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ABSTRACT: Pyrimidines are almost unreactive partners 
in Diels-Alder cycloadditions with alkenes and alkynes, 
and only reactions under drastic conditions have 
previously been reported. We describe how 2-
hydrazonylpyrimidines, easily obtained in two steps from 
commercially available 2-halopyrimidines can be 
exceptionally activated by trifluoroacetylation. This 
allows a Diels-Alder cycloaddition under very mild 
reaction conditions, leading to a large diversity of aza-
indazoles, a ubiquitous scaffold in medicinal chemistry. 
This reaction is general, scalable and has an excellent 
functional group tolerance. A straightforward synthesis of 
a key intermediate of Bayer’s Vericiguat illustrates the 
potential of this cycloaddition strategy. Quantum 
mechanical calculations show how the simple N-
trifluoromethylation of 2-hydrazonylpyrimidines distorts 
the substrate into a transition state-like geometry that 
readily undergoes the intramolecular Diels-Alder 
cycloaddition.

Introduction

Cycloaddition reactions are unique tools that enable the 
rapid elaboration of complex scaffolds with control over 
regio- and stereochemistry. Applications of these 
pericyclic reactions, and in particular the Diels-Alder 
cycloaddition, can be found in natural products synthesis 
and the preparation of pharmaceutically relevant 
molecules.1,2 From a strategic standpoint, the inverse 

electron-demand Diels-Alder cycloaddition of azines 13-5 
is of great interest as it generates nitrogen-containing 
heterocycles 2, a privileged scaffold in life-science 
research and industry (Scheme 1a).6-8 High reactivity is 
generally observed with an increasing number of nitrogen 
atoms in the azine, which reduces the aromaticity of the 
6 system and also favorably influences both distortion 
and interaction energies required to reach the transition 
state of the Diels-Alder cycloaddition.9 The 1,2,4,5-
tetrazines are prototypical example of highly reactive 
aza-diene that reacts with a diversity of dienophiles, 
especially electron-rich, under mild conditions.5 This 
rapid Diels-Alder reaction is central to numerous 
chemical biology studies and drug activation 
chemistries.10-12 Triazines can also be reactive as aza-
dienes as demonstrated by studies by Boger,13,14 and 
applications in chemical biology by Prescher.15 

By contrast, near the other end of the azine spectrum, 
pyrimidines stand as unreactive 4 partners.9,16,17 Seminal 
studies by Neunhoeffer18 and van der Plas19,20 
demonstrated some decades ago that the lack of reactivity 
of pyrimidines 3 in inter- or intramolecular Diels-Alder 
cycloadditions has to be overcome by an exceptionally 
reactive dienophile (e.g. ynamines18,21-23) or harsh 
reaction conditions (up to 280 °C in batch24 and 310 °C 
in continuous flow25) and long reaction times (up to 
several days) (Scheme 1b).26 The scope of these early 
studies remained very limited, and only a handful of 
applications were reported.26 
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Scheme 1. Diels-Alder cycloadditions of 2-hydrazinyl-pyrimidines: an entry to relevant N-containing heterocycles.

Because of their low reactivity, the potential of the 
Diels-Alder cycloadditions of pyrimidines remains 
untapped. If the reactivity challenge posed by pyrimidines 
could be met, it would be of high significance in terms of 
heterocyclic chemistry and would constitute a fertile 
ground for theoretical explanation. Indeed, pyrimidines 
are small building blocks that possess key advantages; a 
large collection of structurally diverse pyrimidines is 
accessible at low price, which stands in sharp contrast 
with the triazines or tetrazines (see Supporting 
Information). 

We have discovered that 2-hydrazonopyrimidines 7 can 
be activated towards Diels-Alder cycloaddition under 
mild conditions (20 or 60 °C, microwave irradiation or 
classical heating, Scheme 1c) in sharp contrast with 
previous observations about pyrimidine reactivity. The 
corresponding cycloadducts are aza-indazoles 8, obtained 
in a straightforward three-step sequence from 2-

halopyrimidines 5 that are commercially available, 
inexpensive and structurally diverse chemicals. 7-Aza-
indazoles 8 are relevant nitrogen-containing 
heterocycles27 that can be found in the marketed drug 
Adempas® (9, Bayer28), Vericiguat (10, Bayer and Merck 
& Co.29) actually in phase III clinical trials and BMT-
145027 (11, Bristol-Myers Squibb30). This conceptually 
new synthetic approach of 7-aza-indazoles 8 has a very 
wide scope, is amenable to a one-pot procedure and could 
be performed on a gram scale. We also report quantum 
mechanical calculations of this Diels-Alder reaction that 
shed light on the exceptional activation of the 2-
hydrazonopyrimidines 7. Indeed, this phenomenon can be 
explained by the formation of an activated conformer s-
cis,Z-7 that is distorted into a transition state-like 
geometry (Scheme 1d). After Diels-Alder cycloaddition, 
a spontaneous retro-Diels-Alder and hydrolysis of the 
activating group delivers the desired 7-aza-indazole 8. 
The nature of the activating group is thus central to 
prevent N-cyclization to the corresponding pyrazole 15 
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(Scheme 1e),31,32 to pre-organize the system through 
conformational equilibria and to dramatically increase the 
reactivity (and thus functional group tolerance) of the 
overall process.

