 4-[(4-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6q)
14	A white solid, yield: 39.0%. MS (ESI) m/z: 329.1 $[M + H]^+$; 327.1 $[M - H]^-$; ¹ H NMR (600 MHz, DMSO-d ₆)
15	δ 9.93 (s, 1H), 9.37 (s, 5H), 8.31 (d, J = 2.2 Hz, 1H), 8.16 (dd, J = 9.0, 2.4 Hz, 1H), 7.67 (d, J = 8.9 Hz, 1H),
16	7.45 (dd, <i>J</i> = 2.3 Hz, 4H), 5.39 (s, 2H).
17	
18	4.1.6.18. Synthesis of 4-[(4-bromobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6r)
19	A white solid, yield: 34.6%. MS (ESI) m/z: 373.1 $[M + H]^+$; 395.2 $[M + Na]^+$; ¹ H NMR (600 MHz,
20	DMSO-d ₆) δ 9.94 (s, 1H), 9.47 (s, 4H), 8.32 (s, 1H), 8.17 (d, <i>J</i> = 8.9 Hz, 1H), 7.67 (d, <i>J</i> = 8.9 Hz, 1H), 7.59 (d, <i>J</i>
21	= 7.9 Hz, 2H), 7.38 (d, <i>J</i> = 8.0 Hz, 2H), 5.38 (s, 2H).
22	
23	4.1.6.19. Synthesis of 4-[(3-methoxybenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6s)
24	A white solid, yield: 34.6%. MS (ESI) m/z: 325.2 $[M + H]^+$; 347.2 $[M + Na]^+$; 323.0 $[M - H]^-$; ¹ H NMR (400
25	MHz, DMSO-d ₆) δ 9.97 (s, 1H), 8.36 (d, <i>J</i> = 2.3 Hz, 1H), 8.23 (dd, 1H), 8.12 (s, 8H), 7.67 (d, <i>J</i> = 8.9 Hz, 1H),
26	7.28 (t, <i>J</i> = 7.8 Hz, 1H), 7.01 – 6.92 (m, 2H), 6.88 (dd, <i>J</i> = 8.3, 2.5 Hz, 1H), 5.36 (s, 2H).
27	
28	4.1.6.20. Synthesis of 4-[(3-fluorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6t)
29	A white solid, yield: 66.3%. MS (ESI) m/z: 313.2 $[M + H]^+$; 335.2 $[M + Na]^+$; 311.0 $[M - H]^-$; ¹ H NMR (400
30	MHz, DMSO-d ₆) δ 9.98 (s, 1H), 8.36 (d, <i>J</i> = 2.4 Hz, 1H), 8.22 (dd, <i>J</i> = 8.9, 2.4 Hz, 1H), 7.95 (s, 16H), 7.67 (d, <i>J</i>

= 8.9 Hz, 1H), 7.48 – 7.39 (m, 1H), 7.30 – 7.21 (m, 2H), 7.20 – 7.12 (m, 1H), 5.41 (s, 2H). 1 2 3 4.1.6.21. Synthesis of 4-[(3-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6u) 4 A white solid, yield: 26.7%. MS (ESI) m/z: 329.2 $[M + H]^+$; 327.0 $[M - H]^-$; ¹H NMR (600 MHz, DMSO-d₆) δ 10.00 (s, 1H), 8.37 (s, 1H), 8.24 (d, J = 8.8 Hz, 1H), 7.67 (s, 59H), 7.48 (s, 1H), 7.43 – 7.33 (m, 3H), 5.40 (s, 5 6 2H). 7 4.1.6.22. Synthesis of 4-[(3-bromobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6v) 8 9 A white solid, yield: 64.1%. MS (ESI) m/z: 373.3 $[M + H]^+$; 370.9 $[M - H]^-$; ¹H NMR (600 MHz, DMSO-d₆) δ 9.98 (s, 1H), 8.36 (d, J = 2.4 Hz, 1H), 8.22 (dd, J = 8.9, 2.5 Hz, 1H), 8.09 (s, 8H), 7.66 (d, J = 9.0 Hz, 1H), 10 11 7.62 (s, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 5.40 (s, 2H). 12 13 4.1.6.23. Synthesis of 4-[(2-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6w) A white solid, yield: 43.1%. MS (ESI) m/z: 329.3 $[M + H]^+$; 351.3 $[M + Na]^+$; 327.1 $[M - H]^-$; ¹H NMR (400) 14 MHz, DMSO-d₆) δ 9.86 (s, 1H), 8.43 (s, 1H), 8.35 (d, J = 2.3 Hz, 1H), 8.26 (s, 10H), 7.75 (d, J = 8.9 Hz, 1H), 15 16 7.53 – 7.46 (m, 2H), 7.43 – 7.32 (m, 2H), 5.44 (s, 2H). 17 4.1.6.24. Synthesis of 4-[(2, 6-dichlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6x) 18 19 A white solid, yield: 39.8%. MS (ESI) m/z: $363.1 [M + H]^+$. 20 4.1.6.25. Synthesis of 4-[(2, 4-dichlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) benzimidamide hydrochloride (6y) 21 22 A white solid, yield: 36.4%. MS (ESI) m/z: 363.0 [M - H]; 1H NMR (400 MHz, DMSO-d6) δ 9.90 (s, 1H), 8.43 (s, 1H), 8.39 (d, J = 2.3 Hz, 1H), 8.28 (d, J = 6.5 Hz, 1H), 7.86 (s, 12H), 7.69 (s, 1H), 7.57 (d, J = 8.3 Hz, 23 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 5.45 (s, 2H). 24 25 4.1.7. General procedure for synthesis of ethyl 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1, 26 27 6-dihydropyrimidine-5-carboxylates (7a-7y) 28 To a solution of sodium hydride (3 g, 0.125 mol) in ethanol (10 mL) were added compounds 7a-7y (1.97 29 mmol) and diethyl ethoxymethylenemalonate (460 mg, 2.16 mmol). The reaction mixture was stirred at room 30 temperature until the material spot disapperaed by TLC. After the reaction completed, the mixture was added 5

1	mL 6 M hydrochloric acid and stirred for 0.5 h, then the precipitate was collected by filtration. The resulting
2	residue was refluxed (ethanol or ethanol: dechloromethane=1:1) to yield ethyl 2-[4-alkoxy-3-(1H-tetrazol-1-yl)
3	phenyl]-6-oxo-1, 6-dihydropyrimidine-5-carboxylates (7a-7y).
4	
5	4.1.7.1. Synthesis of ethyl 2-[4-methoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
6	6-dihydropyrimidine-5-carboxylate (7a)
7	A white solid, yield: 48.6%. Mp: degraded at 216.7°C. MS (ESI) m/z: 341.1 $[M - H]^-$; ¹ H NMR (600 MHz,
8	DMSO-d ₆) δ 13.22 (s, 1H), 9.87 (s, 1H), 8.64 (s, 1H), 8.57 (s, 1H), 8.45 (d, <i>J</i> = 8.2 Hz, 1H), 7.55 (d, <i>J</i> = 8.9 Hz,
9	1H), 4.25 (q, <i>J</i> = 7.0 Hz, 2H), 3.98 (s, 3H), 1.28 (t, <i>J</i> = 7.0 Hz, 3H).
10	
11	4.1.7.2. Synthesis of ethyl 2-[4-isopropoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
12	6-dihydropyrimidine-5-carboxylate (7b)
13	A white solid, yield: 48.4%. Mp 183.1°C-184.5°C. MS (ESI) m/z: 369.2 [M - H] ⁻ ; ¹ H NMR (600 MHz,
14	DMSO-d ₆) δ 13.23 (s, 1H), 9.81 (s, 1H), 8.65 (s, 1H), 8.58 (s, 1H), 8.43 (d, <i>J</i> = 9.0 Hz, 1H), 7.58 (d, <i>J</i> = 9.0 Hz,
15	1H), 4.94 (hept, $J = 6.0$ Hz, 1H), 4.26 (q, $J = 7.1$ Hz, 2H), 1.30 (d, $J = 6.0$ Hz, 6H), 1.28 (t, $J = 7.1$ Hz, 2H).
16	
17	4.1.7.3. Synthesis of ethyl 2-[4-isobutoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
18	6-dihydropyrimidine-5-carboxylate (7c)
19	A white solid, yield: 70.1%. Mp 204.1°C-204.7°C. MS (ESI) m/z: 385.4 $[M + H]^+$; 407.3 $[M + Na]^+$; 383.2
20	$[M - H]^{-}$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.20 (s, 1H), 9.81 (s, 1H), 8.64 (s, 1H), 8.55 (d, $J = 2.0$ Hz, 1H),
21	8.44 (dd, <i>J</i> = 8.9, 2.4 Hz, 1H), 7.54 (d, <i>J</i> = 9.0 Hz, 1H), 4.25 (q, <i>J</i> = 7.1 Hz, 2H), 4.00 (d, <i>J</i> = 6.4 Hz, 2H), 1.99
22	(hept, $J = 6.6$ Hz, 1H), 1.28 (t, $J = 7.1$ Hz, 3H), 0.87 (d, $J = 6.7$ Hz, 6H).
23	
24	4.1.7.4. Synthesis of ethyl 2-[4-(isopentyloxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
25	6-dihydropyrimidine-5-carboxylate (7d)
26	A white solid, yield: 40.2%. Mp 204.3°C-204.8°C. MS (ESI) m/z: 399.3 $[M + H]^+$; 421.2 $[M + Na]^+$; 437.2
27	$[M + K]^+$; 397.0 $[M - H]^-$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.21 (s, 1H), 9.80 (s, 1H), 8.63 (s, 1H), 8.55
28	1H), 8.43 (d, <i>J</i> = 7.8 Hz, 1H), 7.56 (d, <i>J</i> = 9.0 Hz, 1H), 4.29 – 4.20 (m, 4H), 1.65 – 1.57 (m, 3H), 1.28 (t, <i>J</i> = 7.1
29	Hz, 3H), 0.86 (d, <i>J</i> = 6.1 Hz, 6H).
30	

