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An efficient synthesis of bis-8,80-catechinylmethane, a dimeric flavanol linked through a methylene
bridge, is described. Our strategy involved a regioselective coupling via a trifluoroacetic anhydride con-
densation reaction followed by ketone reduction to the methylene employing new conditions (lithium
aluminum hydride and hexafluorophosphoric acid).
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Flavonoids are secondary plant metabolites that have been re-
ported to have numerous health benefits including antioxidant
properties, anti-inflammatory, and anti-tumor activities.1 Epidemi-
ological studies reveal that increased antioxidant levels are associ-
ated with the reduction of several diseases involving free radicals.2

A more recent finding reveals the ability of flavonoids to modulate
epigenetic pathways.3 However, in many cases, no in vivo data has
been generated partly due to lack of synthetic methods for prepa-
ration of pure compound.

Flavonoids are typically isolated in mixtures of other polyphe-
nols, steroids, and a sophisticated separation method is necessary
to obtain single components. Unfortunately, enantioselective syn-
thesis of flavonoids still remains a daunting task and few methods
provide reasonable yields and purity.4 This synthetic challenge
prompted us to consider methods for the assembly of natural prod-
uct 1 (Fig. 1). In 2002, a preparation of 420 g of cocoa liquor from
fermented beans imported from Ghana resulted in the isolation
of 17 phenolic compounds including, 4 mg of flavonoid 1 and
15 mg of catechin 2.5 Compound 1 revealed antioxidant activity
against H2O2-induced impairment in PC12 cells and exhibited
DPPH radical-scavenging activity.6 The DPPH radical scavenging
activities of compounds 1 and 3 are SC50 = 13 lM and SC50 =
15 lM.7
Several reports have been published regarding the synthesis of
dimeric flavanols linked through a methylene bridge. The polymer-
ization of catechin 2 with formaldehyde8 and acetaldehyde9 has
been studied but gave moderate yields of dimeric compounds in
addition to a complex mixture of higher oligomers. The first syn-
thesis of (�)-bis-8,80-catechinylmethane (1) resulted in a 0.5%
overall yield.8 A recent synthesis trapped a palladium intermediate
(generated during hydrogenation) with an electron-rich aromatic
to yield 28% of natural product 1 and 19% of the C-8 ? C-6 regio-
isomer 3 as the key step.10 In order to establish an efficient synthe-
sis of natural product 1, regioselective C-8 ? C-8 coupling had to
be achieved. We believed that this step could be completed by a
trifluoroacetic anhydride (TFAA) mediated condensation. Unlike a
reactive aldehyde that would result in polymerization and regiose-
lectivity issues, a mixed anhydride intermediate in theory should
have the desired reactivity.

The synthesis began with the literature preparation of triflu-
oroketone 4 from (+)-catechin 2, which included two benzylation
steps and a regioselective Friedel–Craft acylation (Fig. 2).11 Conver-
sion of compound 4 to the acid 5 was accomplished utilizing a hy-
drate intermediate formed from sodium hydride and water.12 The
acid 5 was then coupled with penta-benzylated flavonol 2b using
trifluoroacetic anhydride to form ketone 6 with one equivalent of
trifluoroacetic anhydride in DCM.13

With ketone 6 in hand, we hoped that hydrogenolysis would al-
low for benzyl deprotection and reduction of the ketone.12 Unfor-
tunately this reaction resulted in ring opening of the chroman
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Figure 1. (�)-Bis-8,80-catechinylmethane (1), catechin (2), and C-8 ? C-6 regioisomer 3.
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Figure 3. Methylene-containing flavonoids.
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Figure 2. Total synthesis of (�)-bis-8,80-catechinylmethane (1).
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rather than reduction of the ketone. In our phloroglucinol model
system we achieved over-reduction of the ketone to the methylene
with lithium aluminum hydride. Unfortunately, treatment of ke-
tone 6 with the same conditions resulted in formation of a stable,
benzyhydryl alcohol. We found that sequential addition of lithium
aluminum hydride followed by superacid HPF6, however, resulted
in our desired compound 9. This reaction sequence presumably
proceeds through a benzyhydryl alcohol intermediate 7, a stable
carbocation14 8, which is then trapped by the excess hydride in
the reaction. We did not find other one-pot conditions in the liter-
ature to over-reduce electron-rich ketones with a superacid and
reducing reagent. However, there is an example where HPF6 and
Et3SiH were used to reduce alcohols to methylenes in hydroxyind-
olinechromium complexes.15 Finally, natural product 1 was ob-
tained from the hydrogenolysis of deca-benzylated compound 9
under standard conditions. Ring opening of the chroman was again
an issue, resulting in 30% yield although a higher yield (70%) was
obtained on smaller scale. The final compound 1 was confirmed
by 2D NMR studies and in comparison to the original characteriza-
tion paper.8,16 Compounds 4,11 5, 6, and 9 were characterized by
1H, 13C, HRMS, IR, and optical rotation.17

A regioselective synthesis of bis-8,80-catechinylmethane has
been described. We believe a similar strategy can enable the
syntheses of other methylene-linked flavonoids (Fig. 3).18 It is envi-
sioned that a regioselective coupling with trifluoroacetic anhydride
and reduction using lithium aluminum hydride/hexafluorophos-
phoric acid could be employed in these syntheses.
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