Results and discussion

Unsubstituted pyrimidines are particularly challenging 
substrates; the intramolecular cycloaddition of N-(but-3-
yn-1-yl)pyrimidin-2-amines into 7-aza-indolines at 210 
°C was reported to only lead to decomposition.33 The 
hydrazone 7 was found to undergo very slow and 
inefficient intramolecular Diels-Alder reactions. We thus 
screened activating groups that could be easily introduced 
on the hydrazone 7 to enhance reactivity.34 
Trifluoroacetic anhydride was identified as the optimal N-
acylating agent, allowing a clean cycloaddition of model 
substrate 16 into 7-aza-indazole 18 at room temperature 
in THF in the presence of 3-pentanone as a formonitrile 
trap25 (Scheme 2). This dramatic increase in reactivity of 
pyrimidines in Diels-Alder cycloaddition is 
unprecedented and opens new avenues in terms of 
synthetic applications. Further optimization of the 
reaction temperature and time with hydrazone 17 
demonstrated that a complete conversion to 19 could be 
obtained in only 10 min at 60 °C under microwave 
irradiation. This latter set of conditions was selected for 
the exploration of the scope of this Diels-Alder/retro-
Diels-Alder cycloaddition (Table 1).

Scheme 2. Diels-Alder cycloadditions of pyrimidines 
under mild conditions.

[17, CCDC 1903453] [19, CCDC 1903455]
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16, R = c-Hex
17, R = Me

This new method efficiently converts unsubstituted 
pyrimidines into reactive aza-dienes upon treatment with 
TFAA, leading to 7-aza-indazoles 20 and 21 in 93% yield 
(Table 1). 5-Bromo pyrimidines are symmetrical 
pyrimidines that delivered 7-aza-indazoles 22 and 23 
possessing an alkyl or cycloalkyl on the 3-position in 76-

81% yield. With unsymmetrical aza-dienes such as 4-
trifluoromethyl-pyrimidines, 7-aza-indazoles 24-27 were 
obtained in 78-90%. Although two pathways could be 
envisaged for the retro-Diels-Alder cycloaddition,35,36 a 
single cycloadduct was observed in each case in the crude 
reaction mixture.

The largest number of examples involve substituted 5-
fluoro-pyrimidines, leading to aza-indazoles 29-48 in 
good to excellent yields. Systematic variations of the 
electronic and steric natures of the R1, R2 and R3 
substituents of the cycloaddition precursor demonstrated 
that a broad range of motifs and functional groups are 
tolerated, leading to a unique collection of 7-aza-
indazoles. Aromatic and heteroaromatic groups could be 
introduced on the 3 or 4-position of the cycloadduct, as in 
29 (87%), 36 (63%), 41 (99%), and 42 (64%). Halo-
substituted aromatics are also compatible with the 
process, as shown by 35 obtained in 88%. The latter is 
poised for metal-catalysed cross-coupling, leading to 
further chemical diversity. Esters can be present in the 3-
position of the 7-aza-indazoles (32 67%, 40 85%) as well 
as nalkyl (19 83%, 42 64%), cycloalkyl (30 65%, 43 83%, 
44 94%) or saturated N-heterocycles such as a piperidin-
4-yl motif in 45 (70%).

To further expand the chemical space in these series, 
the synthesis of 7-aza-indazoles with two classes of 
substituents frequently used in drug design was studied. 
Cycloadducts 46 and 47 possessing a C3-
bicyclo[1.1.1]pentane as a relevant mimic of para-
disubstituted aromatic group37,38 were obtained in good 
yields (86% and 89% respectively). Finally, we 
investigated spirocyclic substituents, as their reduced 
lipophilicity, their high sp3/sp2 carbon atoms ratio and 
their intrinsic positioning of bond vectors make them 
attractive rigid scaffolds for medicinal chemistry;39 the 7-
aza-indazole 48 was obtained in 70% as a single 
compound. 