1	-4.1.7.5. Synthesis of ACCEPTED MANUSCRIPT 2-[4-(allyloxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
2	6-dihydropyrimidine-5-carboxylate (7e)
3	A white solid, yield: 69.8%. Mp: degraded at 231.2°C. MS (ESI) m/z: 369.3 $[M + H]^+$; 391.2 $[M + Na]^+$;
4	407.2 [M + K] ⁺ ; 367.0 [M - H] ⁻ ; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.85 (s, 1H), 8.56 (s, 1H), 8.52 (s, 1H), 8.48
5	(d, J = 8.6 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 6.00 (ddt, J = 16.3, 10.5, 5.1 Hz, 1H), 5.26 (dd, J = 25.2, 13.9 Hz,
6	2H), 4.74 (d, <i>J</i> = 5.1 Hz, 2H), 4.16 (q, <i>J</i> = 7.1 Hz, 2H), 1.25 (t, <i>J</i> = 6.7 Hz, 3H).
7	4.1.7.6. Synthesis of ethyl 2-{4-[(2-methylallyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
8	6-dihydropyrimidine-5-carboxylate (7f)
9	A white solid, yield: 61.4%. Mp: degraded at 219.8°C. MS (ESI) m/z: 405.4 $[M + Na]^+$; 381.1 $[M - H]^-$; ¹ H
10	NMR (600 MHz, DMSO-d ₆) δ 13.22 (s, 1H), 9.84 (s, 1H), 8.64 (s, 1H), 8.55 (s, 1H), 8.44 (d, $J = 8.9$ Hz, 1H),
11	7.55 (d, <i>J</i> = 9.0 Hz, 1H), 4.95 (d, <i>J</i> = 8.4 Hz, 2H), 4.73 (s, 2H), 4.26 (q, <i>J</i> = 7.1 Hz, 2H), 1.68 (s, 3H), 1.28 (t, <i>J</i> =
12	7.1 Hz, 3H).
13	4.1.7.7. Synthesis of ethyl 2-{4-[(3-methylbut-2-en-1-yl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
14	6-dihydropyrimidine-5-carboxylate (7g)
15	A white solid, yield: 63.4%. Mp 204.2°C-204.5°C. MS (ESI) m/z: 397.4 [M + H] ⁺ ; 419.3 [M + Na] ⁺ ; 395.1
16	$[M - H]^{-}$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.21 (s, 1H), 9.81 (s, 1H), 8.65 (s, 1H), 8.56 (d, $J = 1.8$ Hz, 1H),
17	8.44 (dd, <i>J</i> = 8.9, 2.4 Hz, 1H), 7.57 (d, <i>J</i> = 9.0 Hz, 1H), 5.41 (t, <i>J</i> = 6.5 Hz, 1H), 4.80 (d, <i>J</i> = 6.6 Hz, 2H), 4.26 (q
18	<i>J</i> = 7.1 Hz, 2H), 1.73 (s, 3H), 1.69 (s, 3H), 1.28 (t, <i>J</i> = 7.1 Hz, 3H).
19	
20	4.1.7.8. Synthesis of ethyl 6-oxo-2-[4-(prop-2-yn-1-yloxy)-3-(1H-tetrazol-1-yl) phenyl]-1,
21	6-dihydropyrimidine-5-carboxylate (7h)
22	A white solid, yield: 55.6%. Mp 211.3°C-212.0°C. MS (ESI) m/z: 365.0 [M - H] ⁻ ; ¹ H NMR (400 MHz,
23	DMSO-d ₆) δ 13.22 (s, 1H), 9.84 (s, 1H), 8.66 (s, 1H), 8.58 (d, <i>J</i> = 2.3 Hz, 1H), 8.47 (dd, <i>J</i> = 9.0, 2.3 Hz, 1H),
24	7.61 (d, <i>J</i> = 9.0 Hz, 1H), 5.09 (d, <i>J</i> = 2.4 Hz, 2H), 4.26 (q, <i>J</i> = 7.1 Hz, 2H), 3.73 (t, <i>J</i> = 2.4 Hz, 1H), 1.29 (t, <i>J</i> =
25	7.1 Hz, 3H).
26	
27	
28	4.1.7.9. Synthesis of ethyl 2-[4-(cyclopropylmethoxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
29	6-dihydropyrimidine-5-carboxylate (7i)
30	A white solid, yield: 58.4%. Mp: degraded at 210.1°C. MS (ESI) m/z: 405.4 $[M + Na]^+$; 381.3 $[M - H]^-$; ¹ H

1	NMR (400 MHz, DMSO-d ₆) δ 13.26 (s, 1H), 9.86 (s, 1H), 8.63 (s, 1H), 8.59 (d, J = 2.3 Hz, 1H), 8.44 (dd, J =
2	8.9, 2.3 Hz, 1H), 7.53 (d, <i>J</i> = 8.9 Hz, 1H), 4.26 (q, <i>J</i> = 7.1 Hz, 2H), 4.12 (d, <i>J</i> = 7.0 Hz, 2H), 1.29 (t, <i>J</i> = 7.1 Hz,
3	3H), 0.55 (dt, 2H), 0.34 (dt, <i>J</i> = 6.2, 4.3 Hz, 2H).
4	
5	4.1.7.10. Synthesis of ethyl 2-[4-(cyclopentyloxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
6	6-dihydropyrimidine-5-carboxylate (7J)
7	A white solid, yield: 67.0%. Mp: degraded at 204.5°C. MS (ESI) m/z: 419.3 $[M + Na]^+$; 395.1 $[M - H]^-$; ¹ H
8	NMR (600 MHz, DMSO-d ₆) δ 13.21 (s, 1H), 9.77 (s, 1H), 8.64 (s, 1H), 8.56 (s, 1H), 8.43 (d, <i>J</i> = 8.8 Hz, 1H),
9	7.55 (d, <i>J</i> = 8.9 Hz, 1H), 5.14 (p, 1H), 4.25 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, <i>J</i> = 7.1 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 (q, J = 7.1 Hz, 2H), 1.57 (m, 2H), 1.57
10	<i>J</i> = 4.9, 3.4 Hz, 4H), 1.28 (t, <i>J</i> = 7.1 Hz, 3H).
11	
12	4.1.7.11. Synthesis of ethyl 2-[4-(cyclohexylmethoxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
13	6-dihydropyrimidine-5-carboxylate (7k)
14	A white solid, yield: 47.8%. Mp: degraded at 190.8°C. MS (ESI) m/z: 405.4 $[M + Na]^+$; 381.3 $[M - H]^-$; ¹ H
15	NMR (600 MHz, DMSO-d ₆) δ 13.23 (s, 1H), 9.80 (s, 1H), 8.64 (s, 1H), 8.55 (d, <i>J</i> = 2.3 Hz, 1H), 8.45 (dd, 1H),
16	7.55 (d, <i>J</i> = 9.0 Hz, 1H), 4.25 (q, <i>J</i> = 7.1 Hz, 2H), 4.03 (d, <i>J</i> = 6.3 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 4.03 (d, <i>J</i> = 6.3 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 4.03 (d, <i>J</i> = 6.3 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 4.03 (d, <i>J</i> = 6.3 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 4.03 (d, <i>J</i> = 6.3 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 4.03 (d, <i>J</i> = 6.3 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 1.75 – 1.58 (m, 6H), 1.28 (t, <i>J</i> = 7.1 Hz, 2H), 1.58 (t, J = 7.1 Hz, 2H), 1.58 (t,
17	Hz, 3H), 1.24 – 1.14 (m, 3H), 1.13 – 1.04 (m, 1H), 0.98 – 0.89 (m, 2H) .
18	
19	4.1.7.12. Synthesis of ethyl 2-[4-(benzyloxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
20	6-dihydropyrimidine-5-carboxylate (71)
21	A white solid, yield: 69.6%. Mp: degraded at 216.9°C. MS (ESI) m/z: 419.2 $[M + H]^+$; 441.1 $[M + Na]^+$;
22	417.0 [M - H] ⁻ ; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.21 (s, 1H), 9.85 (s, 1H), 8.64 (s, 1H), 8.58 (d, $J = 1.9$ Hz,
23	1H), 8.44 (dd, <i>J</i> = 9.0, 2.3 Hz, 1H), 7.63 (d, <i>J</i> = 9.0 Hz, 1H), 7.43 – 7.37 (m, 4H), 7.36 – 7.32 (m, 1H), 5.37 (s,
24	2H), 4.25 (q, <i>J</i> = 7.1 Hz, 2H), 1.28 (t, <i>J</i> = 7.1 Hz, 3H).
25	
26	4.1.7.13. Synthesis of ethyl 2-{4-[(4-methylbenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
27	6-dihydropyrimidine-5-carboxylate (7m)
28	A white solid, yield: 72.1%. Mp: degraded at 225.3°C. MS (ESI) m/z: 431.1 [M - H] ⁻ ; ¹ H NMR (600 MHz,
29	DMSO-d ₆) δ 13.22 (s, 1H), 9.82 (s, 1H), 8.64 (s, 1H), 8.57 (s, 1H), 8.43 (d, <i>J</i> = 8.0 Hz, 1H), 7.63 (d, <i>J</i> = 9.0 Hz,
30	1H), 7.30 (d, <i>J</i> = 7.9 Hz, 2H), 7.19 (d, <i>J</i> = 7.9 Hz, 2H), 5.32 (s, 2H), 4.25 (q, <i>J</i> = 7.1 Hz, 2H), 2.29 (s, 3H), 1.28 29

1	 1.	T	7	1 TT		TT)
	+	1 -		I Н'	7 1	н 1
1	ι.	J —	1.		L, J.	,

2	

3	4.1.7.14. Synthesis of ethyl 2-{4-{[4-(tert-butyl) benzyl] oxy}-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
4	6-dihydropyrimidine-5-carboxylate (7n)			
5	A white solid, yield: 68.3%. Mp: degraded at 225.5°C. MS (ESI) m/z: 475.2 [M + H] ⁺ ; 497.2 [M + Na]			
6	513.2 [M + K] ⁺ ; 473.1 [M - H] ⁻ ; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.21 (s, 1H), 9.85 (s, 1H), 8.64 (s, 1H), 8.57			
7	(d, J = 2.3 Hz, 1H), 8.44 (dd, J = 8.9, 2.4 Hz, 1H), 7.65 (d, J = 9.0 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4			
8	8.3 Hz, 2H), 5.33 (s, 2H), 4.25 (q, <i>J</i> = 7.1 Hz, 2H), 1.29 (t, <i>J</i> = 7.1 Hz, 3H), 1.26 (s, 9H).			
9				
10	4.1.7.15. Synthesis of ethyl 2-{4-[(4-methoxybenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
11	6-dihydropyrimidine-5-carboxylate (70)			
12	A white solid, yield: 50.6%. Mp: degraded at 208.4°C. MS (ESI) m/z: 471.3 $[M + Na]^+$; 447.0 $[M - H]^-$; ¹ H			
13	NMR (400 MHz, DMSO-d ₆) δ 13.21 (s, 1H), 9.80 (s, 1H), 8.64 (s, 1H), 8.57 (d, <i>J</i> = 2.3 Hz, 1H), 8.45 (dd, <i>J</i> =			
14	8.8, 2.3 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.36 (dd, 2H), 6.94 (dd, 2H), 5.29 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H),			
15	3.75 (s, 3H), 1.29 (t, <i>J</i> = 7.1 Hz, 3H).			
16				
17	4.1.7.16. Synthesis of ethyl 2-{4-[(4-fluorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
18	6-dihydropyrimidine-5-carboxylate (7p)			
19	A white solid, yield: 39.3%. Mp: degraded at 180.0°C. MS (ESI) m/z: 459.4 $[M + Na]^+$; 435.2 $[M - H]^-$; ¹ H			
20	NMR (400 MHz, DMSO-d ₆) δ 9.82 (s, 1H), 8.53 (s, 1H), 8.52 (d, J = 1.8 Hz, 1H), 8.49 (dd, J = 8.7, 2.1 Hz, 1H),			
21	7.51 – 7.41 (m, 3H), 7.26 – 7.17 (m, 2H), 5.27 (s, 2H), 4.16 (q, <i>J</i> = 7.1 Hz, 2H), 1.25 (t, <i>J</i> = 7.1 Hz, 3H).			
22				
23	4.1.7.17. Synthesis of ethyl 2-{4-[(4-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
24	6-dihydropyrimidine-5-carboxylate (7q)			
25	A white solid, yield: 30.1%. Mp: degraded at 230.4°C. MS (ESI) m/z: 475.4 $[M + Na]^+$; ¹ H NMR (400 MHz,			
26	DMSO-d ₆) δ 13.21 (s, 1H), 9.85 (s, 1H), 8.65 (s, 1H), 8.58 (d, <i>J</i> = 2.3 Hz, 1H), 8.51 – 8.39 (m, 1H), 7.62 (d, <i>J</i> =			
27	9.0 Hz, 1H), 7.53 – 7.38 (m, 4H), 5.37 (s, 2H), 4.26 (q, <i>J</i> = 7.1 Hz, 2H), 1.28 (t, <i>J</i> = 7.1 Hz, 3H).			
28				
29	4.1.7.18. Synthesis of ethyl 2-{4-[(4-bromobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
30	6-dihydropyrimidine-5-carboxylate (7r)			