Density functional theory (DFT) calculations were 
carried out to understand the origin of the activation of 
pyrimidines. Gas phase geometry optimization was 
carried out at the M06-2X/6-31G(d) level of theory, 
followed by single point energy calculations using 6-
311+G(d,p) basis set with a CPCM solvation model. 
Studies of the pyrimidine-alkyne cycloadditions revealed 
that the Diels-Alder reaction is the rate-determining step, 
while the following retro-Diels-Alder has a low activation 
barrier and is significantly exergonic with the release of 
formonitrile (Supporting Information).36 Based on the 
broad scope of this reaction, we first studied the impact 
of N-trifluoroacetylation on the activation of three 
simplified pyrimidines, 49, 59 and 51 (Scheme 3). 
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Table 1. Scope of the Diels-Alder cycloaddition.

Reaction conditions: 2-hydrazonopyrimidine (1 equiv.), 3-pentanone (3 equiv.), TFAA (1.5 equiv) in THF ([0.2 M]) at 60 °C 
(microwave irradiation, 150 W, ramp time: 45 s) for 10 min. Yields were determined after chromatography on silica gel. X-
ray crystallographic structures were obtained for 19, 45, 46 and 47. Boc, tButoxycarbonyl. 
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Scheme 3. Density functional theory calculations.
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b) Distortion/Interaction analysis on the intermolecular Diels-Alder cycloadditions reactions of substituted pyrimidines with propyne
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process (black arrow). Energies are in kcal/mol.
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Scheme 3a shows the transition state structures 
involved in these reactions, with the forming bond lengths 
labeled (in Å) and the activation energies shown below 
(in kcal/mol). The 4-trifluoromethyl and 5-fluoro groups 
on the pyrimidine scaffold lower the activation energy 
slightly (0-2 kcal/mol, TS3 and TS5 vs. TS1). On the 
other hand, the N-trifluoroacetyl has an enormous impact, 
decreasing the reaction barriers by 12-14 kcal/mol (TS2, 
TS4 and TS6 vs. TS1, TS3 and TS5 respectively). To 
understand the N-trifluoroacetyl effect, we studied the 
corresponding intermolecular reactions and analyzed the 
results with the distortion/interaction model (Scheme 3b). 
The 3-trifluoromethyl group, 5-fluoro atom, and N-
trifluoroacetyl group lower the activation barriers by 2-3 
kcal/mol by improving interaction energies. Analysis of 
the molecular orbital energies (Supplementary 
Information) showed that the N-trifluoroacetyl group 
lowers the energy of the second lowest unoccupied 
molecular orbital which interacts with the HOMO of 
alkyne, increasing the stabilizing interaction energy due 
to charge transfer in this inverse-electron-demand Diels-
Alder reaction. However, in the intermolecular 
cycloaddition case, the activation from trifluoroacetyl 
group is small (~2 kcal/mol), far less than in the 
intramolecular cycloaddition case.

To explain the origin of this powerful effect for the 
intramolecular reaction, we propose a two-phase model, 
dividing the intramolecular reaction into : pre-
organization and cycloaddition phases (Scheme 4a). The 
pre-organization phase refers to the process in which the 
reactant undergoes conformational change from the 
ground state to a reactive state where the aza-diene and 
the dienophile (pyrimidine and alkyne in this case) are 
close in proximity in order to react. These conformational 
changes can be described through dihedral angle  and 
the degree of pyramidalization  of the N1-nitrogen atom 
(Scheme 4b). The cycloaddition phase refers to the actual 
bond forming/cleavage process. 

As shown in Scheme 4c, the ground state structure of 
2-hydrazonopyrimidine 51a adopts a planar geometry ( 
= 0°). This extended geometry is supported by X-ray 
crystallography of alkynyl-pyrimidine 17 (Scheme 2).

Bringing the triple bond closer to pyrimidine moiety 
costs 7.6 kcal/mol and even in the reactive state, the triple 
bond of 51a orients away from the perfect perpendicular 
position ( = 143° and  = 144°). However, when a N-
trifluoracetyl group is present as in 51b, due to the steric 
repulsion between the pyrimidine N and carbonyl O, the 
triple bond is naturally positioned over the pyrimidine 
moiety, perfectly in position for the cycloaddition 
reaction ( = 0° and  = 180°). In this case, the ground 
state is also the reactive state. In addition, in the 
cycloaddition phase, the N-trifluoroacetyl group further 
lowers the activation barrier by 5.8 kcal/mol due to the 
larger interaction energy. 

This DFT study shows that N-trifluoroacetyl group pre-
organizes the triple bond, not only changing the s-trans 
hydrazone conformation to s-cis, but also rotating the 
Ar—N bond so that the hydrazone is perpendicular to the 
diazine, placing the alkyne in perfect position for 
cycloaddition. The activation by the N-trifluoroacetyl 
group is thus due to the electronic substituent effect, 
preorganization, and more favorable entropy.

To gain further insights into the reaction mechanism, 
the cycloaddition reaction of 16 was followed by 19F 
NMR in THF at 20 °C for 24 h (Scheme 5a). A clean 
transformation of 16 into its trifluoroacetylated analog 61 
was observed almost instantaneously, followed by the 
slow formation of 63 and its hydrolysed counterpart 18 
due to traces of water. Tricyclic intermediate 62 was not 
observed, nor protonated 63 or 18. The measured half-life 
is about 8 hours, which corresponds to an activation free 
energy of 23.3 kcal/mol, according to the Eyring equation 
and first order rate law. The computed activation free 
energy from DFT calculations is 24.2 kcal/mol, close to 
experimental data.

From a practical point of view, this Diels-Alder 
cycloaddition of 2-hydrazonopyrimidines is amenable to 
gram scale in a one-pot process, as demonstrated with the 
synthesis of 22 in 81% yield from commercially available 
compounds (Scheme 5b). 5-Bromo-2-chloropyrimidine 
64 can be transformed into the corresponding 5-bromo-2-
hydrazinopyrimidine 65 in quantitative yield using 
hydrazine monohydrate in ethanol at 60 °C for 40 min. 
Crude 65 could then be reacted with commercial ynone 
66 using a catalytic amount of trifluoroacetic acid (5 
mol%) in THF at 60 °C (classical heating) for 20 min. 
When the hydrazone formation is complete, 
trifluoroacetic anhydride and 3-pentanone are added. 
After 1 h at 60 °C, the 7-aza-indazole 22 is obtained as 
the only product in the crude reaction mixture; after 
purification by silica gel chromatography, 6.2 g of 
analytically pure 22 could be obtained. 

The relevance of this extraordinary reactivity of 2-
hydrazonopyrimidines in Diels-Alder reaction under mild 
conditions was further explored with the synthesis of an 
intermediate to Vericiguat (BAY 1021189 from Bayer), a 
soluble guanylate cyclase (sGC) stimulator for the 
chronic heart failure in Phase III clinical trials (Scheme 
5c).28 Vericiguat possesses a 7-aza-indazole scaffold 
substituted by a 2-fluorobenzyl on N1, a pyrimidine motif 
on C3 and a fluorine atom on C5; this compound could be 
obtained in 6 steps according to the Bayer medicinal 
chemistry route. In contrast, the latter was obtained in this 
work in only 4 steps (including a one-pot reaction) from 
commercially available compounds 67 and 68. 
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Scheme 4. Pre-organization phase and cycloaddition phase during the intramolecular Diels-Alder of pyrimidine.
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a) Two distinct phases are proposed for the intramolecular cycloadditions of
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The one-pot condensation/domino Diels-Alder 
reactions proceeds smoothly at 60 °C (classical heating) 
and yields a single compound that is treated with 
tetrabutylammonium fluoride in THF at 0 °C. The 
disubstituted 7-aza-indazole 69 is finally converted to 70 
using 2-fluorobenzyl bromide and cesium carbonate in 
DMF at room temperature in 67% (N1/N2 benzylation 
ratio = 60:40). This synthesis of 72 requires only a single 
chromatography at the very last step.

Scheme 5. NMR insights, gram scale one-pot reaction 
and synthetic applications

Conclusions 

Pyrimidines are intrinsically unreactive aza-dienes in 
Diels-Alder cycloadditions, and this lack of reactivity 
under mild conditions has hampered the access to a 
diversity of original nitrogen-containing heterocycles 
from these simple, inexpensive and structurally diverse 
building blocks. We show that 2-hydrazonopyrimidines 
can be profoundly activated using a simple trifluoroacetyl 
group, leading to a domino Diels-Alder/retro-Diels-Alder 
cycloaddition even at room temperature. This reaction is 
general, presents an excellent functional group tolerance 
and can be scaled up on a gram-scale in a convenient one-
pot process. A straightforward synthesis of a key 
intermediate of Bayer’s Vericiguat, a soluble guanylate 
cyclase (sGC) stimulator for the chronic heart failure in 
Phase III clinical trials, illustrates the potential of this 
cycloaddition strategy. Central to this method is the 
impressive lowering of activation energy of the Diels-
Alder reaction, that was analyzed by density functional 
theory calculations including an application of the 
distortion/interaction-activation strain model to 
intramolecular reactions. The trifluoroacetyl activating 
group preorganizes the cycloaddition precursor, 
electronically activates the aza-diene and confers a 
favorable entropy on the transition state of the Diels-
Alder cycloaddition.
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