1	An off white solid, yield: 55.2%. Mp: degraded at 229.5°C. MS (ESI) m/z: 519.4 $[M + Na]^+$; 495.2 $[M - H]^-$;			
2	¹ H NMR (600 MHz, DMSO-d ₆) δ 9.84 (s, 1H), 8.52 (s, 1H), 8.52 (d, J = 2.0 Hz, 1H), 8.48 (dd, J = 8.8, 2.1 Hz,			
3	1H), 7.58 (d, <i>J</i> = 8.1 Hz, 2H), 7.46 (d, <i>J</i> = 8.8 Hz, 1H), 7.35 (d, <i>J</i> = 8.0 Hz, 2H), 5.27 (s, 2H), 4.16 (q, <i>J</i> = 7.1 Hz), 7.58 (d, <i>J</i> = 8.1 Hz), 7.46 (d, <i>J</i> = 8.8 Hz), 1H), 7.35 (d, <i>J</i> = 8.0 Hz), 2H), 5.27 (s, 2H), 4.16 (q, <i>J</i> = 7.1 Hz), 7.58 (d, <i>J</i> = 8.0 Hz), 2H), 5.27 (s, 2H), 4.16 (q, <i>J</i> = 7.1 Hz), 7.58 (d, <i>J</i> = 8.0 Hz), 7.58 (d, J =			
4	2H), 1.25 (t, <i>J</i> = 7.0 Hz, 3H).			
5				
6	4.1.7.19. Synthesis of ethyl 2-{4-[(3-methoxybenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
7	6-dihydropyrimidine-5-carboxylate (7s)			
8	A white solid, yield: 61.8%. Mp: degraded at 209.9°C. MS (ESI) m/z: 449.4 $[M + H]^+$; 471.2 $[M + Na]^+$;			
9	447.1 [M - H] ⁻ ; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.23 (s, 1H), 9.88 (s, 1H), 8.65 (s, 1H), 8.58 (s, 1H), 8.45 (d,			
10	<i>J</i> = 8.8 Hz, 1H), 7.63 (d, <i>J</i> = 9.0 Hz, 1H), 7.29 (t, <i>J</i> = 7.9 Hz, 1H), 6.95 (d, <i>J</i> = 6.8 Hz, 2H), 6.92 – 6.85 (m, 1H),			
11	5.35 (s, 2H), 4.26 (q, <i>J</i> = 7.0 Hz, 2H), 3.74 (s, 3H), 1.28 (t, <i>J</i> = 7.1 Hz, 3H).			
12				
13	4.1.7.20. Synthesis of ethyl 2-{4-[(3-fluorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
14	6-dihydropyrimidine-5-carboxylate (7t)			
15	A white solid, yield: 46.8%. Mp: degraded at 214.9°C. MS (ESI) m/z: 437.4 $[M + H]^+$; 459.3 $[M + Na]^+$;			
16	435.1 [M - H] ⁻ ; ¹ H NMR (400 MHz, DMSO-d ₆) δ 13.21 (s, 1H), 9.89 (s, 1H), 8.65 (s, 1H), 8.58 (s, 1H), 8.45 (d,			
17	<i>J</i> = 8.9 Hz, 1H), 7.62 (d, <i>J</i> = 9.0 Hz, 1H), 7.44 (dd, <i>J</i> = 7.4 Hz, 1H), 7.24 (d, <i>J</i> = 8.3 Hz, 2H), 7.18 (t, <i>J</i> = 8.5 Hz,			
18	1H), 5.40 (s, 2H), 4.26 (q, <i>J</i> = 7.1 Hz, 2H), 1.29 (t, <i>J</i> = 7.1 Hz, 3H).			
19				
20	4.1.7.21. Synthesis of ethyl 2-{4-[(3-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
21	6-dihydropyrimidine-5-carboxylate (7u)			
22	A white solid, yield: 49.3%. Mp 209.4°C-209.6°C. MS (ESI) m/z: 453.2 $[M + H]^+$; 475.2 $[M + Na]^+$; 451.0			
23	$[M - H]^{-}$; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.23 (s, 0H), 9.90 (s, 1H), 8.65 (s, 0H), 8.58 (s, 1H), 8.45 (d, $J =$			
24	8.9 Hz, 1H), 7.62 (d, J = 9.0 Hz, 1H), 7.49 (s, 1H), 7.46 – 7.38 (m, 3H), 7.36 (d, J = 6.8 Hz, 1H), 5.39 (s, 2H),			
25	4.26 (q, <i>J</i> = 7.0 Hz, 2H), 1.28 (t, <i>J</i> = 7.1 Hz, 3H).			
26				
27	4.1.7.22. Synthesis of ethyl 2-{4-[(3-bromobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,			
28	6-dihydropyrimidine-5-carboxylate (7v)			
29	A white solid, yield: 51.4%. Mp 211.0°C -211.2°C. MS (ESI) m/z: 519.1 $[M + Na]^+$; 495.0 $[M - H]^-$; ¹ H			
30	NMR (400 MHz, DMSO-d ₆) δ 13.19 (s, 1H), 9.88 (s, 1H), 8.64 (s, 1H), 8.58 (d, J = 2.3 Hz, 1H), 8.44 (dd, J = 31			

- 1 8.8, 2.3 Hz, 1H), 7.64 7.58 (m, 2H), 7.57 7.50 (m, 1H), 7.43 7.33 (m, 2H), 5.37 (s, 2H), 4.25 (q, *J* = 7.1 Hz,
- 2 2H), 1.28 (t, *J* = 7.1 Hz, 3H).
- 3
- 4 4.1.7.23. Synthesis of ethyl 2-{4-[(2-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
 5 6-dihydropyrimidine-5-carboxylate (7w)
- 6 A white solid, yield: 63.2%. Mp: degraded at 209.0°C. MS (ESI) m/z: 453.4 $[M + H]^+$; 475.4 $[M + Na]^+$;
- 7 451.3 [M H]⁻; ¹H NMR (400 MHz, DMSO-d₆) δ 13.21 (s, 1H), 9.77 (s, 1H), 8.65 (s, 1H), 8.58 (d, J = 2.2 Hz,
- 8 1H), 8.47 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.54 7.46 (m, 2H), 7.44 7.33 (m, 2H), 5.43 (s,
- 9 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H).
- 10

4.1.7.24. Synthesis of ethyl 2-{4-[(2, 6-dichlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
6-dihydropyrimidine-5-carboxylate (7x)

- 13 A white solid, yield: 47.9%. Mp: degraded at 229.1°C. MS (ESI) m/z: 510.3 $[M + Na]^+$; 486.3 $[M H]^-$; ¹H
- 14 NMR (400 MHz, DMSO-d₆) δ 13.28 (s, 1H), 9.57 (s, 1H), 8.66 (s, 1H), 8.57 (d, J = 2.3 Hz, 1H), 8.53 (dd, J =
- 15 8.8, 2.4 Hz, 1H), 7.87 (d, *J* = 8.9 Hz, 1H), 7.58 7.52 (m, 2H), 7.46 (dd, *J* = 9.1, 6.9 Hz, 1H), 5.50 (s, 2H), 4.26
- 16 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H).
- 17

4.1.7.25. Synthesis of ethyl 2-{4-[(2, 4-dichlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
6-dihydropyrimidine-5-carboxylate (7y)

- 20 A white solid, yield: 56.7%. Mp: degraded at 237.0°C. MS (ESI) m/z: 509.0 $[M + Na]^+$; ¹H NMR (400 MHz, 21 DMSO-d₆) δ 13.30 (s, 1H), 9.80 (s, 1H), 8.64 (s, 1H), 8.58 (d, *J* = 2.3 Hz, 1H), 8.53 – 8.45 (m, 1H), 7.71 (d, *J* =
- 22 9.0 Hz, 1H), 7.69 (d, J = 2.1 Hz, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.47 (dd, J = 8.3, 2.1 Hz, 1H), 5.42 (s, 2H), 4.26
- 23 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H).
- 24

4.1.8. General procedure for synthesis of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
6-dihydropyrimidine-5-carboxylic acids (8a-8y)

A mixture of ethyl 2-[4-alkoxy-3-(1*H*-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5- carboxylates **7a-7y** (1.46 mmol), 10% LiOH aqueous (5 mL) and THF (10 mL) were stirred at 50°C until the material spot disapperaed by TLC. The solvent was concentrated in a vacuum, and the residue was acidified with dilute hydrochloric acid to pH 1. The resulting precipitate was filtered, and refluxed for 0.5 h with a mixture of THF

1	and H_2O (2:1) to yield the corresponding 2-[4-alkoxy-3-(1 <i>H</i> -tetrazol-1-yl) phenyl]-6-oxo-1,
2	6-dihydropyrimidine-5-carboxylic acids (8a-8y).
3	
4	4.1.8.1. Synthesis of 2-[4-methoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1, 6-dihydropyrimidine-5-carboxylic acid
5	(8a)
6	A white solid, yield: 76.3%. Mp: degraded at 181.7°C. ESI-HRMS calcd. for $C_{13}H_9N_6O_4$ [M - H] ⁻ 313.0691,
7	found: 313.0781; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.89 (s, 1H), 8.72 (s, 1H), 8.58 (d, <i>J</i> = 2.1 Hz, 1H), 8.47 (dd,
8	$J = 8.9, 2.0$ Hz, 1H), 7.59 (d, $J = 8.9$ Hz, 1H), 3.99 (s, 3H). ¹³ C NMR (100 MHz, DMSO-d ₆) δ 165.30, 159.70,
9	155.56, 145.20, 145.20, 145.19, 132.38, 126.44, 124.92, 123.21, 114.04, 111.57, 57.52. IR (KBr, cm ⁻¹)
10	3470.2, 3111.7, 2847.0, 1725.2, 1480.7, 1293.6.
11	
12	4.1.8.2. Synthesis of 2-[4-isopropoxy-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic
13	acid (8b)
14	A white solid, yield: 80.1%. Mp: degraded at 232.0°C . ESI-HRMS calcd. for $C_{15}H_{13}N_6O_4$ [M - H] ⁻ 341.1004,
15	found: 341.1135; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.83 (s, 1H), 8.73 (s, 1H), 8.57 (s, 1H), 8.43 (dd, J = 8.8, 2.4
16	Hz, 1H), 7.62 (d, $J = 9.1$ Hz, 1H), 4.95 (hept, $J = 6.0$ Hz, 1H), 1.31 (d, $J = 6.0$ Hz, 7H). ¹³ C NMR (100 MHz,
17	$DMSO-d_6 \ \delta \ 164.99 \ , \ 159.39 \ , \ 154.04 \ , \ 145.14 \ , \ 145.14 \ , \ 145.13 \ , \ 132.33 \ , \ 126.75 \ , \ 123.98 \ , \ 123.80 \ , \ 115.45 \ , $
18	111.85, 72.96, 21.82. IR (KBr, cm ⁻¹) 3441.1, 3142.3, 2983.3, 1737.5, 1468.7, 1286.3.
19	
20	4.1.8.3. Synthesis of 2-[4-isobutoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1, 6-dihydropyrimidine-5-carboxylic
21	acid (8c)
22	A white solid, yield: 84.5%. Mp: degraded at 218.3°C. ESI-HRMS calcd. for $C_{16}H_{15}N_6O_4$ [M - H] ⁻ 355.1160,
23	found: 355.1181; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.82 (s, 1H), 8.73 (s, 1H), 8.56 (d, J = 2.2 Hz, 1H), 8.45 (dd,
24	J = 8.9, 2.2 Hz, 1H), 7.58 (d, $J = 9.0$ Hz, 1H), 4.02 (d, $J = 6.4$ Hz, 2H), 2.00 (hept, $J = 6.6$ Hz, 1H), 0.88 (d, $J = 6.6$ Hz, 1H), 0.
25	6.7 Hz, 7H) . ^{13}C NMR (100 MHz, DMSO-d_6) δ 165.03 , 159.42 , 155.46 , 145.25 , 145.24 , 145.24 , 132.61 ,
26	126.84, 124.28, 123.31, 114.66, 111.83, 75.86, 27.88, 19.15. IR (KBr, cm ⁻¹) 3422.9, 3157.8, 2963.6, 1735.4,
27	1469.3, 1292.3.
28	

4.1.8.4. Synthesis of 2-[4-(isopentyloxy)-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic
acid (8d)

1	A white solid, yield: 72.6%. Mp: degraded at 210.9°C. ESI-HRMS calcd. for $C_{17}H_{17}N_6O_4$ [M - H] ⁻ 369.1317,
2	found: 369.1383; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.82 (s, 1H), 8.73 (s, 1H), 8.56 (s, 1H), 8.48 – 8.40 (m, 1H),
3	7.61 (d, $J = 8.9$ Hz, 1H), 4.26 (t, $J = 6.1$ Hz, 2H), 1.66 – 1.57 (m, 3H), 0.86 (d, $J = 5.5$ Hz, 8H). ¹³ C NMR (100
4	MHz, DMSO-d ₆) δ 164.99 , 159.38 , 155.22 , 145.16 , 145.16 , 145.15 , 132.48 , 126.63 , 124.21 , 123.31 ,
5	114.70, 111.87, 68.73, 37.24, 25.06, 22.76. IR (KBr, cm ⁻¹) 3445.8, 3155.8, 2959.3, 1735.5, 1470.3, 1290.7.
6	
7	4.1.8.5. Synthesis of 2-[4-(allyloxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1, 6-dihydropyrimidine-5-carboxylic
8	acid (8e)

A white solid, yield: 80.3%. Mp: degraded at 217.2°C. ESI-HRMS calcd. for C₁₅H₁₁N₆O₄ [M - H]⁻ 339.0847,
found: 339.0902; ¹H NMR (400 MHz, DMSO-d₆) δ 9.87 (s, 1H), 8.73 (s, 1H), 8.57 (d, J = 2.3 Hz, 1H), 8.44 (dd,
J = 8.8, 2.4 Hz, 1H), 7.58 (d, J = 9.0 Hz, 1H), 6.03 (ddt, J = 16.1, 10.3, 5.1 Hz, 1H), 5.42 - 5.20 (m, 2H), 4.85 (d,
J = 5.1 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.02, 159.44, 154.73, 145.28, 145.28, 145.27, 132.65,
132.42, 126.86, 124.62, 123.42, 118.85, 115.07, 112.04, 70.30. IR (KBr, cm⁻¹) 3188.4, 2927.4, 1750.9,
1442.6, 1282.4.

- 15
- 16 *4.1.8.6*.

Synthesis

of

17 2-{4-[(2-methylallyl)oxy]-3-(1H-tetrazol-1-yl)phenyl}-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8f)

18A white solid, yield: 69.8%. Mp: degraded at 229.6°C. ESI-HRMS calcd. for $C_{16}H_{13}N_6O_4$ [M - H]⁻ 353.1004,19found: 353.1077; ¹H NMR (400 MHz, DMSO-d₆) δ 13.44 (s, 2H), 9.84 (s, 1H), 8.73 (s, 1H), 8.55 (s, 1H), 8.4420(d, J = 8.9 Hz, 1H), 7.57 (d, J = 9.0 Hz, 1H), 4.95 (d, 2H), 4.74 (s, 2H), 1.69 (s, 3H). ¹³C NMR (100 MHz,21DMSO-d₆) δ 165.01 , 159.41 , 155.06 , 145.36 , 145.35 , 145.34 , 139.88 , 132.56 , 127.14 , 124.57 , 123.40 ,22115.04 , 113.52 , 112.01 , 72.82 , 19.40 . IR (KBr, cm⁻¹) 3428.6, 3086.9, 2922.6, 1748.7, 1444.0, 1284.5.

23

4.1.8.7. Synthesis of 2-{4-[(3-methylbut-2-en-1-yl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
6-dihydropyrimidine-5-carboxylic acid (8g)

A white solid, yield: 77.8%. Mp>250°C. ESI-HRMS calcd. for $C_{17}H_{15}N_6O_4$ [M - H]⁻ 367.1160, found: 367.1102; ¹H NMR (600 MHz, DMSO-d₆) δ 9.89 (s, 1H), 8.78 (s, 1H), 8.64 (s, 1H), 8.53 (dd, J = 8.8, 2.3 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H), 5.49 (t, J = 6.8 Hz, 1H), 4.87 (d, J = 6.3 Hz, 3H), 1.81 (s, 4H), 1.77 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 165.89 , 160.52 , 154.52 , 145.15 , 145.15 , 139.35 , 132.12 , 126.42 , 125.86 , 123.34 , 118.90 , 114.97 , 111.26 , 66.88 , 25.89 , 18.59 . IR (KBr, cm⁻¹) 3183.3, 2921.7, 1707.8, 1462.9, 1284.8.

1	ACCEPTED MANUSCRIPT
2	4.1.8.8. Synthesis of 6-oxo-2-[4-(prop-2-yn-1-yloxy)-3-(1H-tetrazol-1-yl) phenyl]-1,
3	6-dihydropyrimidine-5-carboxylic acid (8h)
4	A white solid, yield: 81.7%. Mp: degraded at 223.9°C . ESI-HRMS calcd. for $C_{15}H_9N_6O_4$ [M - H] ⁻ 337.0691,
5	found: 337.0650; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.87 (s, 1H), 8.74 (s, 1H), 8.59 (d, <i>J</i> = 2.0 Hz, 2H), 8.47 (dd,
6	J = 8.9, 2.0 Hz, 2H), 7.65 (d, $J = 9.0$ Hz, 1H), 5.10 (d, $J = 1.8$ Hz, 3H), 3.75 (t, $J = 2.4$ Hz, 1H). ¹³ C NMR (150)
7	MHz, DMSO-d ₆) δ 165.07 , 159.42 , 153.67 , 145.27 , 145.25 , 145.24 , 132.25 , 126.92 , 125.37 , 123.58 ,
8	115.29, 112.08, 80.33, 78.23, 57.79. IR (KBr, cm ⁻¹) 3266.4, 3111.8, 2924.0, 2120.2, 1720.3, 1439.9, 1275.7.
9	
10	4.1.8.9. Synthesis of
11	2-[4-(cyclopropylmethoxy)-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8i)
12	A white solid, yield: 74.8%. Mp>250°C. ESI-HRMS calcd. for $C_{16}H_{13}N_6O_4$ [M - H] ⁻ 353.1004, found:
13	353.1038; ¹ H NMR (600 MHz, DMSO-d ₆) δ 13.67 (s, 1H), 9.84 (s, 1H), 8.71 (s, 1H), 8.58 (s, 1H), 8.40 (d, $J =$
14	7.5 Hz, 1H), 7.55 (d, <i>J</i> = 8.2 Hz, 1H), 4.12 (d, <i>J</i> = 5.6 Hz, 2H), 1.30 – 1.17 (m, 1H), 0.55 (d, <i>J</i> = 7.9 Hz, 2H),
15	$0.38-0.29\ (m,\ 2H)\ .\ ^{13}C\ NMR\ (100\ MHz,\ DMSO-d_6)\ \delta\ 164.94\ ,\ 159.29\ ,\ 154.91\ ,\ 145.02\ ,\ 145.02\ ,\ 145.01\ ,$
16	132.25, 126.26, 124.14, 123.36, 114.89, 111.79, 74.59, 10.01, 3.44. IR (KBr, cm ⁻¹) 3187.6, 2925.5, 1698.9,
17	1468.3, 1288.4.
18	
19	4.1.8.10. Synthesis of 2-[4-(cyclopentyloxy)-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,
20	6-dihydropyrimidine-5-carboxylic acid (8 J)
21	A white solid, yield: 76.3%. Mp>250°C. ESI-HRMS calcd. for $C_{17}H_{15}N_6O_4$ [M - H] ⁻ 367.1160, found:
22	367.1173; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.78 (s, 1H), 8.71 (s, 1H), 8.56 (s, 1H), 8.43 (d, J = 8.8 Hz, 1H),
23	7.57 (d, J = 8.9 Hz, 1H), 5.13 (t, J = 6.0 Hz, 1H), 1.93 (dt, J = 13.5, 6.7 Hz, 2H), 1.79 – 1.67 (m, 2H), 1.63 –
24	1.50 (m, 5H) . ¹³ C NMR (100 MHz, DMSO-d ₆) δ 165.15, 159.59, 154.16, 145.09, 145.08, 145.08, 132.29,
25	126.73, 124.30, 123.86, 115.58, 111.71, 82.07, 32.54, 23.82. IR (KBr, cm ⁻¹) 3446.9, 2958.8, 1736.8, 1430.3,
26	1285.1.
27	
28	4.1.8.11. Synthesis of
29	2-[4-(cyclohexylmethoxy)-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8k)
30	A white solid, yield: 78.2%. Mp: degraded at 211.0°C. ESI-HRMS calcd. for $C_{19}H_{19}N_6O_4$ [M - H] ⁻ 395.1473, 35

1	found: 395.1485; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.81 (s, 1H), 8.73 (s, 1H), 8.55 (d, <i>J</i> = 2.1 Hz, 1H), 8.44 (dd,
2	<i>J</i> = 8.9, 2.1 Hz, 1H), 7.59 (d, <i>J</i> = 9.0 Hz, 1H), 4.04 (d, <i>J</i> = 6.3 Hz, 2H), 1.77 – 1.58 (m, 6H), 1.24 – 1.17 (m, 2H),
3	$1.14 - 1.06$ (m, 1H), $1.01 - 0.90$ (m, 2H) . ¹³ C NMR (100 MHz, DMSO-d ₆) δ 165.03 , 159.43 , 155.48 , 145.24 ,
4	145.23, 145.23, 132.59, 126.82, 124.25, 123.31, 114.67, 111.85, 74.93, 37.08, 29.31, 26.36, 25.57. IR
5	(KBr, cm ⁻¹) 3189.1, 2930.1, 1707.2, 1465.8, 1287.9.
6	
7	4.1.8.12. Synthesis of 2-[4-(benzyloxy)-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic
8	acid (8l)
9	A white solid, yield: 80.8%. Mp: degraded at 214.6°C. ESI-HRMS calcd. for $C_{19}H_{13}N_6O_4$ [M - H] ⁻ 389.1004,
10	found: 389.0974; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.86 (s, 1H), 8.72 (s, 1H), 8.58 (d, <i>J</i> = 2.3 Hz, 1H), 8.44 (dd,
11	$J = 8.9, 2.4$ Hz, 1H), 7.67 (d, $J = 8.9$ Hz, 1H), 7.45 – 7.30 (m, 6H), 5.38 (s, 2H). ¹³ C NMR (100 MHz, DMSO- d_6)
12	δ 165.73 , 160.36 , 154.56 , 145.24 , 145.24 , 145.23 , 136.01 , 132.30 , 129.03 , 128.73 , 128.06 , 126.75 ,
13	126.05 , 123.45 , 115.10 , 111.52 , 71.32 . IR (KBr, cm ⁻¹) 3417.2, 2944.3, 1717.7, 1454.4, 1285.1.
14	
15	4.1.8.13. Synthesis of 2-{4-[(4-methylbenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
16	6-dihydropyrimidine-5-carboxylic acid (8m)
17	A white solid, yield: 84.1%. Mp>250°C. ESI-HRMS calcd. for $C_{20}H_{15}N_6O_4$ [M - H] ⁻ 403.1160, found:
18	403.1245; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.81 (s, 1H), 8.64 (s, 1H), 8.55 (s, 1H), 8.51 (d, J = 8.7 Hz, 1H),
19	7.50 (s, 1H), 7.28 (d, <i>J</i> = 6.5 Hz, 3H), 7.18 (d, <i>J</i> = 7.3 Hz, 3H), 5.24 (s, 2H), 2.29 (s, 3H). ¹³ C NMR (150 MHz,
20	$DMSO-d_6) \ \delta \ 162.58 \ , \ 159.49 \ , \ 152.24 \ , \ 145.18 \ , \ 145.17 \ , \ 145.16 \ , \ 137.89 \ , \ 133.37 \ , \ 131.32 \ , \ 129.51 \ , \ 128.15 \ , \ $
21	125.64, 123.10, 122.79, 116.38, 114.11, 70.81, 21.23. IR (KBr, cm ⁻¹) 3421.9, 2924.0, 1599.7, 1437.9,
22	1286.3.
23	
24	4.1.8.14. Synthesis of 2-{4-{[4-(tert-butyl) benzyl] oxy}-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
25	6-dihydropyrimidine-5-carboxylic acid (8n)
26	A white solid, yield: 76.6%. Mp: degraded at 155.9°C. ESI-HRMS calcd. for $C_{23}H_{21}N_6O_4$ [M - H] ⁻ 445.1630,
27	found: 445.1683; ¹ H NMR (600 MHz, DMSO-d ₆) δ 9.84 (s, 1H), 8.64 (s, 1H), 8.56 (d, <i>J</i> = 2.2 Hz, 1H), 8.52 (dd,
28	J = 8.8, 2.2 Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 5.28 (s, 2H),
29	$1.27~(s,9H)$. ^{13}C NMR (100 MHz, DMSO-d_6) δ 165.13 , 159.55 , 154.90 , 151.26 , 145.23 , 145.23 , 145.23 ,
30	132.91, 132.45, 127.94, 126.85, 125.78, 124.84, 123.48, 115.15, 111.88, 71.21, 34.79, 31.53. IR (KBr,

2 4.1.8.15. 3 **Synthesis** of 2-{4-[(4-methoxybenzyl)oxy]-3-(1H-tetrazol-1-yl)phenyl}-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (80) 4 A white solid, yield: 70.1%. Mp: degraded at 118.8°C. ESI-HRMS calcd. for $C_{20}H_{15}N_6O_5$ [M - H]⁻ 419.1109, 5 found: 419.1009; ¹H NMR (600 MHz, DMSO-d₆) δ 14.00 (s, 1H), 9.81 (s, 1H), 8.72 (s, 1H), 8.57 (d, J = 2.3 Hz, 6 7 1H), 8.45 (dd, J = 8.9, 2.3 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H), 7.37 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 5.29 (s, 2H), 3.75 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 165.46, 159.97, 159.77, 154.69, 145.18, 8 9 145.17, 145.15, 132.29, 130.11, 127.73, 126.67, 125.34, 123.46, 115.18, 114.41, 111.67, 71.24, 55.57. IR (KBr, cm⁻¹) 3409.1, 3160.0, 2933.0, 1722.0, 1482.2, 1297.8. 10 11 12 4.1.8.16. **Synthesis** of2-{4-[(4-fluorobenzyl)oxy]-3-(1H-tetrazol-1-yl)phenyl}-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8p) 13 A white solid, yield: 76.5%. Mp: degraded at 213.9°C. ESI-HRMS calcd. for C₁₉H₁₂FN₆O₄ [M - H]⁻ 14 407.0910, found: 407.0808; ¹H NMR (600 MHz, DMSO-d₆) δ 9.85 (s, 1H), 8.73 (s, 1H), 8.58 (s, 1H), 8.45 (d, J 15 = 8.9 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.53 - 7.43 (m, 2H), 7.29 - 7.17 (m, 2H), 5.36 (s, 2H). ¹³C NMR (100) 16 MHz, DMSO-d₆) δ 165.05, 159.45, 154.70, 145.18, 132.42, 132.15, 130.56, 130.47, 126.84, 124.85, 17 123.51, 116.01, 115.79, 115.17, 70.69. IR (KBr, cm⁻¹) 3419.5, 3173.6, 3078.6, 1723.0, 1462.3, 1286.4. 18 19 20 4.1.8.17. $2-\{4-[(4-chlorobenzyl)]$ *oxy*]*-*3*-*(1*H-tetrazo*]*-*1*-y*]) phenyl}-6-oxo-1, **Synthesis** of 6-dihydropyrimidine-5-carboxylic acid (8q) 21 22 A white solid, yield: 78.2%. Mp>250°C. ESI-HRMS calcd. for $C_{19}H_{12}ClN_6O_4$ [M - H]⁻ 423.0614, found: 423.0579; ¹H NMR (400 MHz, DMSO-d₆) δ 13.94 (s, 1H), 9.86 (s, 1H), 8.72 (s, 1H), 8.58 (d, J = 2.3 Hz, 1H), 23 8.45 (dd, J = 8.9, 2.4 Hz, 1H), 7.65 (d, J = 9.0 Hz, 1H), 7.50 – 7.41 (m, 4H), 5.38 (s, 2H). ¹³C NMR (100 MHz, 24 DMSO-d₆) & 165.35, 159.83, 154.53, 145.23, 145.22, 145.22, 135.00, 133.42, 132.38, 130.03, 129.06, 25 126.84, 125.46, 123.49, 115.14, 111.78, 70.54. IR (KBr, cm⁻¹⁾ 3440.1, 3089.8, 2923.3, 1723.2, 1461.4, 26 27 1288.2. 28 29 4.1.8.18. **Synthesis** of $2-\{4-[(4-bromobenzyl)oxy]-3-(1H-tetrazol-1-yl)phenyl\}-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8r)$ 30

1	A white solid, yield: 80.6%. Mp>250°C. ESI-HRMS calcd. for $C_{19}H_{12}BrN_6O_4$ [M - H] ⁻ 467.0109, found:
2	466.9961; ¹ H NMR (600 MHz, DMSO-d ₆) δ 14.24 (s, 1H), 9.87 (s, 1H), 8.72 (s, 1H), 8.58 (s, 1H), 8.46 (d, <i>J</i> =
3	8.9 Hz, 1H), 7.63 (d, $J = 8.8$ Hz, 1H), 7.60 (d, $J = 7.6$ Hz, 2H), 7.38 (d, $J = 7.3$ Hz, 2H), 5.36 (s, 2H). ¹³ C NMR
4	$(150 \text{ MHz}, \text{DMSO-d}_6) \ \delta \ 165.79 \ , \ 160.40 \ , \ 154.31 \ , \ 145.26 \ , \ 145.24 \ , \ 135.46 \ , \ 132.27 \ , \ 131.99 \ , \ 130.34 \ , \ 126.75 \ $
5	126.25, 123.43, 121.98, 115.06, 111.53, 70.51, 40.51. IR (KBr, cm ⁻¹) 3420.2, 2925.9, 1734.8, 1490.4,
6	1289.5.
7	

8 4.1.8.19. Synthesis of 2-{4-[(3-methoxybenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
9 6-dihydropyrimidine-5-carboxylic acid (8s)

10 A white solid, yield: 68.6%. Mp: degraded at 228.3°C. ESI-HRMS calcd. for $C_{20}H_{15}N_6O_5$ [M - H]⁻ 419.1109, 11 found: 419.1086; ¹H NMR (600 MHz, DMSO- d_6) δ 13.82 (s, 1H), 9.90 (s, 1H), 8.73 (s, 1H), 8.58 (s, 1H), 8.45 12 (d, J = 8.9 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 6.97 (s, 2H), 6.90 (d, J = 8.1 Hz, 1H), 5.35 13 (s, 2H), 3.74 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.09 , 159.83 , 159.50 , 154.84 , 145.28 , 145.28 , 14 145.27 , 137.49 , 132.48 , 130.14 , 126.89 , 124.86 , 123.53 , 119.97 , 115.16 , 114.29 , 113.30 , 111.94 , 71.18 , 15 55.50 . IR (KBr, cm⁻¹) 3444.6, 3094.4, 1743.1, 1448.2, 1290.7.

- 16
- 17
 4.1.8.20.
 Synthesis
 of
 2-{4-[(3-fluorobenzyl)

18 oxy]-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8t)

19 A white solid, yield: 83.9%. Mp: degraded at 212.7°C. ESI-HRMS calcd. for $C_{19}H_{12}FN_6O_4$ [M - H]⁻ 20 407.0910, found: 407.0945; ¹H NMR (600 MHz, DMSO-d₆) δ 9.90 (s, 1H), 8.72 (s, 1H), 8.58 (d, J = 2.3 Hz, 21 1H), 8.44 (dd, J = 8.8, 2.4 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H), 7.44 (q, J = 7.5 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.18 22 (t, J = 7.5 Hz, 1H), 5.40 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 163.84, 161.41, 154.43, 145.29, 138.89, 23 138.82, 132.38, 131.15, 131.07, 126.85, 123.96, 123.48, 115.63, 115.43, 115.06, 114.85, 114.63, 111.69, 24 70.46. IR (KBr, cm⁻¹) 3454.2, 3076.1, 2923.4, 1749.6, 1457.3, 1285.6.

25

264.1.8.21.Synthesisof27 $2-\{4-[(3-chlorobenzyl)oxy]-3-(1H-tetrazol-1-yl)phenyl\}-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8u)28A white solid, yield: 81.7%. Mp>250°C. ESI-HRMS calcd. for C₁₉H₁₂ClN₆O₄ [M - H]⁻ 423.0614, found:29423.0588; ¹H NMR (600 MHz, DMSO-d₆) <math>\delta$ 13.77 (s, 1H), 9.90 (s, 1H), 8.72 (s, 1H), 8.58 (s, 1H), 8.44 (d, J =308.8 Hz, 1H), 7.64 (d, J = 7.0 Hz, 1H), 7.49 (s, 1H), 7.45 – 7.39 (m, 2H), 7.37 (d, J = 6.7 Hz, 1H), 5.39 (s, 2H).

1	¹³ C NMR (150 MHz, DMSO-d ₆) δ 165.14 , 159.50 , 154.54 , 145.28 , 145.26 , 145.25 , 138.45 , 133.68 , 132.45 ,
2	130.96, 128.68, 127.83, 126.87, 126.59, 125.08, 123.49, 115.09, 111.92, 70.41. IR (KBr, cm ⁻¹) 3460.3,
3	3074.6, 2927.5, 1714.0, 1462.3, 1273.9.

5 4.1.8.22. Synthesis of 2-{4-[(3-bromobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
6 6-dihydropyrimidine-5-carboxylic acid (8v)

A white solid, yield: 74.4%. Mp>250°C. ESI-HRMS calcd. for $C_{19}H_{12}BrN_6O_4$ [M - H]⁻ 467.0109, found: 467.0154; ¹H NMR (600 MHz, DMSO-d₆) δ 13.69 (s, 1H), 9.90 (s, 1H), 8.73 (s, 1H), 8.58 (s, 1H), 8.44 (dd, J =9 8.9, 2.4 Hz, 1H), 7.64 (d, J = 9.8 Hz, 2H), 7.54 (d, J = 7.7 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.36 (t, J = 7.8 Hz, 1H), 5.39 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.04, 159.42, 154.60, 145.25, 145.24, 145.24, 138.69, 132.47, 131.58, 131.22, 130.72, 126.97, 126.90, 124.96, 123.53, 122.24, 115.12, 111.98, 70.38. IR (KBr, cm⁻¹) 3180.6, 2931.6, 1701.7, 1470.7, 1272.4.

13

4.1.8.23. Synthesis of 2-{4-[(2-chlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
6-dihydropyrimidine-5-carboxylic acid (8w)

A white solid, yield: 76.8%. Mp: degraded at 196.1°C. ESI-HRMS calcd. for C₁₉H₁₂ClN₆O₄ [M - H]⁻ 423.0614, found: 423.0661; ¹H NMR (400 MHz, DMSO-d₆) δ 9.78 (s, 1H), 8.74 (s, 1H), 8.59 (d, J = 2.4 Hz, 1H), 8.48 (dd, J = 8.9, 2.3 Hz, 1H), 7.74 (d, J = 9.0 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.45 – 7.33 (m, 2H), 5.45 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.04, 159.43, 154.66, 145.21, 145.21, 145.20, 133.26, 133.04, 132.59, 130.83, 130.52, 130.03, 127.92, 127.04, 125.12, 123.57, 115.28, 112.06, 69.12. IR (KBr, cm⁻¹) 3402.8, 3167.9, 2924.9, 1711.8, 1476.6, 1295.0.

22

4.1.8.24. Synthesis of 2-{4-[(2, 6-dichlorobenzyl) oxy]-3-(1H-tetrazol-1-yl) phenyl}-6-oxo-1,
6-dihydropyrimidine-5-carboxylic acid (8x)

A white solid, yield: 71.5%. Mp: degraded at 171.4°C. ESI-HRMS calcd. for C₁₉H₁₂Cl₂N₆O₄ [M - H]⁻
457.0224, found: 457.0284; ¹H NMR (400 MHz, DMSO-d₆) δ 9.57 (s, 1H), 8.74 (s, 1H), 8.57 (d, J = 2.3 Hz,
1H), 8.52 (dd, J = 8.9, 2.4 Hz, 1H), 7.89 (d, J = 8.9 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.46 (dd, J = 9.1, 6.9 Hz, 1H),
5.52 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.01, 159.36, 154.83, 145.00, 145.00, 144.99, 136.40,
132.68, 132.55, 130.62, 129.36, 127.10, 125.44, 123.65, 115.49, 112.12, 67.36. IR (KBr, cm⁻¹) 3405.1,
3066.1, 2922.6, 1720.8, 1479.1, 1291.1.

ACCEPTED MANUSCRIPT

2 4.1.8.25.

Synthesis

2-[4-[(2,4-dichlorobenzyl)oxy]-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8y)
A white solid, yield: 75.8%. Mp: degraded at 224.4°C. ESI-HRMS calcd. for C₁₉H₁₂Cl₂N₆O₄ [M - H]⁻
457.0224, found: 457.0231; ¹H NMR (400 MHz, DMSO-d₆) δ 9.78 (s, 1H), 8.74 (s, 1H), 8.58 (d, J = 2.3 Hz,
1H), 8.47 (dd, J = 8.8, 2.3 Hz, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.70 (d, J = 1.9 Hz, 1H), 7.55 - 7.45 (m, 2H), 5.43
(s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.06, 159.46, 154.66, 145.21, 145.21, 145.21, 133.26, 133.04,
132.59, 130.83, 130.53, 130.03, 127.92, 127.04, 125.16, 123.57, 115.28, 112.03, 69.12. IR (KBr, cm⁻¹)
3149.8, 3086.9, 1718.1, 1461.3, 1283.9.

10

11 4.1.9. Synthesis of 2-[4-hydroxy-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid (8z) A mixture of compound 81 (500 mg, 1.28 mmol) and 10% Pd/C (50 mg) in DMF was stirred at room 12 13 temperature for 6 h under hydrogen atmosphere. After the completion of the reaction, the Pd/C was filtered out 14 was evaporated to obtain 2-[4-hydroxy-3-(1*H*-tetrazol-1-yl) phenyl]-6-oxo-1, and the filtrate 6-dihydropyrimidine-5-carboxylic acid 8z, a brown solid (281 mg, 73.1%), mp>250°C. ESI-HRMS calcd. for 15 C₁₂H₇N₆O₄ [M - H]⁻ 299.0534, found: 299.0576; ¹H NMR (600 MHz, DMSO-*d*₆) δ 13.80 (s, 1H), 12.14 (s, 1H), 16 9.87 (s, 1H), 8.69 (s, 1H), 8.56 (s, 1H), 8.30 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H). ¹³C NMR (150 MHz, 17 DMSO-d₆) § 165.16, 159.67, 154.94, 145.02, 145.00, 144.98, 132.09, 126.62, 123.02, 122.21, 117.89, 18 19 111.36. IR (KBr, cm⁻¹) 3561.9, 3126.7, 1727.2, 1480.2, 1316.6.

20

21

22 4.2. Assay for the in vitro XOR inhibitory activity

23

The XO inhibitory potency with xanthine as the substrate was assayed spectrophotometrically by measuring uric acid formation at 295 nm at 25°C according to the procedure reported by Matsumoto *et al.* [12] with modification. XO (Sigma, X4875) was suspended in a buffer (0.1 M sodium pyrophosphate and 0.3 mM Na₂EDTA buffer, pH 8.3). Xanthine (J&K) was dissolved and diluted with the buffer to obtain the substrate solution (500 μ M). The tested compounds were initially dissolved in DMSO to yield a 10000 μ M solution, which was then further diluted with buffer to obtain the required concentrations. The buffer (67 μ L), enzyme solution (75 U/L, 40 μ L) and sample (53 μ L) or blank solution (the buffer) were added to 96-well plates

(COSTAR 3599) and incubated at 25 °C for 15 min. Then, the mixture was added with substrate (40 uL) to the 1 2 plates to a total volume of 200 μ L, which was further scanned to measure the absorbance change immediately at 3 295 nm and at 30 s intervals for 2 min. Febuxostat and allopurinol were used as positive controls. All the tests 4 were performed in triplicate. Compounds presenting inhibitory effects over 50% at a concentration of 10 µM were further tested at a wide range of concentrations to calculate their IC₅₀ values using SPSS 20.0 software 5 (SPSS Inc, Chicago, IL, USA). Enzyme kinetic assays were performed in the same way as the XO assay but 6 7 with varying concentrations of the substrate at 400, 500, 600 and 700 µM (final concentrations of the substrate 8 were 80, 100, 120 and 140 µM, respectively).

9

10 4.3. Molecular modeling

11

Molecular docking studies were performed using GLIDE (2016, Schrodinger Suite) [60]. The crystal 12 13 structure of xanthine dehydrogenase (XDH) with febuxostat (1N5X,pdb) was retrieved from the RCSB Protein 14 Data Bank. All bound water was eliminated from the protein, and all hydrogen atoms were added to the proteins. The protein was prepared, optimized and minimized by Protein Preparation Wizard using an OPLS-2005 force 15 field (2016, Schrodinger Suite). The ligands were built within Maestro BUILD (2016, Schrodinger Suite) and 16 17 prepared by the LIGPREP module (2016, Schrodinger Suite). The tautomeric forms of ligands, which include the keto and enol forms of ligands, were generated at a physiological pH (7.0 \pm 2.0 pH) [61]. The active site for 18 docking was defined as a grid box of dimensions $25 \times 25 \times 25$ Å³ [61] around the centroid of the ligand, 19 assuming that the ligands to be docked were of a size similar to the cocrystallized ligand. The docking 20 methodology has been validated by extracting the crystallographic bound febuxostat and redocking it with the 21 22 Glide module using extra precision (XP) to the catalytic site of 1N5X. This validation provided a root mean square deviation (rmsd) of 0.046 Å between the docked versus the experimental conformation [61]. Different 23 24 docking poses of ligands were generated and analyzed for interpretation of the final results. Accelrys Discovery 25 Studio Visualizer 2017 [62] and Pymol [63] were used for graphic display.

26

27 4.4. Steady-state kinetic analysis

- 28
- 29

The representative compound 8u was further investigated for the type of inhibition and an enzyme kinetics

study was carried out. The Lineweaver–Burk plot was established from which we could calculate the K_m , V_{max} of the slope of the inhibitor and the value of α (a constant that defines the degree to which inhibitor binding affects the affinity of the enzyme for the substrate).

4

5 4.5. Acute oral toxicity study

6

Healthy Kunming mice of both sexes (18–22 g; Number of Approval of Ethics Committee:
SYPU-IACUC-2019-6-26-106) were purchased from the Animal Center of Shenyang Pharmaceutical University
(Shenyang, China). Animal maintenance and treatment met the protocols approved by the Ethics Review
Committee for Animal Experimentation of Shenyang Pharmaceutical University. The mice had free access to
food and water and were maintained on a 12-h light/dark cycle in a temperature- and humidity-controlled room
for one week.

After fasting for 12 h with free access to water prior to the experiment, two groups of animals each consisting of 6 mice were employed for acute oral toxicity study for the compound **8u**. The first group was treated with the 0.5% CMC-Na and served as the vehicle control. The remaining group was treated with a single higher dose (2000 mg/kg) of the test compound **8u**, which was dissolved in 0.5% CMC-Na solution. All the treatments were intragastrically administered immediately after 12 h of fasting. The animals were observed continuously for any signs and symptoms of toxicity for 24 h after treatment.

19

20 4.6. In vivo hypouricemic effect assay

21

Male Sprague-Dawley rats (6 weeks old, n=8; Number of Approval of Ethics Committee: SYPU-IACUC-2019-1-11-203) were purchased from the Animal Center of Shenyang Pharmaceutical University (Shenyang, China). Animal maintenance and treatment met the protocols approved by the Ethics Review Committee for Animal Experimentation of Shenyang Pharmaceutical University. The rats had free access to food and water and were maintained on a 12-h light/dark cycle in a temperature- and humidity-controlled room for one week.

After fasting for 12 h with free access to water prior to the experiment, rats were randomly divided into five groups and intragastrically administered febuxostat (5 mg/kg), allopurinol (10 mg/kg) and the test compound **8u** (5 mg/kg), which was dissolved in 0.5% CMC-Na solution [19], whereas the other two groups were treated with

0.5% CMC-Na. Febuxostat and allopurinol were used as the positive control drugs. Then, rats except those in 1 2 the blank group were injected intraperitoneally with potassium oxonate (300 mg/kg) 1 h after drug administration to increase the serum urate levels [64-66]. Blood samples were collected from the rats via orbital 3 4 vein bleeding at 2, 3, 4, 6 and 8 h after drug administration. The collected blood samples were allowed to clot at room temperature for 2 h, followed by centrifuging at 3000 g at 4°C for 10 min. Serum urate levels were 5 determined with a uric acid assay kit (Nanjing Jiancheng Bioengineering Institute, China) in accordance with the 6 7 manufacturer's instructions. The statistical analysis was performed using Student's t-test to determine the level of significance. Data are 8 9 presented as the means \pm S.Ds. The figures were obtained with the GraphPad 6.0 statistical system. 10 11 12 Acknowledgments

13

14 This work was supported by the National Natural Science Foundation of China (Grant No.81773813).
15 Specifically, we are grateful to Professor Zheng Liu and his team for their support in the *in vivo* hypouricemic
16 effect assay.

1 References

ACCEPTED MANUSCRIPT

- [1] G. Luna, A.V. Dolzhenko, R.L. Mancera, Inhibitors of xanthine oxidase: scaffold diversity and structure-based
 drug design, ChemMedChem, 14 (2019) 714-743.
- 4 [2] M. Gliozzi, N. Malara, S. Muscoli, V. Mollace, The treatment of hyperuricemia, International journal of 5 cardiology, 213 (2016) 23-27.
- 6 [3] R. Ojha, J. Singh, A. Ojha, H. Singh, S. Sharma, K. Nepali, An updated patent review: xanthine oxidase inhibitors
- 7 for the treatment of hyperuricemia and gout (2011-2015), Expert opinion on therapeutic patents, 27 (2017) 311-345.
- 8 [4] C. Chen, J.-M. Lü, Q. Yao, Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: an
- 9 overview, Medical science monitor, 22 (2016) 2501-2512.
- 10 [5] R. Kaur, F. Naaz, S. Sharma, S. Mehndiratta, M.K. Gupta, P.M.S. Bedi, K. Nepali, Screening of a library of
- 11 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking
- 12 studies, Medicinal Chemistry Research, 24 (2015) 3334-3349.
- 13 [6] H.S. Virdi, S. Sharma, S. Mehndiratta, P.M. Bedi, K. Nepali, Design, synthesis and evaluation of
- 14 2,4-diarylpyrano[3,2-c]chromen-5(4H)-one as a new class of non-purine xanthine oxidase inhibitors, Journal of
- 15 enzyme inhibition and medicinal chemistry, (2014) 1-7.
- 16 [7] M. Leigh, D.J. Raines, C.E. Castillo, A.K. Duhme-Klair, Inhibition of xanthine oxidase by thiosemicarbazones,
- hydrazones and dithiocarbazates derived from hydroxy-substituted benzaldehydes, ChemMedChem, 6 (2011)
 1107-1118.
- [8] J.V. Singh, G. Mal, G. Kaur, M.K. Gupta, A. Singh, K. Nepali, H. Singh, S. Sharma, S.B. PM, Benzoflavone
 derivatives as potent antihyperuricemic agents, MedChemComm, 10 (2019) 128-147.
- 21 [9] R. Kumar, Darpan, S. Sharma, R. Singh, Xanthine oxidase inhibitors: a patent survey, Expert opinion on
- 22 therapeutic patents, 21 (2011) 1071-1108.
- 23 [10] R. Dhiman, S. Sharma, G. Singh, K. Nepali, P.M. Singh Bedi, Design and synthesis of aza-flavones as a new
- class of xanthine oxidase inhibitors, Arch Pharm (Weinheim), 346 (2013) 7-16.
- 25 [11] K. Okamoto, B.T. Eger, T. Nishino, S. Kondo, E.F. Pai, T. Nishino, An extremely potent inhibitor of xanthine
- 26 oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition, The Journal of
- 27 biological chemistry, 278 (2003) 1848-1855.
- 28 [12] K. Matsumoto, K. Okamoto, N. Ashizawa, T. Nishino, FYX-051: A Novel and Potent Hybrid-Type Inhibitor of
- 29 Xanthine Oxidoreductase, Journal of Pharmacology and Experimental Therapeutics, 336 (2010) 95-103.
- 30 [13] S. Ishibuchi, H. Morimoto, T. Oe, T. Ikebe, H. Inoue, A. Fukunari, M. Kamezawa, I. Yamada, Y. Naka,
- 31 Synthesis and structure-activity relationships of 1-phenylpyrazoles as xanthine oxidase inhibitors, Bioorganic &

- 1 medicinal chemistry letters, 11 (2001) 879-882.
- [14] S. Wang, J. Yan, J. Wang, J. Chen, T. Zhang, Y. Zhao, M. Xue, Synthesis of some
 5-phenylisoxazole-3-carboxylic acid derivatives as potent xanthine oxidase inhibitors, European journal of medicinal
 chemistry, 45 (2010) 2663-2670.
- 5 [15] Q. Guan, Z. Cheng, X. Ma, L. Wang, D. Feng, Y. Cui, K. Bao, L. Wu, W. Zhang, Synthesis and bioevaluation of
- 6 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors, European journal of
- 7 medicinal chemistry, 85 (2014) 508-516.
- 8 [16] S. Chen, T. Zhang, J. Wang, F. Wang, H. Niu, C. Wu, S. Wang, Synthesis and evaluation of
- 9 1-hydroxy/methoxy-4-methyl-2-phenyl-1*H*-imidazole-5-carboxylic acid derivatives as non-purine xanthine oxidase
- 10 inhibitors, European journal of medicinal chemistry, 103 (2015) 343-353.
- 11 [17] J.U. Song, S.P. Choi, T.H. Kim, C.K. Jung, J.Y. Lee, S.H. Jung, G.T. Kim, Design and synthesis of novel
- 12 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors, Bioorganic & medicinal chemistry letters, 25 (2015)
 13 1254-1258.
- 14 [16-18] T.J. Zhang, Q.X. Wu, S.Y. Li, L. Wang, Q. Sun, Y. Zhang, F.H. Meng, H. Gao, Synthesis and evaluation of
- 15 1-phenyl-1*H*-1,2,3-triazole-4-carboxylic acid derivatives as xanthine oxidase inhibitors, Bioorganic & medicinal
 16 chemistry letters, 27 (2017) 3812-3816.
- 17 [19] J. Li, F. Wu, X. Liu, Y. Zou, H. Chen, Z. Li, L. Zhang, Synthesis and bioevaluation of
- 18 1-phenyl-pyrazole-4-carboxylic acid derivatives as potent xanthine oxidoreductase inhibitors, European journal of
- 19 medicinal chemistry, 140 (2017) 20-30.
- 20 [20] M. Kawakami, Y. Keto, K. Ikeda, M. Fukuda, J. Sato, Treatment of a stomach or small intestine ulcer with
- 21 2-(3-cyano-4-isobutyloxyphenyl)-4-methyl-1, 3-thiazole-5-carboxylic acid, U.S. Patent 8,426,453[P]. 2013-4-23.
- 22 [21] A. Shi, L. Zhang, H. Wang, S. Wang, M. Yang, Q. Guan, K. Bao, W. Zhang, Design, synthesis and bioevaluation
- 23 of 2-mercapto-6-phenylpyrimidine-4-carboxylic acid derivatives as potent xanthine oxidase inhibitors, European
- 24 journal of medicinal chemistry, 155 (2018) 590-595.
- 25 [22] S. Khanna, S. Burudkar, K. Bajaj, P. Shah, A. Keche, U. Ghosh, A. Desai, A. Srivastava, A. Kulkarni-Almeida,
- 26 N.J. Deshmukh, A. Dixit, M.K. Brahma, U. Bahirat, L. Doshi, K.V. Nemmani, P. Tannu, A. Damre, B.R. C, R.
- 27 Sharma, H. Sivaramakrishnan, Isocytosine-based inhibitors of xanthine oxidase: design, synthesis, SAR, PK and in
- vivo efficacy in rat model of hyperuricemia, Bioorganic & medicinal chemistry letters, 22 (2012) 7543-7546.
- 29 [23] J. Evenas, F. Edfeldt, M. Lepisto, N. Svitacheva, A. Synnergren, B. Lundquist, M. Granse, A. Ronnholm, M.
- 30 Varga, J. Wright, M. Wei, S. Yue, J. Wang, C. Li, X. Li, G. Chen, Y. Liao, G. Lv, A. Tjornebo, F. Narjes, HTS
- 31 followed by NMR based counterscreening. Discovery and optimization of pyrimidones as reversible and competitive

- 1 inhibitors of xanthine oxidase, Bioorganic & medicinal chemistry letters, 24 (2014) 1315-1321.
- 2 [24] M. Kaur, A. Kaur, S. Mankotia, H. Singh, A. Singh, J.V. Singh, M.K. Gupta, S. Sharma, K. Nepali, P.M.S. Bedi,
- 3 Synthesis, screening and docking of fused pyrano[3,2-d]pyrimidine derivatives as xanthine oxidase inhibitor,
- 4 European journal of medicinal chemistry, 131 (2017) 14-28.
- 5 [25] L. Zhang, S. Wang, M. Yang, A. Shi, H. Wang, Q. Guan, K. Bao, W. Zhang, Design, synthesis and bioevaluation
- 6 of 3-oxo-6-aryl-2,3-dihydropyridazine-4-carbohydrazide derivatives as novel xanthine oxidase inhibitors, Bioorganic
- 7 & medicinal chemistry, 27 (2019) 1818-1823.
- 8 [26] S. Sharma, K. Sharma, R. Ojha, D. Kumar, G. Singh, K. Nepali, P.M. Bedi, Microwave assisted synthesis of
- 9 naphthopyrans catalysed by silica supported fluoroboric acid as a new class of non purine xanthine oxidase inhibitors,
- 10 Bioorganic & medicinal chemistry letters, 24 (2014) 495-500.
- 11 [27] H. Singh, S. Sharma, R. Ojha, M.K. Gupta, K. Nepali, P.M. Bedi, Synthesis and evaluation of naphthoflavones as
- a new class of non purine xanthine oxidase inhibitors, Bioorganic & medicinal chemistry letters, 24 (2014)
 4192-4197.
- 14 [28] T. Zhang, Y. Lv, Y. Lei, D. Liu, Y. Feng, J. Zhao, S. Chen, F. Meng, S. Wang, Design, synthesis and biological
- 15 evaluation of 1-hydroxy-2-phenyl-4-pyridyl-1*H*-imidazole derivatives as xanthine oxidase inhibitors, European
 16 journal of medicinal chemistry, 146 (2018) 668-677.
- 17 [29] J. J. Baldwin, P. A. Kasinger, F. C. Novello, J. M. Sprague, 4-Trifluoromethylimidazoles and 5-(4-pyridyl)-1, 2,
- 18 4-triazoles, new classes of xanthine oxidase inhibitors, Journal of medicinal chemistry, 18 (1975) 895-900.
- [30] M.R. Ali, S. Kumar, O. Afzal, N. Shalmali, M. Sharma, S. Bawa, Development of 2-(Substituted
 Benzylamino)-4-Methyl-1, 3-Thiazole-5-Carboxylic Acid Derivatives as Xanthine Oxidase Inhibitors and Free
- 21 Radical Scavengers, Chemical Biology & Drug Design, 87 (2016) 508-516.
- 22 [31] T.J. Zhang, Q.X. Wu, S.Y. Li, L. Wang, Q. Sun, Y. Zhang, F.H. Meng, H. Gao, Synthesis and evaluation of
- 23 1-phenyl-1*H*-1,2,3-triazole-4-carboxylic acid derivatives as xanthine oxidase inhibitors, Bioorganic & medicinal
- chemistry letters, 27 (2017) 3812-3816.
- 25 [32] T. J. Zhang, S. Y. Li, Y. Zhang, Q. X. Wu, F.H. Meng, Design, synthesis, and biological evaluation of
- 26 5-[4-(pyridin-4-yl)-1H-1,2,3-triazol-1-yl] benzonitrile derivatives as xanthine oxidase inhibitors, Chemical Biology &
- 27 Drug Design, 91 (2018) 526-533.
- 28 [33] S. Shukla, D. Kumar, R. Ojha, M.K. Gupta, K. Nepali, P.M.S. Bedi, 4,6-Diaryl/heteroarylpyrimidin-2(1H)-ones
- as a New Class of Xanthine Oxidase Inhibitors, Archiv der Pharmazie, 347 (2014) 486-495.
- 30 [34] C. B-Rao, A. Kulkarni-Almeida, K.V. Katkar, S. Khanna, U. Ghosh, A. Keche, P. Shah, A. Srivastava, V. Korde,
- 31 K.V.S. Nemmani, N.J. Deshmukh, A. Dixit, M.K. Brahma, U. Bahirat, L. Doshi, R. Sharma, H. Sivaramakrishnan,

- 1 Identification of novel isocytosine derivatives as xanthine oxidase inhibitors from a set of virtual screening hits,
- 2 Bioorganic & medicinal chemistry, 20 (2012) 2930-2939.
- 3 [35] F. H. Messerli, M. Burnier, Cardiovascular disease and uric acid: is the not-so-innocent bystander becoming a
- 4 true culprit and does the US black box warning for febuxostat indicate that not all uric acid lowering is beneficial?[J].
- 5 European heart journal, 2019, 40(22): 1787-1789.
- 6 [36] P. Zhan, Y. Itoh, T. Suzuki, X. Liu, Strategies for the Discovery of Target-Specific or Isoform-Selective
- 7 Modulators, Journal of Medicinal Chemistry, 58 (2015) 7611-7633.
- 8 [37] M. Huang, Y. Shao, J. Hou, W. Cui, B. Liang, Y. Huang, Z. Li, Y. Wu, X. Zhu, P. Liu, Y. Wan, H. Ke, H.B. Luo,
- 9 Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric
- 10 Inhibitor, Molecular Pharmacology, 88 (2015) 836-845.
- 11 [38] D. Duchêne, E. Colombo, A. Désilets, P.-L. Boudreault, R. Leduc, E. Marsault, R. Najmanovich, Analysis of
- 12 Subpocket Selectivity and Identification of Potent Selective Inhibitors for Matriptase and Matriptase-2, Journal of
- 13 Medicinal Chemistry, 57 (2014) 10198-10204.
- 14 [39] M. Bartolowits, V.J. Davisson, Considerations of Protein Subpockets in Fragment-Based Drug Design, Chemical
- 15 Biology & Drug Design, 87 (2016) 5-20.
- 16 [40] A.R. Blaazer, A.K. Singh, E. de Heuvel, E. Edink, K.M. Orrling, J.J.N. Veerman, T. van den Bergh, C. Jansen, E.
- 17 Balasubramaniam, W.J. Mooij, H. Custers, M. Sijm, D.N.A. Tagoe, T.D. Kalejaiye, J.C. Munday, H. Tenor, A.
- 18 Matheeussen, M. Wijtmans, M. Siderius, C. de Graaf, L. Maes, H.P. de Koning, D.S. Bailey, G.J. Sterk, I.J.P. de Esch,
- 19 D.G. Brown, R. Leurs, Targeting a Subpocket in Trypanosoma brucei Phosphodiesterase B1 (TbrPDEB1) Enables the
- 20 Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity, J Med Chem, 61 (2018) 3870-3888.
- 21 [41] L. Rahbarnia, S. Farajnia, H. Babaei, J. Majidi, K. Veisi, S. Khosroshahi, A. Tanomand, Development of a Novel
- Human scFv Against EGFR L2 Domain by Phage Display Technology, Current Pharmaceutical Design, 23 (2017)
 2009-2014.
- [42] K.A.K. Musa, V.R. Palwai, L.A. Eriksson, New nonsteroidal anti-inflammatory molecules with reduced
 photodegradation side effects and enhanced COX-2 selectivity, International Journal of Quantum Chemistry, 111
 (2011) 1184-1195.
- [43] E.A. Popova, A.V. Protas, R.E. Trifonov, Tetrazole Derivatives as Promising Anticancer Agents, Anti-cancer
 agents in medicinal chemistry, 17 (2018) 1856-1868.
- 29 [44] M.A. Malik, M.Y. Wani, S.A. Al-Thabaiti, R.A. Shiekh, Tetrazoles as carboxylic acid isosteres: chemistry and
- 30 biology, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 78 (2013) 15-37.
- 31 [45] V.A. Ostrovskii, E.A. Popova, R. E. Trifonov, Developments in tetrazole chemistry (2009–16), Advances in

1	ACCEPTED MANUSCRIPT Heterocyclic Chemistry, 123 (2017) 1-62.
2	[46] H. Qi, C. Kou, Y.J. Qi, B.H. Tang, Y.E. Wu, F. Jin, X.J. Luo, Y.H. Shen, Y.J. Guo, X. Qi, Y.C. Wang, Q. Dong,
3	X.K. Chen, H.Y. Shi, Y. Zheng, W. Zhao, A.D. Shen, Population pharmacokinetics and dosing optimization of
4	latamoxef in neonates and young infants, International journal of antimicrobial agents, 53 (2019) 347-351.
5	[47] Y. Zhao, J. Cao, A. Melamed, M. Worley, A. Gockley, D. Jones, H.T. Nia, Y. Zhang, T. Stylianopoulos, A.S.
6	Kumar, F. Mpekris, M. Datta, Y. Sun, L. Wu, X. Gao, O. Yeku, M.G. Del Carmen, D.R. Spriggs, R.K. Jain, L. Xu,
7	Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the
8	tumor stroma, Proceedings of the National Academy of Sciences of the United States of America, 116 (2019)
9	2210-2219.
10	[48] P. Vandenberghe, M. Delvaux, P. Hagué, C. Erneux, J. M. Vanderwinden, Potentiation of imatinib by cilostazol
11	in sensitive and resistant gastrointestinal stromal tumor cell lines involves YAP inhibition, Oncotarget, 10 (2019)
12	1798-1811.
13	[49] C. Gao, L. Chang, Z. Xu, X.F. Yan, C. Ding, F. Zhao, X. Wu, L.S. Feng, Recent advances of tetrazole derivatives
14	as potential anti-tubercular and anti-malarial agents, European journal of medicinal chemistry, 163 (2019) 404-412.
15	[50] J.W. De Schutter, J.P. Morrison, M.J. Morrison, A. Ciulli, B. Imperiali, Targeting Bacillosamine Biosynthesis in
16	Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from Campylobacter
17	jejuni, J Med Chem, 60 (2017) 2099-2118.
18	[51] A. Khandelwal, V.M. Crowley, B.S.J. Blagg, Resorcinol-Based Grp94-Selective Inhibitors, ACS medicinal
19	chemistry letters, 8 (2017) 1013-1018.
20	[52] D.K. Tosh, S. Paoletta, F. Deflorian, K. Phan, S.M. Moss, Z.G. Gao, X. Jiang, K.A. Jacobson, Structural sweet
21	spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent
22	anticonvulsant activity, J Med Chem, 55 (2012) 8075-8090.
23	[53] R. Kaur, P. Kaur, S. Sharma, G. Singh, S. Mehndiratta, P. M. S, Bedi, K. Nepali, Anti-cancer pyrimidines in
24	diverse scaffolds: a review of patent literature, Recent patents on anti-cancer drug discovery, 10 (2015) 23-71.
25	[54] J.R. Corte, T. Fang, D.J. Pinto, M.J. Orwat, A.R. Rendina, J.M. Luettgen, K.A. Rossi, A. Wei, V. Ramamurthy,
26	J.E. Myers, Jr., S. Sheriff, R. Narayanan, T.W. Harper, J.J. Zheng, Y.X. Li, D.A. Seiffert, R.R. Wexler, M.L. Quan,
27	Orally bioavailable pyridine and pyrimidine-based Factor XIa inhibitors: Discovery of the methyl N-phenyl carbamate
28	P2 prime group, Bioorganic & medicinal chemistry, 24 (2016) 2257-2272.
29	[55] A.N. Vorobiov, P.N. Gaponik, P.T. Petrov, O.A. Ivashkevich, One-Pot Syntheses of 5-Amino-1-aryltetrazole
30	Derivatives, Synthesis, 08 (2006) 1307-1312.
31	[56] S. Salerno, A.M. Marini, G. Fornaciari, F. Simorini, C. La Motta, S. Taliani, S. Sartini, F. Da Settimo, A.N.

- 1 Garcia-Argaez, O. Gia, S. Cosconati, E. Novellino, P. D'Ocon, A. Fioravanti, P. Orlandi, G. Bocci, L. Dalla Via,
- 2 Investigation of new 2-aryl substituted Benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors targeting vascular
- 3 endothelial growth factor receptor 2, European journal of medicinal chemistry, 103 (2015) 29-43.
- 4 [57] B. Purushothaman, P. Arumugam, G. Kulsi, J.M. Song, Design, synthesis, and biological evaluation of novel
- 5 catecholopyrimidine based PDE4 inhibitor for the treatment of atopic dermatitis, European journal of medicinal
 6 chemistry, 145 (2018) 673-690.
- 7 [58] Z. Xie, X. Luo, Z. Zou, X. Zhang, F. Huang, R. Li, S. Liao, Y. Liu, Synthesis and evaluation of
- 8 hydroxychalcones as multifunctional non-purine xanthine oxidase inhibitors for the treatment of hyperuricemia,
- 9 Bioorganic & medicinal chemistry letters, 27 (2017) 3602-3606.
- 10 [59] Guideline, Performance-Based Test. "OECD guideline for the testing of chemicals." *The Hershberger* 601 (2001):
- 11 858.
- 12 [60] Glide, Schrodinger, LLC, New York, NY, 2016.
- 13 W. Ali, M.R. S. N. Shalmali, M. Sharma, S. [61] Ali, Kumar, О. Afzal, Bawa,
- 14 2-Benzamido-4-methylthiazole-5-carboxylic Acid Derivatives as Potential Xanthine Oxidase Inhibitors and Free
- 15 Radical Scavengers, Archiv der Pharmazie, 350 (2017) 1600313.
- 16 [62] Visualizer A D S. Version 4. 5[J]. Softw. Vis. Anal. Protein Struct, 2017.
- 17 [63] The PyMOL Molecular Graphics System, version 1.5.0.3; Schrödinger, LLC: New York.
- 18 [64] L. Hongyan, W. Suling, Z. Weina, Z. Yajie, R. Jie, Antihyperuricemic effect of liquiritigenin in potassium
- 19 oxonate-induced hyperuricemic rats, Biomedicine & Pharmacotherapy, 84 (2016) 1930-1936.
- 20 [65] M.T.T. Nguyen, S. Awale, Y. Tezuka, L. Shi, S.F.H. Zaidi, J. Ueda, Q.L. Tran, Y. Murakami, K. Matsumoto, S.
- 21 Kadota, Hypouricemic effects of acacetin and 4, 5-o-dicaffeoylquinic acid methyl ester on serum uric acid levels in
- 22 potassium oxonate-pretreated rats, Biological and Pharmaceutical Bulletin, 28 (2005) 2231-2234.
- 23 [66] N. Liu, Y. Wang, M. Yang, W. Bian, L. Zeng, S. Yin, Z. Xiong, Y. Hu, S. Wang, B. Meng, J. Sun, X. Yang, A
- 24 new rice-derived short peptide potently alleviated hyperuricemia induced by potassium oxonate in rats, Journal of
- agricultural and food chemistry, 67 (2019) 220-228.

ACCEPTED MANUSCRIPT

Highlights

- Analysis of the high-resolution structure of XO with febuxostat identified the existance of a subpocket formed by the residues Leu648, Asn768, Lys771, Leu1014 and Pro1076.
- •2-[4-alkoxy-3-(*1H*-tetrazol-1-yl)phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives were synthesized.
- The inhibitory potency of these compounds against XO *in vitro* was evaluated and compound 8u showed a promising XO inhibitory potency with an IC₅₀ value of 0.0288 μ M.
- The structure-activity relationships of the synthesized compounds were summarized.
- Molecular modeling studies, steady-state kinetic analysis, acute oral toxicity study and a hyperuricemia rat model were performed.

CER NY